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Abstract.  This paper explores the embeddings of multidimensional meshes into minimal
Boolean cubes by graph decomposition. The dilation and the congestion of the product
graph (G1 X G3) — (H; x Hz) is the maximum of the dilation and congestion for the two
embeddings G; — H; and G2 — H,. The graph decomposition technique can be used to
improve the average dilation and average congestion. The graph decomposition technique
combined with some particular two-dimensional embeddings allows for minimal-expansion,
dilation-two, congestion-two embeddings of about 87% of all two-dimensional meshes, with
a significantly lower average dilation and congestion than by modified line compression [4].
For three-dimensional meshes we show that the graph decomposition technique, together
with two three-dimensional mesh embeddings presented in this paper and modified line
compression, yields dilation-two embeddings of more than 96% of all three-dimensional
meshes contained in a 512 x 512 x 512 mesh. The graph decomposition technique is also
used to generalize the mesh embeddings to meshes with wrap-around. The dilation increases
by at most one compared to a mesh without wrap-around. The expansion is preserved for
the majority of meshes, if a wrap-around feature is added to the mesh.

1 Introduction

Many linear algebra computations can be performed effectively on processor networks con-
figured as two-dimensional meshes, with or without wrap-around. Processor networks con-
figured as two- or higher dimensional meshes are also effective for the solution of partial
differential equations whenever regular grids are appropriate. Though grid computations
are frequently used, interconnection networks for parallel computers must be chosen to ef-
ficiently support many forms of communication. Boolean cube networks are currently used
in several architectures. These networks are versatile in that they can emulate many other
networks with little or no slowdown.

Embedding meshes in Boolean cubes by encoding the indices of each axis in a Gray code
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(20] yields a nearest neighbor embedding of adjacent nodes [14]. However, if the length of
the axis is not a power of two, the Gray code embedding forces the number of processors
allocated to an axis to be a power of two. For meshes of high dimension, this may yield a
very poor processor utilization. Havel and Méravek [11] proved that any nearest-neighbor
embedding must have the same processor utilization as that offered by the binary-reflected
Gray code. Whenever the Gray code does not yield the maximum processor utilization,
an increased utilization can only be achieved if some adjacent mesh nodes are assigned to
Boolean cube nodes at a distance of at least two. The length of the path into which a mesh
edge is mapped is the dilation of the edge, and the maximum dilation of any edge is the
dilation of the embedding. The expansion of the embedding is the ratio of the number of
cube nodes used for the embedding and the number of mesh nodes. For meshes that cannot
be embedded with minimal expansion and dilation one, the best known lower bound for
the dilation is two. The bound of dilation two is tight for two-dimensional meshes [4]. The
best known upper bound for the dilation is 7 for three-dimensional meshes (6], and 4k + 1
for k-dimensional meshes, k > 3 [5].

We provide some minimal-expansion two-dimensional embeddings with dilation two, and
lower average dilation than the general technique in [4]. We specify all length-two paths,
and give the congestion, active-degree, and node-congestion of the embeddings. We give
two three-dimensional embeddings with dilation two, and one three-dimensional embedding
with dilation three, about half of the upper bound. We show how graph decomposition
can be used to provide effective embeddings for many meshes, and how properties such as
expansion, dilation, congestion, active-degree and node-congestion are affected by graph
decomposition. We also compare the embeddings obtained by graph decomposition to the

embeddings obtained by the modified line compression method in [4].

Embedding of meshes by graph decomposition was used implicitly in [12] to achieve
dilation-two minimal-expansion embeddings of 87% of all two-dimensional meshes. Gray
code embedding of one mesh was combined with direct embedding of one out of three
small meshes. Below we extend these results by specifying all length-two paths to yield
embeddings with a congestion of two. Both the average dilation and average congestion
are one asymptotically. The graph decomposition technique in combination with previously
known results [2,4,7,12] and some new direct embeddings yields dilation-two minimum-
expansion embeddings of 96% of all three-dimensional meshes {1 x €3 x {3, such that 1 <
£1,62,¢3 < 512. By using Gray code embedding, only 29% of the meshes achieve minimal
expansion for the considered three-dimensional domain.

The outline of this article is as follows. We first show how the dilation, expansion,
congestion, active-degree and node-congestion of a graph represented as a product graph
is related to the same properties of the graphs forming the product graph. Dilation-two,
congestion-two, minimal-expansion embeddings of some small two-dimensional meshes used _
to form product graphs are given, as well as dilation-two, minimal-expansion embeddings
of two small three-dimensional meshes, and a dilation-three embedding of one small three
dimensional mesh. The reshaping and direct embedding techniques used for the embedding
of these small meshes are briefly reviewed. Section 5 presents results for embedding of
meshes by graph decomposition in combination with the reshaping and direct embedding
techniques. Section 6 extends the results to meshes with wrap-around.




2 Preliminaries

For a graph G let Vg be its set of nodes, and &g its set of edges. Let |S| denote the cardinality
of a set S, and [z], and |z], denote 2M1°&:=] and 2U'°8:=], respectively. The embedding
function ¢ maps each node in the guest graph G into a unique node in the host graph H.
The ezpansion ¢ of the mapping is |Vg|/|V¢|. The relative expansion for embedding a graph
G into a hypercube H is [Vg|/[|Vs|]2- Under the mapping function ¢ : G — H,node i € Vg
is mapped to node (i) € Vg, and edge e = (i, j) € £ is mapped to a path y(e) consisting
of the set of edges £,.) = {(¢(i),v1), (v1,v2), -+, (tp_1,9(j))} C En- The path p(e) has the
node set V) = {¢(i),v1,v2,---,v5_1,9(j)}. Let dist(i,j) be the shortest path between
nodes i and j in the considered graph. The dilation of the mapping  is max(dist((2), ¢(J)),
for all (i,j) € £g. The dilation of an edge (i,j) € &g is dist(¢(i), ¢(j)), and the average
dilation of the mapping ¢ is
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The congestion of an edge ¢' € Ex is T ocg, [{€'} N Ep(e)l, and the congestion of the embed-

ding is
Tné¢ .
max {:4;6 {e'}n Egge) }

The average congestion of the embedding is similarly defined. The node-congestion of a
node v € Vy i Y.cg, {v} N Vy(e)l, and the node-congestion of the embedding is

} .

