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1 Introduction

The use of genetic information for biological research has been rapidly growing due the

growing needs in biological research, coupled with rapid technological advancements in

acquiring such data. The classical process of producing raw genetic data, known as “se-

quencing”, involves reading DNA sequences (and other types of sequences) by “sequenc-

ing machines”. The output of current high-throughput “next-generation” sequencing

machines is typically a very large number (tens of millions) of short strings of characters.

Each of these strings, called “a read”, represents a small part a of long DNA sequence.

The DNA is composed of pairs of 4 nucleic acids, therefore the reads that represent parts

of the DNA are strings composed of 4 possible characters/letters, A,C,G and T , each

representing a different nucleic acid.

Different individual members of a species have different DNA sequences (moreover,

each human has two versions of most of his or her chromosomes and, in fact, small

variations may exist among the many cells in a human body). In the analysis of such

differences, the following situation is often encountered: one has some “reference” strings

of characters representing the “typical” genome of a species (a “typical genome”) and

one is interested in comparing the DNA of one individual member of the species to the

reference. This is done by sequencing a sample of the DNA of that particular individual

member and comparing the result to the reference.

Since the output of sequencing machines is given in the form of short strings, repre-

senting fragments of the DNA, the analytical process begins with deciding where each

read “belongs”. In other words, one estimates which interval in the reference strings

corresponds to each of the reads. The process of estimating where each read “belongs”

is known as “read alignment”.

The typical approach to alignment is to take each of the reads and find a location in

the reference where the the reference is very similar to the read. Many of the reads may

be “perfectly aligned”, meaning that they are identical to some substring of the in the

reference. Because of the differences between individuals, it is clear that not all the reads
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can be expected to be perfectly aligned to the reference. In addition to the differences

caused by variations between individuals (“true variations”), there are often some errors

in the sequencing process (“noise”), resulting in additional differences between reads and

the intervals in the reference where these reads “belong”.

In most of this paper, we restrict our attention to a specific type of difference and

to a particular measure of similarity. When we consider two strings (a read and some

substring of the reference), we say that the similarity between them is the number of

positions where the two strings are identical or that the distance between two strings is

the number of positions in which they differ (“Hamming distance”). The positions where

the strings do not match are known as mismatches. Although considering mismatches is

sufficient for many applications, there are other important variations (“indels”: insertion

or deletion of characters that change the relative positions of other characters). We will

demonstrate some of the ways in which the Hamming distance alignment can be used to

analyze other types of similarities in practice.

There are several software packages which are widely used to analyze the large vol-

umes of sequenced DNA generated nowadays. These software packages use two major

classes of algorithms: a) prefix/suffix-trees/tries and b) hashing [1, 2]. In this paper, we

will introduce a new approach which may lead to faster algorithms and to software that

can be customized for specialized research requirements.

2 Preliminaries

In this subsection we present a formulations of the problem and basic algorithms which

we use in our algorithm. We also introduce notation and terminology which we will use

throughout the reminder of the paper.

2.1 Basic notation

A string is defined as a “tuple”1 of characters of the alphabet A = {A,C,G, T}. We

use uppercase letters (with indices, when needed) to denote these strings, for example:

1Here, a list/array of characters or numbers in a specific order.
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Y or Y (i), when an index is required. When we wish to refer to a specific character in

a specific position l in the the string, we use the lowercase version of the string’s name

and write yl or (y
(i)
l ).

When we wish to write a string of length M in a “tuple form”, we write: (y1y2...yM).

This form is used in order to reference the order of characters. For example, if we

have a string Y , which is composed of characters z1, z2, z3 in reverse order, we write

Y = (y1y2y3) = (z3z2z1) which means that y1 = z3 etc.

Summing this up:

Y = (y1y2...yM) where yj ∈ A = {A,C,G, T}. (1)

In examples, when we want to discuss a specific string, and express its content ex-

plicitly, we use the letters of the alphabet explicitly. For example: Y = AGT is a string

of length 3 with y1 = A, y2 = G, y3 = T .

In some examples, when we write specific strings explicitly, we may use a lowercase

version of letters from the alphabet. For example, we may write Y = AgT . This is done

only for the purpose of highlighting that specific location in the string (for example, in

order to emphasize that the string is different from some other string in that location).

For any other purpose: Y = AGT = AgT .

Similar notation is used to describe “tuples”/ arrays/ lists of numbers. So, an array

U , of M integer numbers in the range 1 to N is written as:

U = (u1u2...uM) where uj ∈ {1, 2, ..., N} . (2)

An array of numbers can also be written explicitly. For example: U = (3, 4, 2, 7, 1).

