Nettle:
Functional Reactive Programming
for OpenFlow Networks

Andreas Voellmy Ashish Agarwal Paul Hudak

July 1, 2010

Yale University
Department of Computer Science
New Haven, CT 06520

Research Report YALEU/DCS/RR-1431

andreas.voellmy@yale.edu
ashish.agarwal@yale.edu
paul .hudak@yale.edu

Abstract

We describe a language-centric approach to solving the complex, low-level, and error-prone
nature of network control. Specifically, we have designed a domain-specific language called Net-
tle, embedded in Haskell, that allows programming OpenFlow networks in an elegant, declarative
style. Nettle is designed in layers to accommodate a family of DSLs targeted for specific net-
work applications. The primary core of Nettle is based on the principles of functional reactive
programming (FRP). Aside from its useful signal abstraction, FRP facilitates the integration of
components written in different higher-level DSLs. We demonstrate our methodology by writing
several non-trivial OpenFlow controllers.

1 Introduction

Networks continue to increase in importance and complexity, yet the means to configure them re-
main primitive and error prone. There is no precise language for describing what a network should
do, nor how it should behave. At best, network operators document their complex requirements
informally, but then are faced with the daunting and unreliable task of translating their specifica-
tions by hand into the low-level, device-specific, often arcane scripts used to control today’s switches
and routers. This low-level programming model often results in devices and protocols interacting
in unexpected and unintended ways, and gives little hope in validating high-level protocols and
policies such as those related to traffic engineering, business relationships, security, and so on.

Part of the problem is that most conventional routers are not only low-level, they are also
decidedly impoverished in their expressive power, and inflexible in their configuration capabilities
— it is sometime difficult to get even the most basic configurations to work correctly. Another
problem is that conventional routers are designed to work autonomously, and not collaboratively
with other routers to achieve a more sophisticated global behavior.

We believe that these problems can be overcome through the use of advanced high-level pro-
gramming languages and tools that allow one to express the overall network behavior as a single
program expressed in a declarative style. Although this idea has been suggested by several re-
searchers [3, 7], the development of an actual solution has been elusive. There are two aspects of
our approach that we believe will result in a successful outcome: First, we abandon conventional
routers in favor of OpenFlow switches [1]. OpenFlow presents a unified, flexible, dynamic, remotely
programmable interface that allows network switches to be controlled from a logically centralized
location.

Second, we use advanced programming language ideas to ensure that our programming model
is expressive, natural, concise, and designed precisely for networking applications. In particular,
we borrow ideas from functional reactive programming (FRP) and adopt the design methodology
of domain-specific language (DSL) research.

Our overall approach, which we call Nettle, allows us to radically rethink the problem of net-
work configuration. Rather than configure a collection of black boxes, we control a collection of
programmable components. In doing this, we enable the development of new control algorithms and
most importantly, more powerful and natural control languages. This approach makes it feasible
to provide application-specific languages, to express interdomain business policies or security re-
quirements, for example. It enables programmers to design new dynamic traffic control algorithms
not provided in today’s devices.

2 Approach

Because computer networks come in many different shapes, sizes, and purposes, it would be a
mistake to try designing single language that “did it all.” Our approach is to instead design an
extensible family of DSLs, each capturing an important network abstraction. For example, we may
have one DSL for access control policies, another for traffic engineering strategies, and another for
expressing interdomain contracts. And because the family is extensible, new abstractions can easily

N

Security
Routing
Contracts

\

Functional Reactive Programming

HOpenFlow

Haskell

OpenFlow

Figure 1: Nettle layered system architecture.

be added.

Furthermore, to avoid creating small, isolated DSLs, we rely on the technique of embedding each
DSL into a host language. We choose Haskell [11] as our host because of its remarkable flexibility in
supporting embedded DSLs [5]. This approach allows our DSLs to share a common “look and feel”
through the adoption of the same language infrastructure, such as variable naming conventions,
function definitions, primitive data types, a powerful type system, and so on. This not only relieves
us from the burden of implementing these general features, allowing us to focus on domain-specific
concepts, but more importantly allows the DSLs to interoperate with one another.