The average node-congestion is defined similarly. The adjacency node set of a node v € Vg
is the set of nodes V, = {v; | (v,v;) € Ex}, and the edge set of a node v € Vg is
& = {(v,v;) € En}. The active-degree of a node v is |, N {Ueegs€p(e)}|, and the active-
degree of the embedding is

e {ggi{v}we)

max
vEVyH

gv N {UCEEGS¢(C)}I .
The average active-degree is defined similarly.

If each node of the guest graph is mapped to a distinct node of the host graph, then
the expansion is a measure of processor utilization. The slow down due to nearest-neighbor
communication in the original graph being extended to communication along paths is a
function of the length of the path and the congestion of the edges on the path. With a limited
communications bandwidth at the nodes, the time for nearest-neighbor communication in
the guest graph may also be influenced by the node-congestion and the active-degree.

A Boolean cube is a graph B with node set Vp such that [Vg| = 2" for some n and

edge set gB = {(in—lin—Z s 2_7 . '7:07 in—lin—2 v Z_1 te Zo) | ] = {0’ 1,-- ty— 1}’ z'_1' = {0’ 1}};
|€B| = n27~1. The distance between nodes i = (tn-1tn—2--+%0) and j = (Jn-1jn-2---Jo)
in an n-cube is Hamming(i,j) = %% (ém @ jm), where @ is the exclusive-or function. In

the following, subcube 0 denotes the subcube that consists of all the nodes with the most
significant bit of its address being 0. Subcube 1 is defined accordingly.




2.1 Graph decomposition

In this section we state and prove a few properties of product graphs, and the embedding
characteristics of the product graph as a function of the embedding characteristics of the
graphs forming the product graph.

Definition 1 The (Cartesian) product graph G; x G2 of a graph G; and a graph G is
defined as

{[vis v;] | Vvi € Vi, 05 € Vi, }, and

{([vi, v5], [vi, va]) | Vi € Ve, (vj,14) € €, }

U {([vja 'U,'], [‘vkv ‘U,’]) I VU,’ € VG2’(vj’ l’k) € 501}‘

I

le XGz
6y xG,

G1 X G3 can be derived by replacing each node of G, by G, and replacing each edge of
G by a set of edges connecting corresponding nodes of G,. Note that G; x G2 = G2 x G,
VaixGa | = Ve, | * Ve, |, and |€6,xa, | = [Va, | * [€6,] + [V, | * 1€, |-

Theorem 1 Let ¢; be an embedding function which maps a graph G; into a graph H;
with ezpansion ¢;, dilation d;, congestion c;, active-degree a;, and node-congestion c., for
i = {1,2}. Then, there exists an embedding function ¢ that maps the graph G = G1 x G
into the graph H = Hy x Hy with ezpansion € = €13, dilation d = max(dy, ds), congestion
¢ = max(ci, c2), node-congestion ¢’ < ¢} + cb, and active-degree a < a; + a;.

Proof: We prove the theorem by constructing an embedding function ¢. Let S° =
{([5, 0], [was 0:]) ¥ (ujp we) € €6, } and Sy = {([wi, vj], [wiy 0a])|¥(v5, v4) € EG, }- Clearly,

5G1 xGy = (Uv,'EVGz 5;") U (Uu.'GVGl S;i)'
S7* is a copy of G identified by node v; in Gy. For the host graph H, we define 7, and
7," similarly. Hence,

ng xH; = (Uv,'EVH2 7'10i ) U (Uu.'EVHl 7—21“ )'
An embedding function ¢ is derived from ¢; and ¢, by letting any edge ([u;, v;], [u, v;]) €
S1* corresponding to the edge (u;, ux) € £, be mapped to the path

{(lp1(u;), 2(v:)]; [w1, @a(v:)]), ([w1, p2(v:)], (w3, @2(v:)]), -+,
([wp-1, 02(w3)], [1(wn), wa(vi)))} € T2

in H, where the edge (uj, ux) € £, is mapped to the path

991((11.)‘, Uk)) = {(¢1(uj)9 wl)’ (wh w?)’ ity (wp—ls 991(uk))}

in Hy. The mapping of edges in S;* are defined analogously. The dilation of any edge in S}*
is the same as the dilation of the corresponding edge in £, , and the dilation of any edge in
Sy' is the same as that of the corresponding edge in £g,. From the definition of ¢ it follows
that any edge e € S7*, ¢(e) C T{P’(""). From the definition of a product graph it follows
that copies of H; (H:) identified by different nodes in H, (H,) are disjoint. Therefore, the
congestion of all edges in Hy x H is preserved. It also follows that the the node-congestion




for a node under the embedding function ¢ is the sum of the node-congestion for the node
under the two embedding functions ¢1 and ;. Similarly, the active-degree of a node in H
is the sum of the active-degrees of the node due to the embedding functions ¢; and ¢,. §

If the embedding function ¢; for i = {1,2} yields the average dilation d;, the average
congestion ¢;, the average node-congestion c/, and the average active-degree a; and

a= |lel * Ing, |vH1| * I“:Hzl

and 4 =
Eorval P Tea
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then, the embedding function ¢ has the average dilation d = ad, +(1- a)d;, the average
congestion ¢ = 3¢, + (1 — )¢y, the average node-congestion ¢’ = ¢} + c}, and the average
active-degree a = d; + dy.

Corollary 1 Let ¢;, 1 < § < r, be embedding functions that maps graphs G; into n;-
cubes with ezpansion ¢;, dilation d;, congestion c;, node-congestion ci, and active-degree a;.
Then, there ezists an embedding function ¢ which maps a graph Gy x G X -+ X G, into
a Y7 ; ni-cube with expansion ¢ = IT;_,e;, dilation d = max; d;, congestion ¢ = max; c;,

node-congestion ¢’ < ¥7_, ¢}, and active-degree a < Y°I_, a;.

The fact that the dilation for the embedding of a product graph is the maximum dilation
for the embedding of any graph used for the composition was observed in [18,21,16] and [9].
The corollary is used implicitly in [13] for the embedding of meshes by binary-reflected Gray
codes, and in [7] and [12] for the embedding of two-dimensional meshes by a combination
of direct embedding and Gray code embedding.

Corollary 2 Let p; be an embedding function which maps an €y X €ia X --- X €;, mesh
M; into an n;-cube with ezpansion ¢;, dilation d;, congestion c;, node-congestion c!, and
active-degree a; for 1 < i < r. Then, there ezists an embedding function ¢ which maps
an €y X €y X +-- X €, mesh M into a (Xi=1 n:)-cube with ezpansion ¢ = [[i_; ¢;, dilation
d = max; d;, congestion ¢ = max; c;, node-congestion ¢’ < Y°T_, ¢, and active-degree a <
Yiz16i. where £ = [Ty b for 1< j < k.

