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Abstract

Computation of the relative position and orientation between a camera and an observed ob-
ject is a central problem in many vision-based robotics applications. Although many solution
methods have been proposed, several problems remain. Nonlinear methods require consider-
able computation time and a good initial estimate, while linear methods, which do not need
an initial estimate, are sensitive to noise and outliers. In this paper, we review a number of
existing methods and present a new iterative algorithm that is globally convergent and is as
computationally efficient as linear methods. Experiments on simulated and real data indicate
that the new method is less sensitive to noise and outliers than other commonly used methods.
We discuss the use of this method in the context of several vision-based applications.

Keywords camera calibration, exterior orientation, model-based object recognition, pose esti-
mation

1 Introduction

Given a set of 3-D reference points in an object coordinate frame, and their 2-D perspective
projections, the process of determining the rigid transformation that relates the object coordinate
frame to that of the camera is referred to as ezterior orientation or hand-eye calibration [21] when
the goal is to locate the camera in the object coordinate frame, and as object pose estimation [17]
or object localization [10] when the goal is to locate the object in the camera coordinate frame.
The rigid transformation is called the object pose and its inverse the camera pose. Either object
pose or camera pose can be called the camera eztrinsic parameters or the ezterior orientation
depending on which coordinate frame is being referred to.

Exterior orientation plays a central role in many classical vision problems. For example, a
popular paradigm in object recognition is to hypothesize a set of matches between a stored model
and observed data, and then to perform an object pose calculation to verify the consistency
of the match [26, 10]. Exterior orientation is an important part of camera calibration. The
camera calibration problem is to determine the relationship between 3-D coordinates and their
projections in a camera image. This relationship is comprised of the camera pose composed with
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a mapping that describes the physical attributes of the camera-lens system and the digitizing
hardware [27, 31]. Because the physical attributes of the imaging system are independent of the
camera pose, the parameters describing them are referred to as the camera intrinsic parameters.

Most reported exterior orientation methods perform well when the input data are accurate
and well-behaved. Extremely accurate results can be achieved with precise 3-D models under
controlled conditions. For this reason, camera calibration systems often use specially designed
calibration patterns that are metrically accurate and have high contrast to enhance the perfor-
mance of feature extraction.

In a completely static environment where the pose estimation needs to be done only once,
the time and expense needed for highly accurate estimation can often be justified. However,
many applications demand fast online pose estimation. For example, a recent paper [14] describes
an application where an operator registers a geometric model with an image by pointing out
specific model features in an image. Following this registration operation, features of the model
are tracked and the pose of the model is updated in real time. A similar scheme could be used,
for example, to compute a “movie” of a moving object to be rendered graphically. This sort of
capability may be needed to support applications such as Enhanced Reality [7] where real-time
graphical rendering of a model based on visual data is needed.

Recent progress in visual servoing has led to systems which make use of online calibration
(4, 12, 13, 11, 20, 32]. It is done by tracking visual features of a manipulator as it performs a
set of motions. Data is acquired in the form of 3-D positions computed using the robot inverse
kinematics and 2-D image positions computed by feature tracking. Both of these sources suffer
from errors. Robot inverse kinematics are notoriously imprecise, particularly on smaller, flexible
robots. Feature tracking suffers from noise and localization bias. In addition to statistical errors,
errors such as mechanical backlash must be tolerated. It can also be expected that the 3-D to
2-D correspondences will occasionally be incorrect due to operator error, mistracking, or similar
problem.

This paper presents a new exterior orientation algorithm that is well-suited to problems re-
quiring fast pose estimation or exterior orientation computation from noisy data. This algorithm,
unlike most existing methods, minimizes 3-D feature position error (object space error) rather
than 2-D image error. The objective function, though it is nonlinear, is optimized in full by
efficient closed-form coordinate-wise optimizations. The new algorithm has been been compared
to a number of previously existing methods including one linear algorithm that uses the perspec-
tive transformation matrix formulation [1, 33, 8], another that uses a radial alignment constraint
[27, 25], and a nonlinear algorithm that uses classical nonlinear optimization. All methods have
been tested on synthetic data with varying noise, percentages of outliers, and numbers of refer-
ence points. The methods have also been compared experimentally in the context of hand-eye
calibration for a robot arm. V

The remainder of this article is organized as follows. The next section introduces the pose
estimation problem in more detail, relates it to camera calibration, and describes several existing
methods for exterior orientation. Section 3 describes the new algorithm. Section 4 compares the
algorithms on experimental and real data. Section 5 discusses further extensions of the method
and outlines a set of interesting problems that remain to be addressed.