2.2 DNA read alignment

We will investigate the following scenario: we are given a long reference string (the

reference DNA) and a large number of short reads/query strings. For each of the reads,

we would like to find an interval/substring of the reference that is the most similar to

the query.
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For simplicity, we will assume that all of our reads are strings of the same length. We

denote the length of the reads by M (the actual values varies in application. M ≈ 100

can serve as order of magnitude). We denote a read with an uppercase letter, such

as Y . This string has M characters/letters, denoted by lowercase letters and indices:

y1, y2, ...yM . Each character is chosen from the alphabet A = {A,C,G, T}. In other

words:

Y = (y1y2...yM) where yj ∈ A = {A,C,G, T}. (3)

We denote the long reference string, which represents the entire reference genome,

by W . We denote the length of the long reference string (W ) by N (for example, for

the human genome we have N ≈ 6× 109 when both strands are considered). Again, the

characters of the string are denoted by indexed lowercase letters w1, w2, ...wN , and we

write

W = (w1w2...wN) where wj ∈ A. (4)

We observe that the original long reference string contains N −M + 1 overlapping

M -long intervals/substrings.

Definition 2.1 We denote a substring of M consecutive characters, that begins at the

jth position of the long reference DNA (W ), by X(i,M) (or simply X(i) when the value of

M is obvious from the context). Therefore, we have:

X(i,M) = (x
(i,M)
1 x

(i,M)
2 ...x

(i,M)
M ) = (wiwi+1...wi+M−1). (5)

This collection of substrings {X(i,M)}N−M+1
i=1 is referred to as the collection/library of

reference strings.

The notation introduced in this section allows us to phrase our alignment problem

as follows: given a read Y , find the most “similar” string X(i) in the reference collection.

Below, we define the “Hamming distance”, a concept of “similarity” that is often used

to compare strings.
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2.3 Hamming distance and the nearest neighbors problem

Definition 2.2 The Hamming distance between two strings is defined as the number of

positions where the strings differ. The distance between the string X and the string Y is

denoted by dH(X, Y ). Therefore, we have:

dH(Y,X) = |{m : ym 6= xm}| = #Mismatches. (6)

We will use this distance to measure the similarity between strings (smaller Hamming

distance means higher similarity). So, our goal is to take each query string, and find the

reference string that is closest to it in the Hamming sense.

For a query string Y of length M , we are looking for the “most similar” reference

string X(i,M). So, X(i,M) is the reference string that has the smallest Hamming distance

to our query Y . In other words, we are looking for i, the location in the long reference

DNA (W ), in which there is a substring (X(i,M)), that is the most similar to the query

string.

For simplicity, we assume that each query string has only one unique closest reference

string (referred to as the “true nearest neighbor”).

Summing this up using the notation that we introduced:

dH(Y,X(i,M)) = mini′(dH(Y,X(i′,M))), (7)

i.e

i = argmini′(dH(Y,X(i′))), (8)

under the assumption that there are no two distinct locations i 6= j such that dH(Y,X(j)) =

dH(Y,X(i)) = mini′(dH(Y,X(i′))).

This problem is a member of the class of “nearest neighbor search” (NN) problems. In

the general NN problem, one has a collection of some arbitrary items and some measure

of distance between them. Given a query item, one looks for the most similar item in

the collection. In our case, we have a NN problem where the items are strings, and the

distance between the items is the Hamming distance.
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2.4 Operations on strings

In our discussion, we use several operations on strings. Here, we define the basic opera-

tions.

One operation which we often use in this discussion is extracting prefixes of strings.

Definition 2.3 The l long prefix of a string Y of length M > l is defined as a string

of length l which is identical to the “beginning of” Y . We denote taking a prefix by:

Prefix(l, Y ). Therefore, we have:

Prefix(l, Y ) = (y1y2...yl). (9)

Another operation we use is “permutation” or “shuffling”, in which we reorder the

characters in the string.

Definition 2.4 We define a “permutation pattern” U (j) of length M or a permutation

code of length M as an array/ list of distinct numbers: U (j) = (u
(j)
1 ..., u

(j)
M ) , where

u
(j)
k ∈ {1...M} and k′ 6= k′′ =⇒ u

(j)
k′ 6= u

(j)
k′′ .

A permutation pattern includes all the numbers from 1 to M , in some defined order.

We use the permutation pattern U (j) to define how the charecter in the string Y

should be reordered when we produce a new, permuted, string.

Definition 2.5 “Permuting”/ “shuffling” a string Y using the permutation code U (j)

(both of length M), or “applying the code to the string”, is defined as creating a new

string, with the characters of Y moved (“permuted”/“shuffled”) to new positions:

T (U (j), Y ) = (y
u
(j)
1
y
u
(j)
2
...y

u
(j)
M

). (10)

2.5 Sorted arrays

Given an array Ar, we denote the item in location number i by Ar[i]2. The item may

have several different “properties”, we denote the the property “prop” of the item i in

array Ar by Ar[i].prop.

