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An important result in the theory of context-free languages is that
known as the "Chomsky-SchUtzenberger Theorem." The best known version of this

result can be stated as follows.

Theorem A. For every context-free language L, there exist an integer k, a

regular set R, and a homomorphism h such that L = h(DknR), where D, is the

k
Dyck set on k letters.

Equivalently, one can state that every context-free language is the
image of a Dyck set under a finite-state transduction. Theorem A appeared
first in Chomsky [1] and Chomsky and Schiitzenberger [2]. Proofs appear in
secondary sources such as Ginsburg [3] and Salomaa [8].

A stronger (in fact, the "strongest" possible) version of Theorem A is
known, although no proof appears in the literature. First, one can replace Dk
with h2—1(D2) for a suitable homomorphism h2. Second,; the homomorphism h can

be made length-preserving if h2 and R are suitable chosen. This leads to a

result which is the "strongest" form of the Chomsky-Schiitzenberger Theorem.

Theorem B. For every context-free language L, there exist a regular set R
and homomorphisms hl and h2, with h1 length-preserving, such that

L = hl(hz-l(Dz)nR), where D2 is the Dyck set on two letters.

The purpose of this note is to provide a sketch of a proof of Theorem B
using only the basic machinery of the theory of context-free languages.

Before doing this we review some concepts and notation used in the proof.



For any n = 1, let An be a set of 2n distinct symbols,

An = {al,...,an, al,...,an}. The Dyck set Dn on n letters is the language

L(G) where G = (Anu{s}, An, P, S) is the context-free grammar with the set of
rewriting rules P = {S-SS, S—*e}(J{S~>aiSE£ 1<i<n}. Alternatively, let
be the congruence on An* determined by defining algi ~ e for each i = 1,...,h.
Then Dn = {WesAn* I w o~ e}.1 For any n 2 1, any two Dyck sets on n letters
are isomorphic kas semigroups of free semigroups), so that one refers to the
Dyck set on n letters. Intuitively, Dn is the set of all "balanced nested"
strings of matching "parentheses" in An*' For any n, the congruence ~ on A*
which determines Dn has the property that for every w € A*, there is a unique
minimum length string u(w) € A* such that w ~ u(w), i.e., w ~ p(w) and if
w~yandy # u(w), then |y| > Iu(w)l.2 The function u has the following

properties:

i) p(w) = e if and only if and only w ¢ Dn;
ii) for any x,y € A*, p(xy) = p(u(x)y);

iii) for any x € A* and any y e‘{al,...,an}*, Hixy) = u(x)y.

For any n 2 1, consider the homomorphism h: An*->A2* determined by

defining h(ai) = alla2 and h(E;) = a 1 for each i = l1,...,n. Now h is

2%1
one-to-one but is not onto. It is easy to see that

h-l(Dz) = {we'An* l h(w)ezDz} = Dn. Thus, every Dyck set can be obtained from

the Dyck set on two letters by applying an inverse homomorphism.

1. If I is a finite set of symbols, then I* is the free monoid with identity e
generated by Z.

2. For any string x, the length of x is denoted by |x]|.



Let h: X* > A* be a homomorphism and let L < I*. Suppose that there is
an integer k such that for all x,y,z € I*, if xyz ¢ L and h(y) = e, then

|yl < k. Then we say that h is k-limited on L. If there exists k such that h

is k-limited on L, then h is e-limited on L. If for all ac %, |lh(a)| = 1,

then h is a length-preserving homomorphism.

A context-free grammar G = (V,X,P,S) is in Greibach Normal Form

(standard 2-form) if each production in P is of the form Z-a or Z-+aYl or

Z—*aYle where ae X and Z,Yl,Y2 € V«-Z.3 It is well-known [7] that for every
context—freé‘language L there is a Greibach Normal Form grammar G such that
L(G) = L-{e}.

Before proving Theorem B we prove a slightly weaker result.

Theorem C. For every context-free language L, there exist a regular set R
and homomorphisms hl and h2 such that L = hl(hz_l(Dz)nR) and hl is e~limited

on hz-l(Dz)nR, where D2 is the Dyck set on two letters.