Proof: It follows from Corollary 1 and the two facts below:

* The product graph of an £; x £y x - .- x £, mesh and an £] x {4 x - -- x ¢}, mesh is an
lelgx---xlkxégxlgx---xf;c, mesh.

® [19] An ¢y X €3 X --- X £, mesh is a subgraph of the mesh

(l11 x €y X--'Xl’r1)><(t’1le22x---x[,z)x---x(flkxlzkx---xt’,k),

ifH[,'jZ(’j, Vi<j<k. |

=1

The embedding function ¢ for an ¢; x €3 x---x €, mesh M being a subgraph of M; x M,,
where M, is the mesh ¢,; x €12 X -+ X £y, My is the mesh €y x €35 X - X ok, and




l; = ;X €y, 1 < i< k,is defined in terms of the embedding functions ¢, for M; and ¢, for
Mj. Let 2z = (21, 22,-+-,2£),0 < 2z; < {; beanodein M, z = (21,22, +y2k),0 < z; < £y; be
anodein My, y = (y1,¥2,- -+, ¥k ), 0 < y; < €5; be anode in My, and z; = yily;+z;,1 < i < k.
The embedding of axis i of M consists of the embedding of £5; instances of axis ¢;. Define

3 ro ' , z;, if y; is even,
I,z T Toyooo, T where z; = .
‘pl(ylv Y2, sYky T195L2y° -, k) 891((1'1, 2 ] k)) i {[h- 1 i, otherwise.

The function ¢, differs from the function ¢; in that a reflection of the embedding of axis i
of M is performed for instances for which y; is odd. The function ¢ is defined as follows:

¢((z1’ 22y, Zk)) = 902((y1v Y2y yk))”‘ﬁl(?]h Y2y 9 Yks T1, T2, - '$Ik)7

where “||” is the concatenation operator. If ¢;; = 2™, then a binary-reflected Gray code
G is used for each axis of My and ¢;((21,Z3,--+,2k)) = G(21)||G(z2)||---]|G(zx). The
embedding function ¢ takes the form:

(P((zl, 225000, Zk)) ‘;02((3/1, Y2900+, yk))“é(yl, zl)llé(y% 222)” toT “é(yk’ Zk),

ooy = J G(Z), if y; is even, .
where G(yu zt) - {G(2n, 1 Zi), otherwise. ( )

An instance of axis ¢ of mesh M is traversed for every node along axis i of M,. All
edges along axis i of M; have dilation one for every i. With a dilation d embedding of mesh
M there exists at least one edge for some i that has dilation d for mesh M,. By performing
the embedding of axis i of the mesh M by traversing all edges along axis i of mesh M; for
every edge of axis 7 of mesh M, the average dilation is minimized. Let dy(i) be the average
dilation of the edges of axis ¢ in the mesh My, then the average dilation of the embedding
of the mesh M is

k k k
1+Z{ da(i) - 12X 1"»—":-(@2,._1)([1@-)/12,-} Z{(fm—1)(Hfzj2"1)/<e2,-2"-'>}

j=1

The approximated term shows that the average dilation decreases as the length of axis i of
mesh M, increases.

2.2 Dilation one embeddings

The following theorem due to Havel and Méravek [11] shows that for certain meshes, em- -
bedding with minimal expansion and dilation one is impossible.

Theorem 2 [11] If an €1 X €y X - - x €, mesh is embedded in an n-cube with dilation one,
then n > Y% [log, ¢;].

Theorem 2 was independently rediscovered in [3,8,12] and [10]. From the theorem follows
that the expansion is in the range of 1 to 2. The percentage of meshes for which Gray code
embedding [3,13,14,20] yields minimal-expansion embeddings decreases with the number




of axes of the mesh. Determining the asymptotic expansion for Gray code embedding is
transformed to the following probability problem. Let a;, i > 1, be a variable uniformly
distributed over an interval (%, 1], and a¢; and a; be independent variables for all i # j.
Then, the probability that [5_; a; € (1/28+1,1/28] is the asymptotic fraction of embedding
k-dimensional meshes using Gray code embedding with an expansion 25. For minimal
expansion (3 = 0.

Let a € (%, 1] and fi(a) be the probability that a < [J*_, ¢; < 1. Then,

Lemma 1 f.(a)=2"(1-a Y7} (;1%&) for 3 <a<1.
Proof: By induction on n. fi(a) =2(1-a), § <a <1
fant) = 2 [ g () ae
) 2/: (2_2511;%) i )
= gt /01 dr - 2"“02-/:0 (ﬁlﬂ)i"idu (3)

" (-1)In' a
_ n+1 n+1 n+1 g—_
= 2 -2 a-—2 a E i

i=1

n P 1
_ +1 n+1 (=1)'In'a
= 2ml_ontlg ) —
~
From Equation 2 to 3, we let u = In 2. Hence, du = —4=. 11

Theorem 3 The fraction of all k-dimensional meshes for which a binary-reflected Gray

code embedding yields minimum ezpansion is fi(3) = 2F(1 - 1 k4 l—“:rz—), asymptotically.

Proof: By Lemma 1. |

Figure 1 shows fi(3) as a function of the number of dimensions, k. fo(1) = 2(1-In2) ~
0.61 and f3(1) = 4(1 — In2 — 222) x 0.27.

3 Reshaping techniques

Reshaping an ¢; x €3 x -+ X {; mesh is the embedding of the mesh in an O x by x---xt, -
mesh. The number of axes is preserved, but the length of the different axes are changed.
We only consider reshaping an ¢, x £, mesh into an N; x N mesh, where N; = 2™ and
Nz = 272, such that NyN, = [£14,],, and ¢; < £;. The embedding can be represented by
joining corresponding nodes on ¢; lines of length ¢, — 1. Step embedding [1] and a modified
step embedding yield dilation three. Folding [17], line compression [1], and modified line
compression [4] yield dilation two. Embeddings of a multidimensional mesh into another
multidimensional mesh of different shape and cardinality are studied in [15] and [19]. By
making the reshaped mesh having axes with lengths being powers of two, a Gray code
embedding can be applied to the reshaped mesh [13].
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Figure 1: The asymptotic fraction of the domain ([¢;]2/2) < ¢ < [£]2 for which minimum

expansion is attained by Gray code embedding. The right plot has a logarithmic scale for
the y-axis. ‘

() | (b)

Figure 2: Embedding of a 3 x 9 mesh into a 4 x 8 mesh by step embedding with, (a) dilation
3, (b) dilation 2.