2Indeed, we already defined notation for strings and arrays of numbers, but the notation introduced
here is used in a different context, for more general arrays of “items” that are not simply letters of an
alphabet or integer number in some range.
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Definition 2.6 Suppose we have a definition of order3 between the “key” property of

items. Sorted arrays are arrays in which items’ locations are determined according to the

ordering relation.

If i, j are indices for items in the sorted array, and i < j, then the item in location i

of the array is “smaller than, or equal to” the item in location j: Ar[i].key ≥ Ar[j].key.

There are many algorithms that can be used to sort arrays based on the order of the

keys. “Quicksort” and “Heapsort” are examples of fast sorting algorithms[3].

2.6 Lexicographically sorted arrays

In this discussion, we are interested in strings. We discuss arrays in which we store the

reference strings (the library of substrings of the DNA, {X(i)}, or some variations of

these strings, as we explain later). The location in the DNA from which we extracted

the string is stored along with the string. So, every item in our arrays has two properties:

the “key” (which is the string, because our arrays are sorted according to the strings, as

we describe below) and the “DNALocation”. For brevity, we say that the items in the

arrays are strings. So, we say that the item Ar[i] in array Ar is some string, when, in

fact, we mean that Ar[i].key is some string.

Lexicographical[3] order of strings is defined as the strings’ alphabetical order, or

order in which the strings would appear in the dictionary. More formally:

Definition 2.7 We define an order between letters of the alphabet: A < C < G < T .

Definition 2.8 Given two strings of length M , we say that string Z is “larger than”

string “Y” if there is some i ≤M such that zj = yj for all j < i and zi > yi. We denote

“Z larger than Y ” by Z > Y . We say that Z is smaller than Y (denoted by Z < Y ) if

Y > Z. And we say that Z is equal to Y (denoted by Z = Y ) if the strings are identical.

These rules for ordering strings are called “Lexicographical/ Lexical order”.

3Whenever we say “order” in this paper, we refer to “total order”. The “orders” that we will define
can easily be shown to be “total orders”. A definition of “total order” is available, for example, in [3].
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Table 1: Part of a sorted array of strings
Location Location String/ the key
in table in DNA

1 2 3 4 5 6 7 8 9 10

...
9990 16103 C T T A T G A G T G
9991 1516 C T T A T G G A A A
9992 367 C T T A T G G G G C
9993 2888 C T T A T T A T C G
9994 7726 C T T A T T C G C G
9995 12730 C T T A T T T C C C
9996 13689 C T T C A A A A C C
9997 5228 C T T C A A A A G C
9998 12948 C T T C A A A T G C
9999 8260 C T T C A A C A G A
10000 17053 C T T C A A C C A A
10001 6780 C T T C A A C G C C
10002 254 C T T C A A C T C G
10003 20145 C T T C A A G C C G
10004 2549 C T T C A A G G C G
10005 313 C T T C A A T C T G
10006 7223 C T T C A C A C C A
10007 11716 C T T C A C C G T A
10008 19655 C T T C A C G A T G
10009 1745 C T T C A C T T G G
10010 5078 C T T C A G A A G T

...
A part of a sorted array of some strings of length M = 10. In this example, the library
of strings was generated from a “simulated” string of randomly selected characters. Dif-
ferent items (strings) appear in different rows.
For example, item number 1000 is the string CTTCAACCAA, which is a substring of
the reference DNA at location 17053.
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2.7 Binary search

Definition 2.9 Binary search is defined as an operation that takes a sorted array of

strings Ar and a query string Query and returns two integer numbers4: low and high

such that Ar[high] ≥ Query, Ar[low] ≤ Query and (high− low) is minimal. We denote

this operation by:

[low, high] = BinarySearch(Query,Ar). (11)

A description of the Binary search algorithm can be found, for example, in [3]. Through-

out the paper, we assume that all of the strings in our sorted lists are unique. Therefore,

BinarySearch has a unique possible output. When there is a string in Ar which is identi-

cal to Query, we have that low = high and Ar[low].key = Query. When no such string

exists in Ar, we have low + 1 = high.

In our example (table 1): [low, high] = BinarySearch(CTTCAACCAA,Ar) would

give us low = high = 1000. However [low, high] = BinarySearch(CTTCAACCAc,Ar)

would give us low = 1000, high = 1001.

2.8 The “neighborhood” of a string in a sorted array

We now discuss relationships between strings and their “neighborhoods” (other strings

which are located in close proximity in the sorted array of strings).

Definition 2.10 The “unique prefix length”5 of string Y in the collection reference of

strings {X(i)} is the length of the shortest prefix of Y which is unique to “Y”. We denote

this by UniquePrefixLength(Y, {X(i)}).

If l = UniquePrefixLength(Y, {X(i)}), and we build a collection of prefixes {Prefix(l, X(i))},

for all the strings in the collection, there will be no more than one string (Prefix(l, X(i)))

4Here, and in other places in the paper some care has to be taken at the ends of the array. We omit
the trivial corrections required.