2 The Problem and Some Solution Methods

The mapping from 3-D points to 2-D image coordinates can be formalized as follows. Given a set
of 3-D coordinates of reference points X; = (z;,¥;, %)% 4= 1,...N in an object coordinate frame,
and the corresponding coordinates (the scene points) Y; = (z!,y!,2!)* in a camera coordinate
frame, the two frames can be related by a rigid transformation as

(1) Y; = RX; + T,
where
rg tl
(2) R=|r} and T=]|t,
l‘g t3

are a rotation matrix and a translation vector, respectively.

We first assume that 3-D reference points, X;, are projected to the plane with equation
z = 1, referred to as the normalized image plane, in the camera coordinate frame. The resulting
projections (u;,v;)* are called the normalized image coordinates. Under the idealized pinhole
imaging model, the image vector y; = (u;,v;,1), the scene point Y;, and the center of projection
are collinear. The projection equation can be written as

1
3 = ———(RX;+ T
which is known as the collinearity equation in photogrammetry literature.

The imaging geometry of real cameras is somewhat more complex than the pinhole model.
This causes various kinds of optical distortions [9]. If only radial distortion is considered, the
normalized image coordinates (u;,v;)* can be corrected from the distorted (uncorrected) ones
(4, %) by
(4) u; = (1 4 &r?)

(5) v; = %i(1 + kr?),

where r? = 42 + 92 and & is the radial distortion coefficient.

In additional, the digitizing hardware imposes its own coordinate system on the digitized
image. The mapping from the sensor coordinates (m;,n;)* to the distorted image coordinates
(#;,%;) is defined by

(6) @ = (m—mo)/s,
v=(n

(7 —19)/$,

where (mg,ng) is the image center in sensor coordinates, and (s,,s,) are the horizontal and
vertical scale factors, respectively.

The parameters s,, s,, Mo, ng and & are referred to as the camera intrinsic parameters. In
the discussion which follows, we assume that the camera intrinsic parameters are known, and
normalized image coordinates can be computed from sensor coordinates accordingly.
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We note that if the 3-D camera frame coordinates {Y;} have been determined by some means,
the process of determining R and T from {X;} and {Y,} is called absolute orientation. It can be
generalized to include an unknown scaling factor, in which case (1) takes the form

(8) Y: = sRX; + T.

The least-squares minimization corresponding to equation (8) is known to have an exact closed-
form solution [24, 2, 22, 28, 29].

2.1 Classical Methods

In the classical photogrammetry approach, the exterior orientation problem is formulated as that
of minimizing the sum of square errors of the collinearity equation

©) Sl = g X+ DI

This objective function is nonlinear and can only be solved by iterative nonlinear meth-
ods. Most methods for minimizing this objective function operate by iteratively linearizing the
collinearity equation around the current approximate solution and solving the linearized system
for the next approximate solution. These methods usually require a good starting point. The
Gauss-Newton method has been applied to model-based object recognition [26]. It is reported
in [18] that for the Gauss-Newton method to work, the initial approximate solutions have to be
within 10% of scale for the translation and within 15° for each of the three rotation angles. A
detailed treatment on classical methods is available in [19].

2.2 Linear Methods

There are several “linear” approaches to the exterior orientation problem. In general, linear
algebraic methods solve for the 9 parameters (or part of them) in the 3-by-3 transformation
matrix linearly by ignoring the orthonormality constraint. The solution can then be improved by
finding the orthonormal matrix that best fits the 3-by-3 matrix.

The Perspective Transformation Matrix (PTM) Method By ignoring the orthonormality
constraint, the 3-by-3 rotation matrix R = (r;;) and the translation vector T can be solved in
closed form up to a scale factor. This method is adapted from the original PTM method [1, 33, 8]
which uses the 4-by-3 perspective transformation matrix to encode the image center and image
scales in addition to R and T.
The collinearity equation (3) can be rewritten as
(10) (P;X,' + ta)u,' = I‘;X,' + t1
(11) (r;X,- + ta)'v,' = r;X; + 15.