3.1 Step embedding

Let N1 = [{1]2 and Np = |£3]5. Each row of the guest mesh will “turn” at some point and
make a vertical traversal [1]. Figure 2-(a) shows the embedding of a 3 x 9 mesh into a 4 x 8
mesh. Different rows traverse different columns. It follows that Ny > ;. Row i of the guest
mesh occupies a part of rows ¢ and i + £, — Ny of the host mesh, and Ny > €3 — Na + £;.
The dilation is three. The number of edges with dilation 3 is (£2 — N3)(¢; —1). The average
dilation is 1 + 3‘%’%’-4“—‘12 ~ 1+ £7M which is in the range of 1 to 1.5. For certain
. tG 2 ’
meshes, for instance if £, = N, + 1, the dilation can be reduced to 2 as shown in 2-(b).
Figure 15-(b) shows the pairs (41, £3) for which the step embedding method attains minimal

expansion, while Gray code embedding cannot. The ratio of the number of these pairs to

the total number of pairs is ~ }.
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Figure 3: Embedding of a 3 x 10 mesh into a 4 x 8 mesh by modified step embedding.
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Figure 4: Embedding of a 5 x 25 mesh into a 8 x 16 mesh by modified step embedding.

3.2 Modified step embeddings

In step embedding, a row of the guest mesh only makes one vertical traversal. In modified
step embedding, several vertical traversals are allowed, Figures 3 and 4. Each vertical
traversal involves ¢; distinct columns, one for each row, and the maximum number of
vertical traversals by all rows is a = L%Vllj Since each vertical traversal can save Ny — {;

nodes from the second axis, the condition N; > [52—;'!2] + ¢, must hold. Note that the step
embedding technique cannot be applied if a = 0, i.e., Na < {;. For a = 1 the modified step
embedding technique degenerates to the step embedding technique.

The modified step embedding allows minimal expansion for more pairs (¢, {) than step
embedding, Figure 15-(c). The additional pairs all satisfy the condition [£3]2/[€1]2 > 4
(assuming ¢; < {3). For example, a 3 x 10 mesh is mapped to a 5 x 8 mesh by step
embedding, but to a 4 x 8 mesh by modified step embedding, Figure 3. A 5 x 25 mesh is .
mapped to a 14 x 16 mesh by step embedding, but a 8 x 16 mesh by modified embedding,
Figure 4. The average dilation is the same as in step embedding, i.e., 1 to 1.5. If the number
of vertical traversals k satisfies the condition [25%2] < k < £, — N, then the dilation is 2.
However, the average dilation will increase.




Figure 5: Embedding of a 3 x 20 mesh into a 4 x 16 mesh by folding.

AT

Figure 6: Embedding of a 5 x 12 mesh into a 4 x 16 mesh by the line compression method.

3.3 Folding

In [1] the break-and-fold technique [17] was used to square-up an £; x £, mesh with £; < £5. If
there exists an n;-cube and an np-cube such that Ny Ny = [£1€5]2, N7 > £; and [%;lj > [ﬁl—],
then the break-and-fold technique will yield a minimal expansion embedding. Figure 5
shows the embedding of a 3 x 20 mesh into a 4 x 16 mesh. The dilation of the embedding
is two. Figure 15-(d) shows the pairs (¢,, {3) for which the folding technique yields minimal
expansion, but the Gray code embedding does not. The set of these pairs is mostly disjoint
from the set of pairs for which step embedding yields minimal expansion, but the Gray code
does not. However, folding and the modified step embedding largely covers the same pairs
as the folding technique. The average dilation is ~ 1 + g-.

3.4 Line compression

Line compression is also adopted from [1] in which a basic “tile” of size a X b is compressed
into a tile of size b x a. Let b = a + 1, then [-I‘E’IJ >4y — Nyand Ny > {3 + [%]. In order to
satisfy these two constraints, a > 1 and ¢, < 3N, must be satisfied. One can easily show
that any (2*—1)x(2°+1) mesh can be reshaped into a 2% x 2* mesh by line compression (with
a = 2*—1). The dilation is two and the average dilation is ~ 1 + %2 ~ 1+ 2. Minimizing
the average dilation is equivalent to maximizing a. Figure 6 shows the embedding of a '
5 x 12 mesh into a 4 x 16 mesh by the line compression method. In this figure solid lines
represent columns of the guest mesh. Figure 15-(e) shows the pairs (¢, {2) for which the
line compression method yields minimal expansion, but the Gray code does not. The set of
these pairs include mostly the set of pairs for which (a) step embedding, (b) modified step
embedding, and (c) folding yields minimal expansion, but Gray code does not.
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3.5 Modified line compression

A dilation-two embedding for all two-dimensional meshes is given by Chan [4]. The tech-
nique is based on a modification of the line compression technique. An intermediate mesh of
the form [¢; | x [{3], is mapped to the guest mesh ¢; x {5 to cover all the nodes of the guest
mesh. The intermediate mesh can be embedded in the Boolean cube by a binary-reflected
Gray code. Each row of the intermediate mesh forms a chain of length up to [£5]5 and all
the |£;]2 chains together cover all the nodes of the guest mesh. Any two adjacent nodes
in the guest mesh are either covered by the same chain or two successive chains. If they
are covered by the same chain, then the distance along the chain is at most two (which
implies dilation two); otherwise, they are within distance three. With a binary-reflected
Gray code encoding of each chain in the Boolean cube, dilation three is achieved. To reduce
the dilation to two, each chain is embedded into two symmetrical subcubes. Every two
successive nodes in a chain are assigned to corresponding positions of the two symmetri-
cal subcubes. The order in which successive nodes are assigned to these two subcubes is
based on a coloring technique (on a derived bipartite graph) such that the distance between
any two corresponding nodes of adjacent nodes in the guest mesh is at most two. Though
both the dilation and expansion are minimal, the technique does not necessarily guarantee
minimal congestion, node-congestion, or average dilation.