Figure 1 illustrates our approach. At the bottom are OpenFlow switches, an enabling technology
for our work. One level up is Haskell, our host language. Above that is a library, HOpenFlow, that
abstractly captures the OpenFlow protocol.

The next layer in our stack is an instantiation of a language in the Functional Reactive Program-
ming (FRP) paradigm. FRP is a family of languages that provide an expressive and mathematically
sound approach to programming real-time interactive systems in a declarative manner. FRP-based
languages have been used successfully in computer animation, robotics, control systems, GUIs,
interactive multimedia, and other areas in which there is a combination of both continuous and
discrete entities [9, 10, 12, 4]. Network control programs share many of these characteristics, and
we expect that FRP will be a key technology in the modular implementation of control systems
and higher-level protocols.

Above the FRP layer, we implement our extensible family of DSLs, each member capturing
a particular domain. These more specific DSLs will be implemented in terms of Haskell and
FRP. This allows us to integrate the components of different domains in the framework of FRP,
which provides an expressive and generic language for composing components and controlling their
dynamic structure. Previous work by Pembeci et al.[8] has demonstrated the effectiveness of using
FRP as a system integration language in the area of robotics, and we intend to follow a similar
approach to the integration of disparate network control components.

3 OpenFlow

The OpenFlow specification roughly and informally defines an abstract operational semantics of an
OpenFlow switch, and defines a network protocol for remotely interacting with OpenFlow switches
by sending and receiving OpenFlow-specific messages. The basic architecture consists of OpenFlow
switches, a controller, and end hosts. The switches communicate with the controller over a secure
TCP connection, typically on a dedicated control network (distinct from the main data network).

OpenFlow switches maintain a flow table containing entries consisting of a match condition and
a list of forwarding actions. The match condition can optionally match on most Ethernet, IP, or
transport protocol header fields. The forwarding actions include forwarding to specific ports on
the switch, flooding the packet, and many other options. When a packet is received by a switch,
it searches for a matching entry. If matches are found, the highest priority one is chosen and its
actions are executed. If the list of actions is empty, the packet is dropped. If no match is found,
the packet is encapsulated and sent to the controller in a format defined by the OpenFlow protocol.

The controller can use the OpenFlow protocol to modify switches’ flow tables and command
switches to send packets.

4 Functional Reactive Programming

In this section we briefly introduce the key ideas and constructs of the functional reactive pro-
gramming (FRP) layer of Nettle. The design of this layer is strongly influenced by Yampa [6], an
FRP-based DSL that we previously designed for use in robotics and animation.

The simplest way to understand this layer is to think of it as a language for expressing electrical
circuits. We refer to the wires in a typical circuit diagram as signals, and the boxes (that convert
one signal into another) as signal functions. For example, this very simple circuit has two signals,
z and y, and one signal function, sigfun:

yl’

This is written as a code fragment in Nettle simply as:
y sigfun — x
Nettle has many built-in signal functions, including all of the obvious numeric functions, as
well as ones for integration and differentiation of signals. Of course one can also define new signal
functions. For example, here is a definion for sigfun above that simply returns a signal that always
takes the sine of one greater than its input:

sigfun :: SF' Float Float

sigfun = proc x — do
Yy sin—<z+1
returnA — y

The first line in this program is a type signature that declares that sigfun is a signal function that
converts continuous values of type Float to continuous values of type Float.

In Nettle we can use signals and signal functions in this way to program, for example, controllers
that alter traffic flow based on signals that measure the volume of traffic on particular links. But in
this report we emphasize a different use: we will use signals to represent streams of control messages
flowing to and from our OpenFlow switches — you can think of each signal (i.e. wire) as being a
stream of messages.

In a conventional language, a message- or event-based system might be implemented by some
kind of call-back mechanism and a loop that handles messages as they arise, one by one. But in
Nettle, it is done much more declaratively, where we think of, and program with, message streams
as a whole. For example, the merger of two message streams ms! and ms2 is simply ms?1.|.ms2.