Dividing by t3 on both sides, equations (10) and (11) become

(12) ((e3) X + Dy = (r)' X + 1)
(13) ((r3)'Xs + D)oy = (r5) X + 1,
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where r} = t3'r), 1, = t3'r;, v = t3'rs, ) = t3't;, and ty = t3't,. Each pair consisting of an
image vector y; = (u;,v;,1)* and a reference point X; contributes two linear equations ((12) and
(13)) for solving for the 11 parameters R’ = (r{,r),r})%, | and t;. A least-squares solution is
found by singular value decomposition of the resulting system.

What needs to be done next is to decompose R’ into the scale factor ¢3! and the orthonormal
matrix R. t3 can be determined by

(14) det(R') = det(t3'R) = t31.

R is computed as the rotation matrix that best fits sign(det(R'))R’ = |t3!|R. Such decomposition
can be done in a straightforward manner by solving a 4-point absolute orientation problem (see
Appendix A).

Now with known t3 and R, the remaining unknowns ¢; and ¢, can be calculated by solving
the overdetermined system of equations (10) and (11) for each pair of image vector and reference
point. To improve the accuracy, ¢3 can be recalculated together with ¢, and t,.

The Radial Alignment Constraint (RAC) Method Tsai introduced a two-step method
for camera calibration [27, 25]. The first stage makes use of the radial alignment constraint which
can be formulated in our notation as
(15) | 1‘_’ =Y _ z?i_s__th
9 v ryX; 41,
Essentially, the radial alignment constraint says that the vector defined by the orthographic pro-
jection of a 3-D reference point is parallel to that of the corresponding distorted image coordinates
under radial distortion. Using this formula, the horizontal scale factor and all of the camera pose
parameters except for ¢3 can be computed using linear techniques. The second stage computes the
remaining parameters by applying nonlinear optimization to the collinearity equation (3) using
the values computed in the first stage.

When computing only camera pose with known camera intrinsic parameters, we can use
normalized image coordinates. We observe that (15) can be converted by division and cross-
multiplication to

(16) v,-(r’l)‘X; + ’l),'ti = u;(r’z)*X,- + Ui,y

where r{ = t7'r;,ry = t;'ry, and #; = t;'t;. Each pair consisting of an image vector y; =
(u;,v;,1)* and its corresponding reference point X; contribute one linear equation (16) that can
be used to solve for the 7 parameters rj,r}, and ?;. A least-squares solution is computed by
singular value decomposition of the resulting system.

Given these values, R and t, are determined from r{ and r/, as follows. The absolute value of
t, is determined by

(17) lta] = [If[I7" or Iry)l ™"

The sign of ¢, also determines the signs of ry,r, and ¢,. It should be chosen such that u; and v;
have the same sign as rtX; + ¢; and r{X; + t,, respectively. The point X; used to determine the
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sign of ¢, should be some reference point whose image point is far away from the image center.
Using the orthonormality of the rotation matrix, rz can be computed from r; and r,.

With known t,, t, and R, the remaining unknown, ¢3, can be calculated by solving the overde-
termined system of equations (10) and (11) for each pair of image vector and reference point.
Again, to improve accuracy, ¢; and ¢, can be recalculated together with ¢3.

Both the PTM and the RAC method are linear and noniterative. They are very fast and
don’t need initial guesses. However, it should be noted that they provide only an approzimate
closed-form solution. The orthonormality constraint on rotation matrices is not fully considered
in the solution process. Consequently, in the presence of noise, the 3-by-3 matrix is not exactly
orthonormal, and the accuracy of the final result is relatively poor even when it is further im-
proved by finding the closest orthonormal matrix. For our experiments we have included an
orthonormalization step described in Appendix A in PTM and RAC.

2.3 Two-Step Methods

A two-step method solves the problem in two stages. In the first stage, a linear algorithm is
employed to get an approximate closed-form solution. In the second stage, a nonlinear method
uses the previous closed-form solution as an initial guess to search for a better result.