4 Direct cube embeddings

In this section we first give three dilation-two, minimal-expansion embeddings of two-
dimensional meshes in Boolean cubes [12], then two dilation-two and one dilation-three,
minimal-expansion embeddings of three-dimensional meshes. The meshes are of shapes
3x5, 7x9,11x11,3x3x3,3x3x7and5xb5 x5 These two-dimensional meshes
allows for minimal expansion and dilation embeddings for all two-dimensional meshes in
five-dimensional Boolean cubes, and six-dimensional cubes with the exception of the em-
bedding of the mesh 3 x 21. A comparison of the characteristics of the embedding with
those of the other embedding techniques is made.

4.1 Two-dimensional direct embeddings

All three two-dimensional embeddings have the property that the dilation for any edge of
the upper-left |1, X |{2]2 submesh of the ¢; x {5 mesh, is one.

Embedding a 3 x 5 mesh into a 4-cube. To embed a 3 x 5 mesh into a 4-cube, we use .
the mapping represented by Figure 7, in which the numbers represent the addresses of the
cube nodes to which the mesh nodes are mapped. For ease of determining the dilation of
edges, we use T to represent the node in subcube one that corresponds to node z in subcube
zero, i.e., 7 is derived from z by complementing the most significant bit. The ‘e’ sign on
the dashed line means that the Hamming distance between the two adjacent mesh nodes is
two when embedded in the cube. From Figure 7 it is apparent that the dilation is two.

To determine the congestion of the embedding, we specify all length-two paths as follows,
where the ‘e’ sign above a doubled arrow denotes a cube edge, which is also used as a
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0081, 1183, 3357,
7185, 1455, 664,

By inspection, one can easily show that the congestion is two; the number of cube edges with
congestion two is 6; the active-degree is 4; and the node-congestion is 6. The embedding of
a 3-2™ x 5.2" mesh was also independently found in [7]. The 5 x 12 mesh embedded by
line compression, Figure 6, contains the embedding of 3 x 5 meshes.

Embedding of a 7 x 9 mesh into a 6-cube. Figure 8 shows the embedding of a 7 x 9
mesh in a 6-cube. The length-two paths in the cube are specified as follows:

E_«—»EH?T. 20 - 21 & 23. 16 « 18 « 22.
16 — 16 — 18. 24 — 26 — 18. 0~ 16 — 17.
0~ 0o 16.

By inspection, the dilation is two; the number of edges with dilation two is 7; the
congestion is two; the number of edges with congestion two is one; the active-degree is 6
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Figure 9: Embedding of an 11 x 11 mesh in a 7-cube.

(for node 16); and the node-congestion is 6.

Embedding of an 11 x 11 mesh into a 7-cube. Figure 9 shows the embedding of an
11 x 11 mesh in a 7-cube. The length-two paths are specified as follows:

51 « 55 « 39, 49 — 53 < 37, 48 - 52 « 36
48 - 16 « 0, 05117, 8§24 16
16 « 20 « 22, 22 & 23 « 19, 32 - 32 36
3233361, 33 « 37 37, 3334353
35 < 39 « 39, 358532, 50 > 18« 2
18 & 26 & 10, 34 - 38 & 38, 124285 34
43 & 35 & 35, 41 - 33 & 33, 10 — 40 & 32

The length-two paths are all edge-disjoint with respect to each other. Hence, the con-
gestion is at most two. By inspection, the dilation is two; the number of edges with dilation
two is 21; the congestion is two; the number of edges with congestion two is 8 (marked by

‘e”); the active-degree is 6 (for instance, nodes 33 and 35); and the node-congestion is 8 (for
instance, nodes 33 and 35).
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Mesh | Technique number of edges with
dil. dil. 3 | cong. 2 | cong. 3
2

Step Embedding
Folding

3 x5 | Line Compression
Modified Line Comp.
Direct

Step Embedding
Folding

7x9 | Line Compression
Modified Line Comp.
Direct

Step Embedding
Folding

11 x 11 | Line Compression
Modified Line Comp.
Direct 21

6
7
6

=l =o

6
18
¢

VS0l of
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[0 | —=| o S| | | | | | S|

v‘e~'e~'—‘|
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Table 1: Comparison of some embedding characteristics for small meshes. “¢” means the
embedding does not cover the considered mesh, and “-” denotes the omitted entries.

4.2 Comparison of embedding techniques for the 3 x5, 7x 9, and 11 x 11
meshes

All techniques yield dilation two, the minimal. However, the number of edges with dilation
two and congestion two differs, and so does the active-degree and node-congestion. Not
all techniques can be used for each mesh. Moreover, line compression can be performed
in several ways. Likewise, there exist several ways in which the length-two paths can be
specified. The number of edges with dilation two, or three, and congestion two, or three,
in Table 1 is not necessarily minimal, but the best we know. In section 5 we will show
how these characteristics are affected under decomposition, and the relevance of the model
meshes for the embedding of two-dimensional meshes in small Boolean cubes.

4.3 Three-dimensional direct embeddings

All three embeddings in this section have the property that the Gray code embedding will .
not yield minimal expansion. The direct embedding of the 3 x 3 x 3 and 3x 3 x 7 meshes have
a dilation of two, and the embedding of the 5 x 5 x 5 mesh has a dilation of three. All three
embeddings have minimal expansion. Applying the reshaping technique, the direct two-
dimensional embedding to any pair of the three dimensions, or the decomposition technique
does not result in dilation-two, minimal-expansion embeddings.

Embedding of a 3 x 3 x 3 mesh in a 5-cube. Figure 10 shows the embedding of a
3x3x 3 mesh in a 5-cube with dilation two. The number in the figure is the cube address in
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Figure 10: Embedding of a 3 x 3 x 3 mesh in a 5-cube. The number is the cube address in
octal representation to which the mesh node is mapped.
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Figure 11: Embedding of a 3 x 3 x 7 mesh in a 6-cube. The number is the cube address in
octal representation to which the mesh node is mapped.

octal representation to which the mesh node is mapped. The sign “+” marks a dilation-two
edge between the marked node and the corresponding node in the plane immediately to the
left. The number of dilation-two edges is 15. The congestion is two; the number of edges
with congestion two is 11; the active-degree is 6; and the node-congestion is 9.

Embedding of a 3 X 3 x 7 mesh in a 6-cube. Figure 11 shows the embedding of a
3 x 3 x 7 mesh in a 6-cube with dilation two. The number of dilation-two edges is 45.

Embedding of a 5x5x5 mesh in a 7-cube. Figure 12 shows the embedding of a 5x5Xx5
mesh in a 7-cube with dilation three. The numbers of dilation-two and dilation-three edges
are 18 and 101, respectively.