5The unique prefix length is sometimes referred to as the “Z” of a string.
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in this collection of prefix strings that is equal to the prefix of Y (Prefix(l, Y ) =

Prefix(l, X(i))).

In our example (table 1), the unique prefix length of the string ATGCAGTTAC is

8.

We now extend the concept of “unique prefix length” by introducing the concept of

“search resolution size”.

Definition 2.11 We say that a search for string Y in a library of strings X(i) is “resolved

up to K ’suspects’ in prefixes of length l”, if there are no more than K strings in the

library that share the same prefix of length l with Y , and l the shortest prefix length for

which no more than K strings share the prefix.

We denote this by l = ResolutionLength(K,Y, {X(i)}). We refer to the value of K

as the “desired resolution size”.

In other words:

l = argminl′{|{i : Prefix(l′, X(i)) = Prefix(l′, Y )}| ≤ K} . (12)

When the value of the “desired resolution size” (K) and the collection of strings are

obvious from the context, we simply say that “the resolution length of Y is l”. Note that

when the desired resolution size is 1, the resolution length is the unique prefix length.

In our example (table 1), the search for the string ATGCAGTTAC is resolved up to

10 in prefixes of length 6.

Definition 2.12 We consider a string Y , a library of strings {X(i)} (all of the same

length, M) and a “desired resolution size” of K. If Y has resolution length of l, the

strings that have the same prefix of length l as Y are called the resolution set. We denote

these strings by ResolutionSet(K,Y, {X(i)}). When the collection of strings is stored in

the sorted array Ar, we can also write ResolutionSet(K,Y,Ar). So we have that:

X(i′) ∈ ResolutionSet(K,Y, {X(i)})⇔ (13)

Prefix(ResolutionLength(K,Y, {X(i)}), X(i′)) =

Prefix(ResolutionLength(K,Y, {X(i)}), Y ).
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The resolution can be found by performing a binary search for Y (i.e [low, high] =

BinarySearch(Y,Ar)) and checking the neighborhood around locations low and high in

the sorted array.

In our example (table 1), ResolutionSet(10, CTTCAACCAA,Ar) gives the strings

in rows 9996-1005.

Set Suspects(Y, jα) = {Ar(j)[low −K], ..., Ar(j)[high + K]}

2.9 Observation: searches for perfect matches and searches for
imperfect matches

We observe that the search scheme described above is adequate for searches for “perfect

matches”. Given a sorted array of strings, and a query string that has a perfect match

in the array, we can use the binary search method to find the perfect match.

In this discussion, we are interested in a search for the “true nearest neighbor”, a

string which is very similar, but not identical to our query string. We should, therefore,

consider whether this scheme is also adequate in this case.

Suppose that the mismatches (the positions in the query string where it differs from

its true nearest neighbor) are located very close to the end of the query string. Now

suppose that instead of using the regular binary search, we look for some “resolution

set” for the search. If we are “lucky”, the resolution length of our query is short and

the search is “resolved” in prefixes that do not include the mismatch. In this case, we

can simply compare all the strings in the “resolution set” to our query and find the true

nearest neighbor.

Clearly, we cannot expect to always be this “lucky”. For example, the mismatches

may occur in the first character of the string, making it impossible for us to use this

simple type of search.

In our example (table 1), suppose that we are given the string CTTCAACCAt (for

which the string in DNA location number 17053 (and array location 10000), CTTCAACCAA

is the true nearest neighbor, with one mismatch in the last character). The string is
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clearly in the resolution set (assuming desired resolution size is of 4, for example). How-

ever, if we are given the string tTTCAACCAA (for which the string in DNA location

17053 is also the true nearest neighbor), we cannot use the resolution set approach to

find the nearest neighbor.

3 The search algorithm

3.1 Informal description of the algorithm

Our proposed algorithm creates sorted arrays of permuted versions of the strings in the

reference collection. In other words, we have several collections of permuted strings, each

built by applying some permutation to all of the strings in our reference library and we

build a sorted array for each of the new libraries of permuted reference strings.

We denote a collection of permuted strings, created by applying the permutation U (j)

to the collection of reference strings {X(i)}, by {T (U (j), X(i))}N−M+1
i=1 . The corresponding

sorted array is denoted Ar(j). this sorted array contains all of the strings in the collection

{T (U (j), X(i))}N−M+1
i=1 .

When we get a new query string, we first permute it, using the same permutation code

we applied to the reference strings, so Y is replaced by the permuted version T (U (j), Y ).

We note that both the strings in our reference library and the query string are permuted

using the same code. Consequently, the Hamming distance between the permuted strings

is the same as the Hamming distance between the original strings (which is also the

number of mismatches):

#Mismatches = dH(Y,X(i)) = dH(T (U (j), Y ), T (U (j), X(i))) (14)

After permuting the query string, we generate the “resolution set” for the permuted

query string with respect to the collection of permuted reference strings. We call the

strings in this resolution set “candidates” or “suspects”.