The basic idea behind two-step methods is that either method serves as a complement to its
counterpart. Without an initial guess, linear methods always give a solution, but it may not be
optimal in the presence of noise. Conversely, classical methods can reach the optimal solution if
a reasonable initial guess is available. The same idea can be found in structure-from-motion [30]
and camera calibration for both camera extrinsic and intrinsic parameters [27, 31].

3 The Depth Reconstruction Approach

Most existing methods for solving exterior orientation, including classical methods and linear
methods like PTM and RAC, are based on the collinearity equation (3). The basic difference in
our approach is that we rewrite this expression as

(18) d,'y,' = RX, + T,

where d; = r}X; + t3. Treating d; as an undetermined factor simplifies structure of the problem
from a nonlinear least-squares to a constrained linear optimization of

(19) Zw;”sd;y; - RX, - T”2

This comes at the expense of having to solve for many more unknowns, ({d;}). The value Y; = d;y;
will be called the hypothesized scene point for the reference point X;. Physically, it is the 3-D
coordinate of the reference point in camera coordinate frame. Because the objective function
in this form measures the 3-D object space error resulting from backprojection of image points
into object coordinates, we refer to the new method as the “backprojection” algorithm (BPROJ).
Minimizing (19) over all unknown values can be visualized as choosing a coordinate transformation
so as to fit the 3-D model points in the camera coordinate frame to the bundle of the lines of sight
associated with the image vectors.
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The key observation of our method is to note that, for fixed values of d;, it is possible to solve
for R, T and s in closed form. Conversely, for fixed R, T and s, it is possible to solve for the
values of d; in closed form. Intuitively, s can be thought of as the principle depth of a rigidly
transformed set of points. The values d; describe the relative depths among the points. The
advantage of using two depth parameters is that the first stage of optimization can compute the
principle depth in addition to rotation and translation. The second stage of optimization adjusts
the relative depths of the individual points and scales them to the principle depths.

Formally, the optimal R, T and s for fixed depths {d;} are computed by minimizing (19),
which is equivalent to solving an absolute orientation problem with

(20) diyi=sRX;+ T i=1,...,N,

where s’ = 1/s and T’ = T/s. This is equivalent to (8) which can be solved exactly in closed-form.
It is interesting to note that the scaling computed by this optimization is equal to the ratio of the
root-mean-square deviations of the coordinates in the two systems from their respective centroids
[22]. In our notation, this gives

" - T
iY== Y2

where

(22) Yi=dy, R=20% g muYy

Yiwi Do Wi

Given fixed rotation R, translation T, and scale 3, the optimal depths {d;} are computed by

(23) d: = M
' Sytyi )

We can imagine the operation of the algorithm by viewing the hypothesized scene points as
sliding beads moving along their respective lines of sight. The algorithm works by first moving
the reference points rigidly toward the bundle of the lines of sight while the positions of the sliding
beads are adjusted in concert along their lines of sight by the parameter s. In the second stage,
the reference points are held fixed, while the beads are individually moved toward their respective
reference points.

Since both problems are solvable in closed form, the overall solution can be cheaply obtained
by coordinate-wise optimization over either group of parameters iteratively with {d;} starting out
at some initial depths. Experiments show that initializing all d; to the same positive constant
(notice that the exact value is not important because of the use of s) works very well.

An earlier depth reconstruction algorithm [6] uses similar objective function, but without the
scale factor s. It suffers from tremendously slow convergence [16]. It is proved to be globally
convergent with respect to initial values of {d;}. The essence of the proof is that for arbitrary
temporary depths, we can always find the optimal R and T, and since the objective function is
quadratic in d;, the solution for d; is guaranteed to further decrease the objective function. The
proof is also applicable to our algorithm since s, together with R and T can be solved exactly
given {d;} (see Appendix B for details). It turns out that the role played by s is critical to
the performance of the algorithm. Both the convergence rate and the accuracy of the result are
dramatically improved by solving for s in addition to the other unknowns.




4 Experiments

We have performed extensive experiments on synthetic data with varying numbers of reference
points, noise, and percentages of outliers. We have also performed an experimental analysis of
the method in the context of robot calibration. The results of these tests are summarized below.