4.4 Summary of direct embeddings

The characteristics of the direct embeddings are summarized in Table 2.
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Figure 12: Embedding of a 5 X 5 X 5 mesh in a 7-cube with dilation three. The number is
the cube address in octal representation to which the mesh node is mapped.

Mesh | Dilation | Average | Congestion | Average | Active- Node-
dilation congestion | degree | congestion
3x5 2 1.27 2 1.27 4 6
7%X9 2 1.06 2 1.01 6 6
11 x 11 2 1.10 2 1.04 6 8
3x3x3 2 1.28 2 1.20 6 9
Ix3IxT 2 1.33 - - - -
5x5x5 3 1.73 - - - -

Table 2: Summary of embedding characteristics for direct embeddings.
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For the three-dimensional meshes of 128 nodes or lest, the 5 x 5 X 5 mesh is the only
mesh for which we do not know of a minimal expansion dilation two embedding, if it exists.
For three-dimensional meshes with up to 256 nodes, there are four additional meshes for
which the same statement applies: 5 x 7x 7,3 x9x9,5Xx5x 10 and 3 x 5 x 17.

5 Embedding by graph decomposition
The general strategy for mesh embedding by graph decomposition is the following:

1. If the number of nodes along any axis is a power of two then the embedding of all
nodes along that axis is by a binary-reflected Gray code. For instance, the embedding
of a 12 x 16 x 20 x 32 mesh is reduced to the problem of embedding a 12 x 20 and a
16 x 32 mesh.

2. For the axes with lengths not being powers of two, a decomposition is sought into
meshes for which good embeddings are known, and the products of the expansions for
the decomposed meshes is minimized. For instance, the embedding of a 12 x 20 mesh
can be reduced to the embedding of a 3 x 5 and a 4 x 4 mesh. Embedding a 3 x 25 x 3
mesh can be reduced to the embedding of two 3 x 5 meshes.

3. If the axes lengths are not powers of two, but can be increased slightly without in-
creasing the size of the cube for a minimal expansion of the original mesh, then the
mesh might be extended, and the procedure just mentioned applied to the extended
mesh. For instance, a 3 x 3 x 23 mesh can be extended to a 3 x 3 x 25 mesh, which
is treated with the scheme above.

Using the direct embeddings together with graph decomposition allows for minimal-
expansion, dilation-two embedding of 70% of all two-dimensional meshes for which Gray
code does not yield minimal expansion. For three-dimensional meshes, we use these direct
embeddings extended with the two-dimensional result in [4], and the graph decomposition
technique. We achieve dilation-two minimal-expansion embeddings for 96% of the three-
dimensional meshes contained within, or equal to, a 512 x 512 x 512 mesh.

5.1 Two-dimensional Meshes

Any technique, such as reshaping [13], direct embedding [12], or other technique [2,4,7,10]
can be used in combination with the decomposition technique to reduce the average dilation
and average congestion. The number of edges with dilation two for any of the reshaping -
techniques are approximately proportional to the size of the mesh for most known embed-
dings. For an {; x ¢, mesh, the maximum of n; + n, is determined such that ¢; < £i2mi
and [£143]2 = [£1£52™F72],. Then, the problem is reduced to embedding an £, x £} mesh,
which can always be done with minimal expansion and dilation two by the method in
[4]. For instance, a 17 x 17 mesh can be extended to 24 x 20 mesh and then decom-
posed into a 3 x 5 mesh and a 2% x 22 mesh. Table 3 gives some examples of minimal-
expansion dilation-two embeddings for cubes of up to six dimensions. Direct embeddings
are required for meshes such that: both ¢, and ¢, are odd numbers, [{;¢5]; = 2", and
”1]2“212 = ”1([2 + 1)]2 = [([1 + 1)[2]2 = on+l,
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4-cube 6-cube
Mesh Technique | Mesh Technique
1 x {16,15,---,9} Gray code | 1 x {64,63,---,33} Gray code
2x{8,7,---,5} Gray code | 2 x {32,31,---,17} Gray code
3x5 Direct 3 x21 Direct
3 x {4,3} Gray code | 3 x 20 = (3 x 5) x (1 x 4) | Decomp.
4x4 Gray code | 3 x {19,18,17} —» 3 x 20 | Extension

3 x {16,15,-.-,11} Gray code

5-cube 4 x {16,15,---,9} Gray code
Mesh Technique | 5 x 12 = (5 x 3) X (1 x 4) | Decomp.
1x {32,31,-.-,17} Gray code | 5 x {11,10,9} — 5 x 12 Extension
2 x {16,15,---,9} Gray code | 5 x {8,7} Gray code
3x10=(3x5)x(1x2)|Decomp. |6x10=(3x5)x(2x2)|Decomp.
Ix9-3x10 Extension | 6 X 9 — 6 x 10 Extension
3 x {8,7,6} Gray code | 6 x {8,7,6} Gray code
4 x {8,7,---,5} Gray code | 7x 9 Direct
5x6=(5x3)x(1x2) |Decomp. |7x{8,7} Gray code
5x5—->5x6 Extension | 8 x 8 Gray code

Table 3: Embedding strategies for some two-dimensional meshes,

Method number of edges with

dil. 2 dil. 3
Step Embedding 0 10
Folding ¢ )
Line Compression 20 0
Modified Line Compression 36 0
Decomposition 12 0

Table 4: Dilation of edges for the 6 x 10 mesh.

{4 < (.

Figure 13 shows the embedding of meshes of the form 3 - 2™ x 5-.2"2. In the figure,
‘r’ and ‘c’ denote the local addresses within a block (subcube). The local addresses are
determined by a binary-reflected Gray code G(z;, ;) as defined in Equation (1). Figure 14
shows a specific case: the embedding of a 6 x 10 mesh into a 6-cube. Table 4 shows how
the different embedding methods compare for this particular mesh.

Figure 15-(f) shows the set of pairs ({1, {2) for which the decomposition of a mesh into a
Boolean cube graph and a mesh with direct embedding given above yields lower expansion
than a Gray code embedding. The ratio of the number of these pairs to the total number of
pairs is & -};, independent of the range of 2" x 2". The average dilation is one, asymptotically.
Table 5 gives the average dilation for meshes decomposed into a Boolean cube graph and a
mesh for which a direct embedding is given above. The expansion is at most ~ 2.4
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0000zc | 0010rc | 0110zc OIOOICLIIIOIC“

0001rc | 0011rc | O11llzc | 0101rc & 1100zc
| —eo o —eo————
1000rc | 1001rc | 1011rc | 1111rc | 1101zc

Figure 13: Block addresses of embedding a 3-2™ x 5-2"2 mesh into a (4 4+ n; + n2)-cube.