A message, of course, carries data, and sometime we need to manipulate the data in each
message of a message stream. We can apply a function fn to each message in a message stream ms
by the simple expression ms => fn. Sometimes our chore is even simpler: we may want to simply
replace each message with a different one, say m, which can be written ms —=> m. We will use both
of these operators in later examples.

A slightly more complicated operation on event streams we will use later is mapFilterE. If fn is
a function returning optional values, i.e. having type a — Maybe b, then mapFilterE fn ms applies
fn to each message in the stream ms, but only replaces the messages for which a non-null value is
produced by frn. In those cases it produces the value given by fn.

Nettle elegantly unifies message streams with continually varying signals by representing mes-
sage streams as continuous signals that are only defined at discrete points in time. More concretely,
Nettle represents a discrete signal that periodically carries information of some type a as signals
that take on values of the Event a datatype, whose values are either NoFvent or Event a for some
a :: . Note that Fvent « is isomorphic to Haskell’s Maybe o data type.

For example, a signal function that converts a message stream carrying messages of type M1
into a message stream carrying messages of type M2 has type SF (Fvent M1) (Event M2).

Nettle provides several constructs that convert between discrete and continuous signals. One
we will use later is hold :: @ — SF (Event a) a, that converts a stream of events carrying values
of type a into a continuous, piece-wise constant signal of a values. The output signal of hold a0
“holds” the last a value received on its input line, and starts out as a0.

Nettle also includes several stateful signal functions, i.e. signal functions whose output signal at
some moment in time depends on the values of the input signal at earlier moments in time. One
such signal function is accum :: a — SF (Event (a — a)) (Event a). accum a0 takes as input an
event stream carrying state-modifying functions. At each event in its input stream, it applies the
state-modifying function carried by the event to the current state, updates the current state with
that new value, and outputs an event carrying the updated value.

5 FRP for OpenFlow Control

At the most basic level, Nettle programs are signal functions operating on input types that carry,
among other data, messages from OpenFlow switches, and output types that carry, among other
things, commands for OpenFlow switches. More concretely, Nettle programs are signal functions
having a type of the form SF i o for some domain-specific types i and o.

Admittedly, this representation of a network control program — as a transformation of a timed
stream of messages into a timed stream of commands — is fairly low-level, since it says nothing about
high-level networking concepts such as routing, load balancing, security, etc. Surprisingly, though,
these basic tools — Haskell, FRP, and domain-specific input and output types for the OpenFlow
protocol — provide an excellent basis for the exploration and implementation of a variety of network
control algorithms and abstractions. At the same time, they do not impose a restrictive high-level
language on Nettle controllers, which we feel would be premature. Rather, this collection of tools
provides an ideal platform for the construction of higher-level abstractions and for the integration
of components written in terms of different abstractions.

In the following sections, we describe how we tailor FRP and Haskell to the domain of OpenFlow
network control, and we demonstrate, with some small examples, how one can program controllers
in this language.

5.1 Switch Events

OpenFlow switches establish TCP connections with the controller, transmit OpenFlow messages
to the controller, and under some circumstances terminate their connections with the controller.
In each of these events, a controller may need to take some actions. We represent these events, and
indicate to which switch an event pertains, with values of the SwitchEvent datatype:

data SwitchEvent = SwitchUp SockAddr
| SwitchDown — SockAddr
| SwitchMessage SockAddr SCMessage

We use values of the type SockAddr to identify a switch. The SockAddr value associated with a
switch is the IP address and transport port number that the controller uses to communicate with
that switch.

The SCMessage datatype represents the logical content of the OpenFlow messages that a switch
may send to the controller, abstract from their binary OpenFlow formats. Figure 2 shows the
definition of this datatype. Here we look at one variant of this datatype, representing packet-in
messages, in more detail.