4.1 Simulation

A set of 3-D points for {X;} are generated uniformly within a box defined by z;, yi, z € [-5,5).
In order to generate a 3-D rotation R, a unit quaternion is uniformly selected from a unit 4-sphere.
The resulting distribution of 3-D rotations is also uniform [5]. For translation T, ¢, and ¢, are
uniformly selected from [5,15], and t3 from [20,50]. The set of 3-D coordinates in the camera
coordinate frame Y; = RX; + T are generated according to the following control parameters:
number of points N, signal-to-noise ratio (SNR), and percentage of outliers (PO).

Gaussian noise N(0, o) is added to both coordinates of the perspective projection of each Y;,
where the variance, o, is related to SNR by SNR = —201og(c/0.3) dB (the image size is roughly
10/35 =~ 0.3). A fraction (= PO %) of the 3-D points are selected as outliers. Each of these
points Y; = (z},y;, #{)* is replaced by another 3-D point (z},y7, 2!)*, 27 = 2/, where z} and y} are
uniformly distributed within [t; — 5,2, + 5] and [t, — 5,2, + 5], respectively. The preprocessed 3-D
points are then projected onto the normalized image plane (z = 1).

The following three experiments were conducted on the generated data sets:

C1 Set N =20, PO = 0. Estimate the errors of rotation and translation against SNR (30 dB-
70 dB in 10 dB step). The purpose is to measure the noise-resisting capability of the tested
method.

C2 Set N = 20, SNR = 60 dB. Estimate the errors of rotation and translation against PO
(5 %-25 % in 5 % step). The purpose is to see how well the tested method tolerates outliers.

C3 Set PO = 0, SNR = 30. Estimate the errors of rotation and translation against N (10 to
50 by step of 10). The purpose is to investigate how the performance can be improved by
increasing the number of reference points.

To assess the performance of the methods, we measure the mean errors in rotation and trans-
lation of 1000 trials for each setting of the control parameters.

4.1.1 An Error measure for 3-D rotations

The error measure for translation is straightforward since a 3-vector has natural Euclidean norm.
The error measure for rotation depends on its representation. When represented by Euler angles,
there is no natural norm for 3-D rotation. However, when represented by a unit quaternion,
the rotation error can be represented by quaternion error. The difference between any two unit
quaternions ¢, q’ is

(24) 9-9' =2(1-4'¢)
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Figure 1: Average running times for the tested methods against the number of the reference
points.

using the law of cosines. Note that every unit quaternion g, and its negation —q represent the
same 3-D rotation. Therefore, the error between g and ¢’ can be uniquely defined by

(25) 1-lq'q’| € [0,1].

An important advantage of this error measure is that it is independent of coordinate system.

4.1.2 Results and discussions

The basic methods tested are BPROJ, PTM, and RAC. The classical method tested here uses
the finite difference Levenberg-Marquardt minimization (FDLM) [3]. It is not applied directly.
Instead it is employed as the second stage of a two-step method using the solution provided by
one of the linear methods as an initial guess. All the experiments were conducted on a Silicon
Graphics IRIS Indigo with a MIPS R4400 processor. The results are plotted in logarithmic scales
on both X and Y axes (SNR is logarithm of Gaussian variance). The reason that we compress
the scale on large errors is that when errors exceed some threshold, the method can be thought
of to have failed, so it is not very meaningful to try to discriminate between large errors.

Figure 1 shows the average running times of the methods we tested against the number of
reference points. These times include the times for generating random data sets.

Figure 2, Figure 3 and Figure 4 compare BPROJ, PTM and RAC. BPROJ is superior to PTM
and RAC when presented with noise and outliers. RAC is better than PTM in general. This
is probably because in RAC only the first two rows of the 3-by-3 transformation are computed
while ignoring orthonormality, whereas in PTM all nine parameters are computed without the
orthonormality constraint. Note that the running time of BPROJ is about the same magnitude
as that of PTM and RAC (see Figure 1). Experiments show that BPROJ converges in about 5-10
iterations, where each iteration first solves an absolution orientation problem, and then calculates
the depths. ‘