We repeat this process several times with several different permutations (thus with

several different libraries of permuted strings and several different sorted arrays), pro-

ducing several lists od “suspects”.
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Finally, we can examine all the possible “suspects”/ “candidates” and report the best

alignment among them.

Some (perhaps most) of the searches in the sorted array lead us only to incorrect

reference strings. However, since we repeat the process several times, it is very likely

that in one of our repetitions we will encounter a case where the mismatches are shuffled

away from the beginning of the string, leading to a “suspects” list that includes the true

nearest neighbor. (an analysis of the probability is presented below).

An example of a sorted array for the same collection of strings considered in table 1

is presented in table 2.

3.2 A more formal description of the algorithm

We now describe the algorithm more formally. First, we describe an indexing procedure

(part 1). Then we describe the search for possible neighbors (part 2). Finally we describe

an approach for evaluating the proposed neighbors (part 3).

3.2.1 Part 1: Index creation

Create a family of J random permutation codes {U (j)}Jj=1.

For each permutation code U (j):

Build a sorted array Ar(j) for the permuted strings {T (U (j), X(i))}N−M+1
i=1 .

Store permutation code U (j) and “index” Ar(j) for use in part 2.

End For

3.2.2 Part 2: Listing “possible neighbors”/ “suspects”

For a query string Y :

Initialize Suspects(Y, j) = ∅ for all j ∈ {1..J}.
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Table 2: Part of a sorted array of permuted strings
Location Location Permuted string / the key
in table in DNA Position in permuted string (and original position)

1 2 3 4 5 6 7 8 9 10
(8) (1) (7) (10) (9) (2) (6) (3) (5) (4)

...
6658 11553 C C C A A C C T A C
6659 18520 C C C A A C G G G C
6660 14262 C C C A A C G T C C
6661 12457 C C C A A C G T G G
6662 17106 C C C A A C T T T C
6663 9220 C C C A A G A C T A
6664 13293 C C C A A G C A G C
6665 17743 C C C A A G C C A G
6666 9594 C C C A A G C C C C
6667 11490 C C C A A G T A G A
6668 17053 C C C A A T A T A C
6669 11122 C C C A A T A T G C
6670 18663 C C C A A T C A G A
6671 12745 C C C A A T C G A G
6672 6112 C C C A A T G C G C
6673 20084 C C C A A T T T G T
6674 240 C C C A C A A A G G
6675 11987 C C C A C A G T C A
6676 15131 C C C A C A T C A G
6677 13914 C C C A C A T C A T
6678 17742 C C C A C C A G G C

...
A part of a sorted array of permuted DNA strings of length M = 10.
We applied the permutation code (8, 1, 7, 10, 9, 2, 6, 3, 5, 4) to the same library of strings
used in the previous table.
The neighborhood of the permuted version of string number 17053 is presented again.
The permuted string is located in a different place in the array, and has different neigh-
bors.
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Randomly choose J1 ≤ J codes ({U jα}J1α=1) from the J permutation codes.

For each permutation code U jα :

Set Suspects(Y, jα) = ResolutionSet(K,Y (U (jα), Y ), Ar(jα))

End For

End For

3.2.3 Part 3: Filter/ Analyzing suspects

For a query string Y :

For every possibility reported in some list

(i.e
⋃
j{i : T (U (j), X(i)) ∈ Suspects(Y, j)})

Calculate the distance to the query string dH(Y,X(i)).

Keep track of the closest string.

End For

Report closest reference string as the alignment for Y .

End For

3.3 Analysis

In this section, we discuss the probability of obtaining the correct result (“true nearest

neighbor”) for a query read under some simplifying assumptions. We also discuss some

of the properties of the read and the reference library that influence the probability of

obtaining the correct result.

First, we present the problem and our assumptions. We then calculate the probability

that the true nearest neighbor is in some specific list of “suspects” created in part 2 of the

algorithm. Based on this calculation, we calculate the probability that the true nearest

neighbor is in at least one of the lists of suspects. Finally, we argue that the condition
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for correct output is that the true nearest neighbor is in at least one of the lists. We

conclude that the probability which we calculated for this event is the probability of

success.

Suppose that we have some query string, which has a true nearest neighbor in our

reference library. We would like to calculate the probability of the algorithm returning

the correct answer, which is the probability of finding the true nearest neighbor for the

query string (i.e the probability of correct output).

We make the following assumptions (for all of the query strings):

• All the query strings are of length M .

• The true nearest neighbor is unique (there is no other reference string with the

same distance to the wuery string).

• The true nearest neighbor is resolved up to K suspects in prefixes of identical length

for any permutation code we use (the resolution length is constant, independent of

the permutation code).