Packet-in messages are among the most important switch-to-controller message types. A switch
sends a packet-in message when it receives a packet for which it has no matching flow entry in its
flow table, or if a matching entry directs the switch to send the packet to the controller. The
PacketInfo type represents the logical information carried by such a message:

data SCMessage

= SCHello' OpenFlowVersion

| SCEchoRequest’ TransactionID [Word8]
SCEchoReply’ TransactionID [Word8]

PacketIn’ PacketInfo
FlowRemoved' FlowRemoved
PortStatus’ PortStatus

FeaturesReply’ SwitchFeatures
GetConfigReply’ SwitchConfig
StatsReply’ StatsReply
Err’ Error

Figure 2: Logical representation of switch-to-controller OpenFlow messages

data PacketInfo = PacketInfo {
packetBufferID :: Maybe BufferID, -- buffer ID, if packet buffered at switch

packetOrigLen :: NumBytes, - full length of frame received by switch
packetInPort :: PortlD), -- port on which frame was received
packetInReason :: PacketInReason, -- reason packet is being sent
packetData i [Word8] -- ethernet frame received by switch

}

In addition to being independent from the binary representation of the message, this type abstracts
several other low-level details. For example, a packet-in message may or may not include a buffer
ID, depending on whether the sending switch buffered the packet or not. In the OpenFlow message
format, the absence of a buffer ID is indicated by a —1 value for this field of the message. Our
Haskell representation makes this distinction explicit by modeling the bufferID with a Maybe type,
which represents an optional value. This design helps to prevent programmer error, by enabling
the Haskell type system to force programmers to acknowledge the possibility of a missing buffer
ID.

5.2 Switch Commands

Once a switch establishes a connection with the controller, the controller may send switch com-
mands to the switch. Nettle provides a language of switch commands, partially shown in Figure 3,
for this purpose. For example,

deleteFlowRules dhcp switchl

deletes all flow rules from switch! whose match condition matches any subset of dhcp packets.
The identifier switch! has type SockAddr. The identifier dhcp is of type PacketPredicate and is
defined using a small language of predicates, shown in Figure 4. This language of packet predicates
provides a convenient method of describing complex families of packets. In this instance, dhcp is

defined as:

ip = ethFrameTypels ethTypelP

udp = ip A transportProtocolls udpCode

dhep = udp A (senderTransportls dhepPort V
receiverTransportls dhepPort)

These definitions say that ip packets are those Ethernet frames whose Ethernet frame type is
ethTypelP, that udp packets are those ip packets having a transport protocol with code udpCode,
and that dhcp packets are udp packets having either the sender or the receiver transport port equal
to dhcpPort.

As a second example, we can write

addFlowRule (priority 1) (http = [sendOnPort 1, sendOnPort 2]) switch2

to insert flow entries on switch?2 at priority level 1 that forwards hitp traffic on ports 1 and 2. In
this example we have used the = infix operator which provides a suggestive syntax, but which
does nothing more than pair a PacketPredicate with a list of Actions. Again, we make use of packet
predicates to define http:

hitp = ethFrameTypels ethTypelP A
transportProtocolls ip TypeTcp N\
recetwer TransportIn (80,443, 8080]

In this definition we use the function receiver Transportln :: [TransportPort] — PacketPredicate to
concisely denote a predicate that matches packets whose receiver transport port is among those
listed. It is important to note that this function, while defined in the library, is not primitive, and
could easily have been defined by a user. Indeed, it is defined as:

receiverTransportin ps = anyP [receiver Transportls p | p < ps]
anyP = foldl (V) noPacket

This definition demonstrates the utility of the embedding technique in enabling users to use familiar
tools to extend the basic language.