Proof. For a context-free language L such that e ¢ L, we show that there is
an integer t, a homomorphism hi’ and a regular set R such that L = hl(DtnR),
e ¢ R, and hl is e-limited on D, nR. If h2 is any homomorphism with the

t
-1 -1 .
(D)) = Dt’ then we have L = hl(h2 (Dz)nR) and hl is

property that h2 5

3. In a context-free grammar G = (V,I,P,S), V is the finite set of symbols,
LcV is the set of terminal symbols, S € V- X is the initial symbol, and
P c (V-Z) xV* is the finite set of productions. A production is written
as zZz+u instead of (Z,u). Define a binary relation => on V* by aZf => ayYB
if 0,8,y e V¥, Z e V-I, and Z > YyeP. ILet :> be the transitive reflexive

. *
closure of =>. The language generated by G is L(G) = {we I* l S => w}.




1
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e-limited on hz_l(Dz) R. Since e e D,, e € h Since R is regular,

2 2)0

RU {e} is regular. Since hl is a homomorphism, hl(e) = e. Thus, if

_ -1 . . -1
L = hl(h2 (Dan) and hl is e-limited on h2 (D2)nR, then

Lu{e} = hl(hz_l(D2)r1(Ru{e})) and h, is e-limited on hz_l(Dz)rm(Ru{e}). This

1
yields Theorem C.

Let L be a context-free language such that e ¢ L, and let G = (V,IZ,P,S)
be a Greibach Normal Form grammar such that L(G) = L. For each symbol Ze V,
let Z be a new symbol. Let A = VlJ{E.| ZeV}. Let p and q be two new symbols,
P9 ¢ A. Let GO = ({p,qluA, A, PO’ p) be the left linear grammar obtained by

defining PO as follows:

i) p > Sq is in PO;

ii) for each Z € V-%, ae X such that Z+a is in P, q > agzé is in PO;
iii) for each Z,Y ¢ V-I, ae X such that Z-+aY is in P, q »> aEEYq is in Po;

iv) for each Z,Yl,Y € V-%, aelX such that Z + aY¥.Y is in P, q > agﬁszlq
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is in PO;

v) gq+e is in PO'
Let R be the regular set L(GO). Let u: A* > A* be the function which
assigns to each we A*, the unique minimum length string u(w) obtained by
applying the congruence on A* determined by defining aa ~ ZZ ~ e for each
aecl, ZeV-L%, i.e., w~ p(w) and if w~y and y # u(w), then ly| > |uw)].
Let t be one-half the number of symbols in A. We claim that DtnR is a
set of "histories" of left-to-right derivations of strings in L(G) = L.
Further, if hlz A* > ¥* is the homomorphism determined by defining hl(a) = a

and hl(g) =h,(2) = hl(ﬁh = e for ae, Z € V-2, then we claim that



hl(DtnR) = L and hl is k-limited on DtnR for k = 4.

By construction of GO’ it is immediate that h, is 4-limited on L(GO) = R

1

and therefore on DtnR.

Since G is a Greibach Normal Form grammar, for every n 2 1,

...anv' in G if and only if there is a

*
ayre--sa € L, and v € (V\-;)*, s => a;

* B
left-to-right derivation S => aj...a v with n steps in G.4 Thus, to show
that hl(DtnR) = L, it is sufficient to establish the following technical

result.

Claim. For each n 2 1, ai,::E,an € L, ve (V-2)*, there is a left-to-right

*
derivation S => a...av in G if and only if there exists we A* such that

*

u(w) = VR, hl(w) = .a;...3,, and there is a derivation p => wq with n+l steps

in GO’

The proof of the claim is by induction on n and depends on the

construction of GO' We shall sketch the proof of the induction step and

leave the details to the reader. Assume the result for some n = 1.

Suppose that for some al,...ta € L, ve (Vf-Z)*, there is a

n+l
*
left-to-right derivation S => a cee@ 4V in G. Thus, for some Z ¢ V~-13I,

1 +1

*
ue (V-X)*, there is a left-to-right derivation S => al...anZu in G and

there is a production Z - a 1% in P where x ¢ (V-I)* and xu = v. By the

+1

induction hypothesis, there exists w, ¢ A* such that u(wl) = (Zu)R = uRZ,

1

*
= .,a,...a i i i = i i .
hl(wl) a, n’ and there is a derivation p => AT with n+l steps in GO

4. A derivation is left~to-right if in each step the leftmost nonterminal
symbol is rewritten.



Since u(wl) = uRz, u(uRZ) = uRZ. Since Z e V-1, u(uRZ) = u(uR)Z. Thus,

R R
H(u’) =u.
There are three possibilities for the form of the production Z -~ an+1x:
=‘ A + . 3 - - . 3
x e so that 2Z a 41 is in P, g~ an+lan+qu is in Po, and
v = u;

x =Y for some Y ¢ V- so that Z - a 1Y is in P, and

q > ZYq is in PO' and v = Yu;

n+l n+l

X = YlY2 for some Yl,Y2 € V- so that Z -+ an+lYlY2 is in P,

q > ZY qu is in PO’ and v = Y. Y _ u.
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EkR is the required string in A*. To