• We assume that we have “random permutations” in the following sense: There are

M ! possible permutations for a list of M numbers. The permutations that we use

are chosen randomly from among these M ! possibilities with equal probabilities.

In order to calculate the probability of success, we consider a particular query: The

query sting is Y . The true nearest neighbor in the reference library, X(i) is resolved

in prefixes of length L. The hamming distance between the query string and the true

nearest neighbor (the number of mismatches) is p. We perform a search using J1 random

permutation codes.

Definition 3.1 We denote the probability of success in this case by PrSuccess(p, L,M, J1).

We now consider a list of suspects created in part 2, in the iteration that used the

code C(jα) and the corresponding sorted list of permuted strings Ar(jα).
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Definition 3.2 The list of mismatches, MismatchPos(Y,X(i)), is defined as the set of

positions where the strings Y and X(i) differ:

m ∈MismatchPos(Y,X(i))⇔ ym 6= x(i)
m . (15)

As we mentioned, if the mismatches are permuted “far enough” from the beginning

of the string, the nearest neighbor can be found in the resolution set. We now state this

more formally:

Lemma 3.1 For the permutation code U (jα) = (u
(jα)
1 ..., u

(jα)
M ), if the first L numbers in

the list (u
(jα)
1 ..., u

(jα)
L ) are not in the list of mismatches, then X(i) is in the jα list of

suspects.

{u(jα)
m }Lm=1 ∩MismatchPos(Y,X(i)) = ∅ (16)

⇒ T (C(jα), X(i)) ∈ Suspects(Y, jα)

Proof. According to our assumption, the search is resolved in prefixes of length L, so,

by definition, ResolutionSet(K,T (C(jα), Y ), Ar(jα)) includes all the strings that have the

same L-long prefix as T (C(jα), Y ).

We consider the permuted versions of Y and X(i): T (C(jα), Y ) and T (C(jα), X(i)). We

observe that if {u(jα)
m }Lm=1 ∩MismatchPos(Y,X(i)) = ∅, then the first L characters of

both permuted strings are identical:

Prefix(L, T (C(jα), Y )) = Prefix(L, T (C(jα), X(i))) . (17)

Therefore, the permuted string T (C(jα), X(i)) is in the list.

2

So, the probability that Suspects(Y, jα) includes the true nearest neighbor is the

probability of not permuting any of the mismatches into one of the first L positions in

the permuted string. We now calculate this probability.
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Definition 3.3 We denote the probability that none of the p mismatches in a string of

length M is permuted into the first L position by PrLuckyPerm(p, L,M).

Lemma 3.2 The probability that none of the p mismatches in a string of length M is

permuted into the first L position is given by:

PrLuckyPerm(p, L,M) =

(M−L)!
(M−L−p)!(M − p)!

M !
(18)

Proof. We use a combinatorial argument: (M−L)!
(M−L−p)! is the number of ways we can place

p particular mismatches in the (M − L) positions that are not in the prefix. Therefore,

(M−L)!
(M−L−p)!(M − p)! is the number of “lucky” permutations, that permute p given mis-

matches away from the prefix. Finally, we assumed that our permutations are chosen

from among all M ! permutations with equal probabilities of 1/M !, so the above expres-

sion gives the probability of choosing a “lucky” permutation. 2

We combine these lemmas to calculate the probability that at least one of the lists

contains the true nearest neighbor.

Theorem 3.3 The probability that at least one of the suspects lists contains the true

nearest neighbor is given by:

1− (1− PrLuckyPerm(p, L,M))J1 . (19)

Proof. We have the probability for being “unlucky” in any one experiment: 1 −

PrLuckyPerm(p, L,M).

We observe that our choices of permutations are independent, therefore the the event

that we “get lucky” using a permutation jα is independent from the event that we “get

lucky” with another permutation jβ 6= jα (In fact, independence requires us to allow

ourselves to choose the same code more then once. The required corrections are small

and increase the probability of success. We omit the these corrections).
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Due to this independence, the probability of being “unlucky” in all of the experi-

ments is (1− PrLuckyPerm(p, L,M))J1 . So the expression above gives the probability

of “being lucky” at least once. 2

Theorem 3.4 If the reference string is in one of the lists of “candidates”/ “Suspects”

calculated in part 2 of the algorithm, then the result of the algorithm is correct.

Proof. If X(i) is in one of the lists of suspects, we calculate the distance to it in part 3

of the algorithm. The only way we do not report X(i) as the output of the calculation is

if there is some other string, X(i′) which is closer (or perhaps as close) to Y . However,

there is no such reference string by the assumption. 2

Therefore, it is enough to consider the probability that X(i) is in at least one of the lists

of suspects. We already have an expression for this probability:

Corollary 3.5 The probability of obtaining the correct output is given by the expression:

PrSuccess(p, L,M, J1) = 1− (1− PrLuckyPerm(p, L,M))J1 . (20)

Note that according to this simplified analysis, the probability of success in finding the

true nearest neighbor for some string of length M depend on the properties of its nearest

neighbor with respect to the reference library (the nearest neighbor’s resolution length,

L), the number of permutation codes that we use (J1), and the number of mismatches

(p).