Furthermore, Nettle provides a binary operator @& that combines multiple commands into a
single composite command that, when executed, will perform both commands. For example, we
can combine the two commands above as:

deleteFlowRules dhcp switchl ®
addFlowRule (priority 1) (http = [sendOnPort 1, sendOnPort 2]) switch?2

requestFeatures :: SockAddr — SwitchCommand
addFlowRule :: Priority — (PacketPredicate, [Action]) — SockAddr — SwitchCommand
deleteFlowRules :: PacketPredicate — SockAddr — SwitchCommand
sendBufferedPacket :: BufferID — Maybe PortID — [Action] — SockAddr — SwitchCommand
sendPacket :: ByteString — Maybe PortID — [Action] — SockAddr — SwitchCommand
setPortSettings :: PortID — EthernetAddress — Map PortAttribute Bool — SockAddr — SwitchCommand

Figure 3: Switch commands

In fact, we make the type of switch commands, SwitchCommand, an instance of the Monoid
type class, which supports the following operations:

class Monoid m where
mempty :m -- unit w.r.t. mappend
mappend :: m — m — m -- associative binary operation

We define mappend for the SwitchCommand type to be synonymous with @, and define noOp ::
SwitchCommand as a suggestive synonym for mempty.

With these building blocks, we can now apply standard functional programming techniques to
extend the language with new commands defined in terms of the basic commands. For example,
one can write a function that turns an entire table of flow rules into a flow table update command,
making use of the standard function mconcat :: Monoid m = [m]| — m:

addFlowRules :: Priority — [(PacketPredicate, [Action])] — SockAddr — SwitchCommand

addFlowRules priority rules switch =
mconcat [addFlowRule priority rule switch | rule + rules]

Clearly, composite SwitchCommands that address different switches will require multiple Open-
Flow messages to be sent. In fact, even basic SwitchCommand values often require multiple Open-
Flow messages. One reason for this is that the PacketPredicate language is richer than the underly-
ing match constructs provided by OpenFlow. In particular, PacketPredicates support disjunction,
whereas OpenFlow matches do not. However, commands involving PacketPredicates can be sim-
ulated, often by using multiple commands and flow table rules. For example, the implementation
deleteFlowRules dhcp switchl sends two delete commands to switchl, one for each disjunct of the
equivalent disjunctive normal form for dhcp, which happens to be:

(udp A senderTransportls dhepPort) V (udp A receiver Transportls dhepPort)

(AN), (V) it PacketPredicate — PacketPredicate — PacketPredicate
anyPacket, noPacket :: PacketPredicate

inPortls :: PortID — PacketPredicate
ethSourcels, ethDestls :: EthernetAddress — PacketPredicate
ethFrameTypels :: EthernetFrame Type — PacketPredicate
transportProtocolls :: TransportProtocol — PacketPredicate

senderTransportls, receiver Transportls :: TransportPort — PacketPredicate

Figure 4: Packet Predicates

5.3 Generic Controllers

While many Nettle programs can be written simply as signal functions with input type SwitchEvent
and output type SwitchCommand, i.e. as SF SwitchEvent SwitchCommand, realistic control sys-
tems will incorporate input sources other than SwitchEvents and will communicate with or com-
mand devices other than switches. For example, some controllers may interact with intrusion
detection systems, in addition to controlling OpenFlow switches, in order to proactively implement
network security goals. Other controllers may interact with user interface elements to allow oper-
ators to interactively operate some part or aspect of the network, for example to toggle between
different routing modes on command. Therefore, each Nettle-controlled system may need input and
output types tailored to the particular system. At the same time, many controller modules will
be relatively generic and will work primarily with OpenFlow switch events and switch commands.
We would like to write these components generically, rather than write them for specific input and
output types and consequently be forced to rewrite them for each system.

To accomplish this, Nettle structures its input and output types using Haskell’s type classes.
With type classes, Nettle defines functional interfaces that types may support, and controllers can
then be written generically by having their input and output types depend on this interface, rather
than a specific implementation. Figure 5 gives some of the output type classes provided by Nettle.
The output class for types carrying switch commands is HasSwitchCommands and it is identical to
the switch command language, except for the result types of the functions. The HasConsole Qutput
type is implemented by types carrying console output commands.