Given close initial guesses, FDLM can sometimes reach solutions better than that provided by
BPROJ as shown in Figure 5 and Figure 7. However, such differences happen either at high SNR
(= 60) or with large number of reference points (> 30). The magnitudes are so small that they
may not be noticeable in real applications. Furthermore, FDLM is much slower than BPROJ.
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Figure 2: Result of Experiment C1 for linear methods PTM, RAC and the backprojection algo-
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Figure 3: Result of Experiment C2 for linear methods PTM, RAC and the backprojection algo-
rithm (BPROJ).
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Figure 5: Result of Experiment C1 for two-step methods and the backprojection algorithm
(BPROJ).
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Figure 6: Result of Experiment C2 for two-step methods and the backprojection algorithm
(BPROJ).

Figure 6 shows that the capability for tolerating outliers of the two-step methods is no better
than that of linear methods. When the first-stage linear method fails due to the presence of
outliers, the second-stage classical method also fails because it starts with a radically wrong
initial guess. BPROJ is more tolerant of outliers than the two-step methods.

4.2 Hand-Eye Calibration

Given the 3-D coordinates of the reference points and their corresponding camera projections, we
compute the rotation and translation that relate the coordinate frame of a robot arm and that of
a camera using BPROJ, PTM, RAC, PTM+FDLM, and RAC+FDLM.

4.2.1 Experimental setting

Our experimental setting for hand-eye calibration consists of a Zebra Zero robot arm, a Cohu
camera with an 8 mm lens, a Sony XC-77 camera with a 12.5 mm lens, and two Imaging Tech-
nologies digitizers attached to a Sun Sparc II workstation via a Solflower SBus-VME adapter.
The size of the video image received from the cameras is 640-by-480. The intrinsic parameters of
both cameras were determined offline using Tsai’s two-step method.
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Figure 7: Result of Experiment C3 for two-step methods and the backprojection algorithm
(BPROJ).

The various methods were applied to datasets acquired by visually tracking a fixed reference
point on an object attached to the robot arm.! Data was acquired by moving the arm to 35
positions, and at each position compiling a data pair consisting of the absolute coordinates of a
feature in the robot frame (computed from the robot inverse kinematics), and the image coordi-
nates of the feature provided by tracking. Figure 9 shows the features used to generate the data.
This process was repeated 5 times to obtain 5 data sets for each camera. The physical conditions
are shown in Figure 8. The Sony XC-77 (middle, bottom) was positioned nearly aligned with the
robot coordinate system and was tuned to have sharp images. The Cohu (left, top) was positioned
more to the side, and delivered more defocused images.

4.2.2 Results and discussion

The results of the calibration methods are compared by computing the sum of the squared image
error for the data set. The image error is determined by comparing the observed 2-D projections
to those obtained by projecting the reference points to the image plane using the computed
calibration parameters. The results for the five trials for both cameras are plotted in Figure 10.
It turned out that the results given by the two-step methods are very close to those given by
BPROJ, so only the BPROJ results are plotted. Given that the two-step methods required
several times as long to converge (see Figure 1), BPROJ would clearly be preferred in these
circumstances.

Among the remaining methods, it is clear that BPROJ is more stable and accurate than PTM
and RAC while RAC is better than PTM. The effective SNR for these data set is approximately in
the range of 40dB to 60dB, so these results agree well with the simulation results. One difference
between the simulations and these tests is that the errors in the reference points are significant (on
the order of up to a centimeter). Despite these errors, BPROJ appears to compute an accurate
transformation. Overall, the Cohu calibration error is generally lower than the Sony error. We
hypothesize that this is due to the fact that the field of view covered by the data in the Cohu
camera is less than half of that covered in the Sony camera. Consequently, the effect of kinematic
errors is smaller by nearly a factor of two which accounts for the difference.

1The tracking system is more fully described in [15]).
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Figure 8: The experimental setup showing the positions of the two cameras relative to the robot
arm.

Figure 9: An image from the cameras showing the tracking used to generate image feature point
data.
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Figure 10: Results of the hand-eye calibration experiments for (left) Cohu and (right) Sony XC-77
cameras. Mean image errors in pixels are measured for each data set.