3.3.1 Example: alignment of multiple reads

We consider a reference collection of N = 6× 109 strings of length M = 100.

Suppose that most of the strings are resolved up to 10 “suspects” in prefixes of length

20. We refer to these strings as “group A”.

Now, suppose that 5% of the strings have 999 other strings that share their 20-long

prefix in any permutaion (resolved up to 1000 “suspects”, but not up to 999 “suspects”).
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These strings are resolved up to 10 “suspects” in prefixes of length 50. We call these

“group B”.

We want to find the nearest neighbors for reads (query strings) for which the true

nearest neighbor is in group A with a Hamming distance of up to 4 (up to 4 mismatches).

In the “more difficult” case, where the nearest neighbor is in group B, we are satisfied

with finding the correct nearest neighbor only for query strings that have no more than

1 mismatch (they have have a nearest neighbor of group B with hamming distance of no

more than 1).

The algorithm described here produces the correct result with probability of more

than 99%, using 9 permutation codes codes. In other words, under the assumptions, the

algorithm reports the correct nearest neighbor for a query string if that nearest neighbor

is in group A (and has a distance of 4 to the query string) or in group B (and has a

distance of 1) with a probability of more than 99%. Higher probabilities can be obtained

by using additional codes.

Note that when reads have more mismatches, the true nearest neighbor may also be

found, but the probability of success is lower.

4 Implementation and results

4.1 A shuffling aligner

We implemented a version of the algorithm in order examine the performance with actual

data.

We used the “Bowtie”[4] software package as a benchmark for performance evaluation.

“Bowtie” is among the fastest popular alignment tools[4]. Similarly to our implemen-

tation, “Bowtie” does not allow indels. “Bowtie” was tested in the following modes: -v

3 -t -S (up to 3 mismatches) / -v 2 -t -S (up to 2 mismatches) / -n 3 -t -S (up to 3

mismatches in the “seed”. Default seeds).

Very often, it is desirable to find multiple possible alignments for each read (equally

good alignment and suboptimal ones) for alignment quality estimation etc. Our im-

plementation reports multiple suboptimal alignment alignments (with the exception of
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perfect matches) because these suboptimal alignments are generated in the process of

finding the best alignment. Our implementation also has a “suboptimal match reporting

version” where it reports suboptimal alignments with higher probability (up to 15 for

each of the two read directions). The “Bowtie” software has several reporting modes, in

the default mode it reports only one alignment. For each of the modes described above,

we invoked “Bowtie” again in the -k 2 reporting mode (reports up to 2 alignments).

Both “Bowtie” and our implementation were used in single processor mode (“Bowtie”

has a multithread mode. Our implementation can be parallelized).

We used collections of reads from the 1000 Genomes project[6] for the queries:

• ERR009392 1.filt.fastq (108 bp/ nucleotides / characters long reads)

• SRR023337 1.filt.fastq (78 bp/ nucleotides / characters long reads).

The paired reads (explained below) were ignored. We used the human genome GRCh37[7]

(downloaded from the 1000 Genomes project website) as a the reference for both “Bowtie”

and our implementation.

For timing a comparison, we took 107 reads from the original “fastq” files. For the

quality comparison we used a subset of 105 reads.

The comparison was performed on a desktop computer with an AMD Athelon II X2

250 processor and 16GB RAM, running Ubuntu 10.04. Similar results were obtained on

M610 servers with 48GB RAM .

The “Bowtie” software requires about 2.2GB RAM and our implementation requires

about 16GB RAM.

Comments:

• “Bowtie” in -v x mode reports alignments with up to x mismatches, alignments

with more mismatches are not reported.
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Table 3: 108 nucleotides long reads
Software Run time % of reads aligned with ≤ n mismatches

(sec)

Total Per 1M n=0 n=1 n=2 n=3 n=4 n=5 n=6
reads

“Bowtie” -v 3 2903 290 52.7 68.5 75.0 78.8 78.8 78.8 78.8
“Bowtie” -v 2 1566 157 52.7 68.3 75.0 75.0 75.0 75.0 75.0
“Bowtie” -n 3 3961 196 52.7 68.0 74.6 78.2 80.4 82.0 83.2

“Bowtie” -v 3 -k 2 9088 909 52.7 68.5 75.0 78.8 78.8 78.8 78.8
“Bowtie” -v 2 -k 2 3375 338 52.7 68.4 75.0 75.0 75.0 75.0 75.0
“Bowtie” -n 3 -k 2 12558 1256 52.7 68.2 74.8 78.3 80.5 82.1 83.3