In each case, the string w = wlan+lan+1

see this, note that xR € (V-2I)* so that p(w) = u(w a Z)x , and that

n+1 n+l

uR, so that

= = - _ .R= _ R
u(wlan+lan+lZ) = u(wlZ) = p(u 22) = u(u)
u(w) = quR = (xu)R = VR. Also,

hy ) = hy(w)hy(a by G Ik @h (k) = aj...aa

1) P nel® Finally, since

there is a derivation => w
p qh+1%n+1

q with n+l steps in G, and q ~ Zqu is in

1 0]

PO’ there is a derivation p —> w.a Zqu with n+2 steps in G

1%n+12 n+l 0o°

Conversely, suppose that there exists w ¢ A* such that there is a
*
derivation p => wg with n+2 steps in GO. From the construction of GO' we see

that h, (w) = 2;---3,,; for some a;,...,a e L, and that u(w) e (V-1IX)*,

n+l

Let v = (u(w))R. Since G0 is a left linear grammar, every derivation from p

is a left-to-right derivation. Thus, there exists a unique pair y,z ¢ A* such
*

that yz = w, there is a derivation p => yq of length n+l in GO' and q > zq is

in PO. Applying the induction hypothesis to y and considering the three

possible forms for z yields the conclusion that there is a left-to-right



...a_a v in G.

*
derivation S => a
1 n n+l

This completes our proof of the claim.

To see that L = hl(DtnR), note that for any n > 1 and al,...,an € X,
8y.--8, € L = L(G) if and only if there is a»left—to—right derivation
S §> al...an in'G. By the Lemma, S §> al...an ian if and only if there
exists w ¢ A* such that u(w) = e, hl(w) = ‘al.;.an, and there is a derivation
* *

*
P => wq with n+1 steps in GO. Now p => wqg in GO implies that p => wq => w

since g + e is in PO’ so that w ¢ L(GO) = R. Since p(w) = e, w ¢ Dt' Thus,

al...an € L if and only if al...an € hl(DtnR). From the remarks above,

this yields Theorem C. g

We now prove Theorem B from Theorem C. Suppose L is a context-free
language and L- {e} is generated by a grammar G = (V,I,P,S) in Greibach Normal
Form. Let A = VU {Z: ZeV} and suppose the homomorphisms hl: A* » T* and
h2: A% A2* and the regular set R ¢ A* are as defined in the proof of Theorem
C, so that L-{e} = hl(hz—l(Dz)nR). We use a technique of Ginsburg, Greibach,
and Hopcroft's [5] to construct a length-preserving homomorphism h3, a
homomorphism h4, and a regular set R' such that L- {e} = h3(h4_l(D2)nR).

Let ' be an alphabet consisting of symbols [yay'] with a € I,
v,.¥y' € A*, hl(y) = hl(y') =e, and 0 < |y|,|ly'|l £ 4. (Recall that hl is
4-1limited on hz—l(Dz)nR.) Let R' ¢ T* be the regular set
R' = {[wl]... [wn] |:12]q Wireea W € R}. Let h3: T* + T* and h4: T* > A2*
be the homomorphisms determined by defining h3([yay']) = a for ae I and

h4([yay']) = hz(yay'). Note that h3 is a length-preserving homomorphism and



h3([w]) = h; (w) for [wl e . It is easily verified that
-1 o -1 o

h,(h, (Dz)nR ) = hl(h2 (D2)nR) = L-{e}. Also,

Lu{e} = h3(h4_l(D2)r1(R'U{e})). This yields Theorem B.

One should note that Theorem B is the basis for the result stated in
Ginsburg and Greibach [4] that the class of context-free languages is a

principal abstract family of languages with generator D The use of a

9
Greibach Normal Form grammar in the proof of Theorem C is similar to the use

of such grammars in the proof of the main result of Greibach [6].

In the proofs of Theorems B and C, the construction of the
homomorphisms depended on the size (number of symbols) of a Greibach Normal
Form grammar for L- {e}. The proof of Theorem C can be altered so that the
homomorphisms depend only on the alphabet I (where L c I*), by using an idea
in the proof of the Chomsky-Schuitzenberger Theorem in Ginsburg [3]. However,
the limit on the erasing done by hl will then depend on the grammar G, rather
than being fixed at 4, and the homomorphisms constructed for Theorem B depend

on the amount of erasing.
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