5 Discussion

Two important issues regarding online hand-eye calibration still remain unaddressed. First, al-
though BPROJ is relatively insensitive to outliers, outliers still cause large errors just like any
other least-squares method. The second problem is that there are cases where the camera intrinsic
parameters change dynamically (for example, with auto-focus lenses) and therefore also need to
be estimated online.

An obvious solution to the first issue is to use BPROJ as the kernal of a truly robust exterior
orientation algorithm. BPROJ is a good candidate for a robust algorithm since the kernel algo-
rithm within any robust method should itself be relatively robust. We are currently taking an
aggressive approach to robustness based on on an enhancement to BPROJ that solves the exterior
orientation problem when the correspondences between the 3-D reference points and their image
vectors are totally unknown. We believe that this algorithm will perform well and be cheap to
compute when a nearly correct set of correspondences is supplied as an initial guess.

As for the second issue, BPROJ in its current form is not well-suited for intrinsic calibration.
Conversely, Tsai’s method provides a nice way to estimate the intrinsic parameters efficiently and
accurately given well-behaved data. Since RAC (the first stage of Tsai’s method) is so sensitive
to outliers, it is worthwhile to do some extra computation to remove outliers. Hence, a proposal
for online intrinsic calibration is to use robust BPROJ for outlier rejection and initial exterior
orientation estimation, and to use Tsai’s method for estimating the camera intrinsic parameters
using the “outlier-free” data. Iterating between the two methods should provide a relatively fast
and effective online calibration method for both intrinsic and extrinsic camera parameters.

We believe that the coordinate optimization approach used in this work may also be generalized
to solve the structure-from-motion problem [30] or relative orientation [23]. In this case, (19) can
be reformulated as

(26) >_willsdiy: — diRx; - T|,

where x; and y; are two views of the same reference point X; (unknown this time) using two
different cameras or the same camera in tow different viewing positions. The values d; and d;
are the undetermined depths of X; in the two camera coordinate frames, respectively. Structure
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from motion is solved by minimized (26) with respect to the “motion” R, T, and the “structure”
{d:}, {d;}. Again, a coordinate-wise optimization may be applied. First, R and T are computed
from two sets of hypothesized depths for each camera. The depths d; and d; are reconstructed for
given R and T by intersecting the lines of sight associated with x; and y;, respectively, and the
process is iterated. ' ’

6 Conclusions

We have presented a new algorithm for solving exterior orientation and compared it to several
other commonly used methods. Both experiments with synthetic and real data have shown that
it is less sensitive to noise and outliers than linear methods while at same time much faster
than classical methods or two-step methods. Since it is globally convergent, we do not have
to worry about initializations. Future work will be devoted to theoretical investigations on the
convergence rate of the method, and on extensions to the method for solving for correspondences,
and to extensions for structure-from-motion.
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A Fitting Orthonormal Matrices

For any 3-by-3 matrix M = (m®), m® m®), the closest orthonormal matrix R to M and the
associated scale factor s can be found by minimizing

(27) 1M — sRl|F,

where || - || is the Frobenius norm. It can be rewritten as
3 . .

(28) > lm® — sRe®|?,
i=1

where () is the ith column vector of 3-by-3 identity matrix. This problem is equivalent to solving
a 4-point absolute orientation problem with an extra point correspondence ((0,0,0)t,(0,0,0)*) for
ensuring zero translation.
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B Global Convergence of BPROJ

Let d®), R® T®) and s®) be the estimates of d;, R, T, and s at the kth iteration of the opti-
mization. Within each iteration, R*), T(®) and s(*) are computed given the kth estimates of the
depths dgk). The value of the objective function at the kth iteration is denoted as E(*). We prove

the convergence of BPROJ by showing that E¢+D < E®) for any d* as follows:
Since the absolute orientation problem can be solved in exact closed form, we have

(29) E®HD =37 wy|s+0d{ Dy, — REFVX, - TED|?
(30) < DuwllsPdy, - ROX, - 1O,

The objective function (30) is quadratic in d**Y which can be solved optimally as (23).

Therefore, for any {d*}
(31) B¢ <3 wills®d Py, - ROX; - TO)?
(32) <Y wills®dPy; - ROX; - T®)|?

(33) - =EW,