Our implementation 642 64 52.6 68.3 74.8 78.5 81.1 82.9 84.4
Our implementation 1156 116 52.6 68.3 74.8 78.6 81.1 83.0 84.4

(report subopt)

Table 4: 78 nucleotides long reads
Software Run time % of reads aligned with ≤ n mismatches

(sec)

Total Per 1M n=0 n=1 n=2 n=3 n=4 n=5 n=6
reads

“Bowtie” -v 3 2942 249 58.2 73.0 77.6 80.2 80.2 80.2 80.2
“Bowtie” -v 2 1126 113 58.2 72.8 77.6 77.6 77.6 77.6 77.6
“Bowtie” -n 3 1754 175 58.2 72.3 76.8 78.9 80.2 81.0 81.6

“Bowtie” -v 3 -k 2 8159 816 58.2 73.0 77.6 80.2 80.2 80.2 80.2
“Bowtie” -v 2 -k 2 2736 274 58.2 72.9 77.6 77.6 77.6 77.6 77.6
“Bowtie” -n 3 -k 2 6730 670 58.2 72.5 77.0 79.0 80.3 81.1 81.7

Our implementation 770 77 58.2 72.8 77.3 79.9 81.9 83.4 84.5
Our implementation 1136 114 58.2 72.8 77.4 80.0 81.9 83.4 84.6

(report subopt)
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• “Bowtie” -n 3 and our implementation each uniquely reported some alignments

when the best alignment had > 3 mismatches: There were reads for which only

one of the two could find an alignment with > 3 and ≤ 6 mismatches. Our

implementation had considerably more such uniquely aligned reads.

• By default, “Bowtie” reports a single alignment that is “valid” according to the

parameters selected by the user (for example, a single alignment with up to 3

mismatches in the -v 3 mode). This may not be the best possible alignment. In -k

2 mode, “Bowtie” attempts to find up to 2 possible “valid” alignments.

• Our implementation allows an accuracy-time trade off. Less detailed reporting

(fewer suboptimal or equally good matches) and slightly less accurate alignment

have been performed in under one minute per 106 reads.

• We note that our implementation can be faster for longer reads (less time per read,

not just per nucleotide).

• We note that in this implementation of the algorithm we did not use optimal, inde-

pendent codes. This allowed us to simplify the implementation and save computer

memory. We also note that some simple heuristics were added to the filter (part

3) to accelerate the execution. These modification reduce the accuracy of the al-

gorithm. The result presented in the tables are of the implementation with this

reduced accuracy.

• Due memory constraints, we indexed only one direction of the genome (only one

of the two strands in the real DNA). Indexing the other direction (the “reverse

complement”) as well could produce a significant speed increase and may improve

the accuracy.

4.2 A version for “paired-end” reads with “indels”

We note that in many cases, we are interested in strings which are close in “edit dis-

tance”, allowing insertion and deletions from the string and not only changes in particular

characters in the strings.
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We also note that reads are often available in related pairs (“pair-end reads”). The

model for this case requires us to find nearest neighbors for both strings (Y (1), Y (2)),

subject to some constraint on the distance between the locations in the reference genome.

The problem is, therefore, choosing (i1, i2) that minimize dH(Y (1), X(i1))+dH(Y (2), X(i2))

under the constraint |i1 − i2| < M̃ (when indels are present, we should use an “edit

distance” rather than the “Hamming distance” in this definition).

We implemented a variation of the algorithm that simultaneously deals with both

problems using some heuristics. This version of our implementation requires about 24GB

of RAM for a human genome.

Since the “Bowtie” software package does not allow indels, we compared our im-

plementation to the popular BWA[5] software package. We used simulated 108bp-long

reads from the human genome, with 3% mismatch probability, 0.04% indel probability

and indel sizes of up to 5. We used a constant quality for all the nucleotides.

In the experiments, our implementation was over 10 times faster than the BWA

software package. BWA mapped 98% of the read pairs to the correct location and our

implementation mapped 96.5% of the reads to the correct location.

5 Conclusions

An algorithm has been constructed for the fast alignment of DNA reads to a reference

genome. The algorithm inherently deals with mismatches, and it has been demonstrated

that additional heuristics allow it to accommodate inserts and deletions as well.

The algorithm is based on a randomized approach. It allows trade-offs between error

probability and run time. We note that in some applications, in particular when the

reads are very short and no alignment errors are acceptable, other methods may prove

to be more effective. However, as reads become longer, and taking into consideration

the errors in the sequencing procedures themselves, the possible alignment errors that

in other algorithms, and the various methods of verifying results, we propose that this

algorithm is useful for many practical applications.
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An implementation of the algorithm, is used to demonstrate aligning of about 106

reads per CPU minute. Future implementations of the algorithm are expected to be

faster and more accurate.
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