000000 001010 | 001010 001000 | 011000 011010 | 010010 010000 @ 111000 111010

000001 000011 | 001011 001001 | 011001 011011 | 010011 010001 ¢ 111001 111011

000101 000111 | 001111 001101 | 011101 011111 | 010111 010101 e 110001 110011

000100 000110 | 001110 001100 | 011100 011110 | 010110 010100 # 110000 110010
|| @ ° .
100000 100010 | 100110 100100 | 101100 101110 | 111110 111100 | 110100 110110

100001 100011 | 100111 100101 | 101101 101111 | 111111 111101 | 110101 110111

Figure 14: Embedding of a 6 x 10 mesh into a 6-cube.

{ X £y # of edges Average ]2 | L]z [€:]2
embedding w. dil. 2 dilation =16 | =128 | =1024
5.2% x3.2m | g+l | 1+ g0, [ 1.03 | 1.004 | 1.0005
9.2M x 7.2 | gli+3b | 1+ 5020 o[ 1.02 | 1.003 | 1.0003
n n 5 16
11-2™ x11-2% | 7l + 17l | 1+ oyt P27y | 104 | 1.005 | 1.0007

Table 5: The average dilation for meshes embedded by graph decomposition into a Boolean
cube graph and a mesh embedded by direct mesh embedding.
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Figure 15: The pairs ({1, {3) for which minimal expansion is attained using (a) Gray code
embedding, (b) step embedding, (¢) modified step embedding, (d) folding, (e) line com-
pression, and (f) direct embedding. For (b) to (f), only the regions for which Gray code
embedding can not achieve minimal expansion are considered.
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5.2 Three-dimensional meshes

Two of the above three direct embeddings for three-dimensional meshes have dilation two
and minimal expansion. These meshes and dilation-two embeddings of two-dimensional
meshes yield dilation-two embeddings of the majority of three-dimensional with the decom-
position technique. For instance, a 6 x 11 x 7 is a submesh of a 6 x 12 X 7 mesh, which
decomposed as a 3 x 3 x 7 mesh and a 2 x 4 x 1 mesh has a minimal-expansion dilation-two
embedding. The technique in [6] does not yield a dilation-two embedding, and the decom-
position into the embedding of a two-dimensional mesh and Gray code embedding of one
axis does not result in minimal expansion.

Performing a dilation-two embedding of a two-dimensional mesh defined by any pair of
axes, and a Gray code embedding of the third axis results in one of the relative expansions

[ti6]a[l]s [alalo[bi]e  [labi][ba]s
[ell2£3]2 ’ [£l£2£3]2 ’ [Z1£2l3]2 '

The relative expansions are either equal to one or two. Note that more than one relative
expansion may be one, such as for a 5 x 10 x 11 mesh, or no relative expansion may be
one, such as for the 6 x 11 x 7 mesh. Choosing the two axes that have the lowest values of
{1/[l)2, Lo/ [€2]2, and {3/ [f3]2, for the two-dimensional embedding results in the smallest
relative expansion. For instance, for a 5 x 6 x 7 mesh, the first two axes (of length five and
six respectively) should be chosen for the two-dimensional embedding.

5.3 The effectiveness of graph decomposition

Combining the three two-dimensional direct embeddings with Gray code embedding by
Equation (1), yields minimal-expansion, dilation-two and congestion-two embeddings of
about 70% of the two-dimensional meshes for which the (pure) Gray code embedding has
an expansion > 2 [12]. The average dilation is less than for the modified line compression
technique in [4].

The fraction of three-dimensional meshes, for which the decomposition technique com-
bined with the two- and three-dimensional embedding techniques yield minimal-expansion
embeddings with a dilation of at most two, is given in Figure 16. In the figure, S;(¢)
is the cumulative percentage of meshes that have a relative expansion ¢ by applying the
embedding methods with an index less than or equal to ¢ below:

1. Apply Gray code embedding.

2. Apply the modified line compression technique [4] to any pair of axes and apply Gray
code to the third axis.

3. Apply the 3 x 3 x 3 or 3 x 3 x 7 embedding combined with Gray code by Corollary 2.
4. Foran {; x £, x {3 mesh, find €4¢4 > {5 such that [£;€}]2[{5¢3]2 = [€1€2€3]2, Corollary 2

and [4]. The procedure is repeated for decomposing ¢; and ¢3.

For a mesh of size less than or equal to 512 x 512 x 512, the cumulated percentages grows as
the sequence: 28.5%, 81.5%, 82.9%, 96.1%. Applying the method in (4] to any pair of axes,
only allows about 81.5% of the meshes to achieve minimal expansion. Since the congestion
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Figure 16: The cumulated percentage of the ¢; x £5 x {3 meshes where 1 < ¢; < 2" for
1<n<9.

for a product graph is the maximum congestion of any graph used for the composition, any
three-dimensional mesh composed from any two-dimensional mesh with a congestion two
mapping, and Gray code have congestion two.

6 Embeddings of wrap-around meshes

Lemma 2 [19] Let ¢; = £ifY and {; be even for all 1 < i < k. Then, the £ X £y X -+ X L&
wrap-around mesh is a subgraph of the product graph of the £ x £y X - - - x £}, mesh and the
1 x €3 x -+ x ¢l mesh (both without wrap-around).

Proof: Every £ x {!! mesh for which ¢/¢! is even contains a ring of size {.{! as a subgraph

[19). 1
Let dil,(e) be the dilation of the edge e under the mapping ¢.

Lemma 3 Let ¢; be an embedding G — I and ¢, be an embedding I — H. Then,.there
ezists an embedding function ¢ : G — H such that

dily(e) = S dily,(e:).

e.'EGp)(e)

Lemma 4 An {, x €y X --- X { wrap-around mesh M can be embedded into a minimal
hypercube with dilation < d + 1, if there erists an embedding ¢ that maps the [€,/2] X
[€3/2] x -+ x [£x/2] mesh My into a minimal hypercube with dilation d and Mk, 612 =
2K[[1%_,[€:/2]]2. The dilation is d, if all ;s are even.

Proof: Consider the embedding of a 2[¢1/2] x 2[¢3/2] X - x 2[{,/2] wrap-around mesh
M. By the assumptions of the lemma, Theorem 1, and Lemma 2 the wrap-around mesh M
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Figure 17: A linear array of size ¢;, {; odd, embedded in the product graph of a linear array
of size [¢;/2] and a 1-cube. The [¢;/2] linear array has a dilation d embedding.
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Figure 18: Partitioning for the embedding of an wrap-around mesh.

can be embedded into a minimal hypercube with dilation d. The 2 x 2 x 2---2 = 2* mesh
is taken as the mesh M;.

We now embed the wrap-around mesh M in the wrap-around mesh M by removing
one hyperplane for each axis 7 of odd length. The edge in the mesh M connecting nodes
on the two sides of the removed hyperplane is simulated by a length-two path through the
removed hyperplane in M. In the Boolean cube embedding of A the removed hyperplane
connects to two neighboring hyperplanes through two sets of edges of dilation one and d,
respectively. The edge of M which is a path of length two in M has a dilation of edges of
d + 1 in the cube embedding, according to Lemma 3.

Figure 17-(a) demonstrates the ith coordinate of the product graph of the mesh M, and
the k-cube for which [¢;/2] = 5. All the horizontal edges have dilation < d, and all the
vertical edges have dilation one. It is easy to see from Figure 17-(b) that if £; = 9, then the
node a is removed and the dilations of the two edges incident to the removed node are < d
and one, respectively. So, the dilation for the new “logical edge” (the dashed edge in the
figure) is < d + 1.

Intuitively, the mesh M is partitioned into 2% submeshes of the form [¢;/2] x [£2/2] x

-++ X [lk/2]. The submeshes are labeled M;, 0 < i < 2%, such that submesh i and submesh -
J are adjacent if Hamming(i,j) = 1. Submesh i = (ix_jix_o---ig) is reflected for axis
rif i, = 1 for all r’s. After this reflection the same embedding function ¢ is applied to
all submeshes for their embeddings in their respective cubes. Figure 18 shows the four
submeshes for a two-dimensional case, in which the submeshes M; and M; are reflected
horizontally and the submeshes M, and Mj are reflected vertically before the embedding
function is applied.

Clearly, if all the ¢;’s are even, then the condition [[[% ;]2 = 2*[[]%,[6:/2]]2 is
satisfied. If this condition holds, then the expansion remains minimal by using a mesh with
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wrap-around of a slightly lerger size (or of the same size) as an intermediate graph.

Lemma 5 An{y x{yx---x £, wrap-around mesh can be embedded into a minimal hypercube
with dilation max(d,2), if there erists an embedding that maps the [€1/4] x [€2/4] X --- X
[€x/4] mesh into a minimal hypercube with dilation d and [[]%_; &:]2 = 4*[[52116:/4]]2-

Proof: Consider the embedding of a 4[¢1/4] x 4[€2/2] X --- X 4[{/4] wrap-around mesh
M. Apply an argument similar to the one in the proof of Lemma 4.

Figure 19-(a) and (c) shows one axis of the product graph of the mesh M, and the
k-cube with [£;/4] = 5 and 4, respectively. All the horizontal edges have dilation < d, and
all the vertical edges have dilation one. Figure 19-(b) and (d) show an embedded linear
array of size 4[{;/4] (by ignoring the dashed edges). Consider the case where {; mod 4 # 0.
We wish to show that by removing one, two and three nodes, respectively, the newly formed
“logical edges” have a dilation of < max(d,2). When ¢; mod 4 = 1, remove node a. When
{; mod 4 = 2, remove nodes 3 and v (but keep node a). When ¢; mod 4 = 3, remove all the
three nodes a, A and 7. The newly-formed “logical edges” are marked by the dashed edges
in the figure. Clearly, all the dashed edges preserve the property of the dilation < max(d, 2).

Since the above proof requires that [£;/4] > 3, it remains to be proved that if [{;/4] = 2
or 1, the lemma still holds. Figure 19-(e) shows for £; = 5, 6, 7 and 8. For 1 < {; < 4, the
lemma can be derived easily. Il

Note that there exist several ways to embed a ring for Figure 19-(a) and (b) that preserve
the dilation of the edges. The selected embedding minimizes the average dilation.

Corollary 3 Any two-dimensional wrap-around mesh €1 x {3 can be embedded into a min-
imal hypercube with dilation at most two, if [€1€s]2 = 16[[€1/4][€2/4]]2 or both {1 and {y
are even. Any two-dimensional wrap-around mesh £, x {3 can be embedded into a minimal
hypercube with dilation at most three, if [{1€]2 = 4[[€1/2][l2/2]]2-

Proof: The former follows from [4], Lemmas 5 and 4. The latter follows from [4] and
Lemma 4. i

7 Summary

A graph embedded by graph decomposition has a dilation and congestion equal to the
maximum dilation and congestion of the embedding of any of the graphs into which it is
decomposed. The node-congestion and active-degree of the graph is bounded from above
by the sum of these quantities for each graph into which it is decomposed.

e By applying the graph decomposition technique to the mappings of 3 x 5, 7 x 9
and 11 x 11 meshes and Gray code embedding, 87% of the two-dimensional meshes,
asymptotically, can be embedded into a minimal Boolean cube with dilation two and
congestion two, and significantly lower average dilation and congestion than by the
modified line compression technique [4].
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Figure 19: A linear array of size {;, embedded in the product graph of a linear array of size
[€;/4] and a 2-cube, where the latter linear array has a dilation d and the 2-cube has a
dilation one embedding.

e By applying the graph decomposition technique and using the dilation-two embed-
dings for two-dimensional meshes [12,4] and two dilation-two embeddings of three-
dimensional meshes, we have attained dilation-two minimal-expansion embeddings
into Boolean cubes for 96% of all three-dimensional meshes of a size less than, or
equal to, 512 x 512 x 512.

The decomposition technique can be applied to the embedding of meshes with an arbitrary
number of dimensions. We conjecture that a majority of the the higher dimensional meshes
can be embedded with dilation two using the existing two-, and three-dimensional mesh
embeddings of dilation two.

The embeddings of wrap-around meshes can be easily constructed out of the embeddings
for meshes without wrap-around using the graph decomposition technique. As a special
case, for all two-dimensional wrap-around meshes ¢, x {5, we have a minimal-expansion
embedding with dilation two if [¢1£2]2 = 16[[¢;/4][¢2/4]]2 or both ¢; and ¢, are even; and
with dilation three if [£1£2]2 = 4[[€1/2][€2/2]]2 (where [z], = 2Mlo82=1).
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