Both type class declarations require that instances implement the Monoid type class. This
ensures that commands of different type classes can be combined. For example, this enables one
to write the following command to both send a packet and to output a message:

sendBufferedPacket bufID (port 1) [flood] switchl &
consoleOut (“Sent packet with buffer id : “ + show bufID)

Figure 6 shows some of the input classes supported by Nettle. The HasSwitchFEvents class is im-
plemented by types which may carry (among other things) SwitchEvent values. The HasConsoleInput
type class is implemented by types carrying input from a console window on the controller machine,

10

class Monoid o = HasSwitchCommands o where
requestFeatures :: SockAddr — o
addFlowRule :: Priority — (PacketPredicate, [Action]) — SockAddr — o
deleteFlowRules :: PacketPredicate — SockAddr — o
sendBufferedPacket :: BufferID — Maybe PortID — [Action] — SockAddr — o
sendPacket it ByteString — Maybe PortID — [Action] — SockAddr — o
setPortSettings :: PortID — EthernetAddress — Map PortAttribute Bool — SockAddr — o

class Monoid o = HasConsoleOutput o where
consoleOut :: String — o

Figure 5: Type classes for output.

class HasSwitchFEvents i where
switchEventE :: 1 — FEvent SwitchEvent

class HasConsolelnput i where
consoleInputE :: i — Event String

class HasMessengerInput i where
messengerMessageE :: i — FEvent (SockAddr, Message)

Figure 6: Type classes for input.

while the HasMessengerInput is implemented by types carrying input from a Messenger server. The
Messenger server is a simple, text-based TCP server which accepts ASCII messages from networked
devices. A controller may use the Messenger server to accept input from other networked devices,
such as intrusion detection systems, or authentication systems. A Messenger message includes the
text of the message as well as the SockAddr of the sender.

In addition, Nettle includes a collection of functions, shown in Figure 7, implemented in terms of
the HasSwitchEvents type class, and available in every instance of the type class. These functions,
effectively turn the input signal into a stream of some particular kind of event. For example,
arr packetInE has type HasSwitchEvents i = SF i (FEvent PacketIn), and is a signal that outputs
the stream of packet-in events sent to the controller. The Nettle primitive arr::(a — b) — SF a b
lifts an ordinary function to the signal function level, simply applying the function pointwise on
the input signal.

5.4 Running Nettle Programs

To run a Nettle program, one must (1) define application-specific input and output types and make
them instances of the relevant type classes, such as HasSwitchEvents and HasSwitchCommands,
(2) define drivers, i.e. I0 commands to produce values of the input types and consume values of
the output types, and (3) drive the Nettle signal function with these drivers. Currently, we provide
several input and output types and I/O drivers of several kinds, such as TCP servers for interacting
with OpenFlow switches and devices using the Messenger protocol. Our intention is that Nettle
should provide a convenient, declarative way to define these three components, but this part of the

11

switchUpE :: HasSwitchFEvents © = i — FEvent SockAddr
switchDownFE :: HasSwitchEvents 1 = i — Fvent SockAddr
switchMessageE :: HasSwitchEvents i = i — Fvent (SockAddr, SCMessage)

helloE it HasSwitchEvents i = i — FEvent (SockAddr, OpenFlow Version)
echoRequestE :: HasSwitchEvents i = i — Event (SockAddr, TransactionID, | Word8])
packetinE :: HasSwitchEvents i = i — FEvent (SockAddr, PacketInfo)
switchFeatureE :: HasSwitchEvents i = i — Fvent (SockAddr, SwitchFeaturesRecord)
portStatusE it HasSwitchEvents i = i — Fvent (SockAddr, PortStatusRecord)
switchErrorE :: HasSwitchEvents i = i — Fvent (SockAddr, SwitchErrorRecord)

Figure 7: Functions available in all types implementing HasSwitchEvents.

library is still in development and currently users must write a small amount of code to develop
custom input and output types and drivers. We therefore omit detailed disussion here and just
present one way of driving a Nettle signal function.

The Nettle library defines the types NettleInput and NettleOutput that implement all the input
and output type classes mentioned above, and a signal function driver,

nettleDriver :: (ControllerServerPort, MessengerServerPort) — SF NettleInput NettleOutput — 10 ()

to drive any controller using these type classes. This driver starts up a TCP server at the
ControllerServerPort value that communicates with OpenFlow switches, and a TCP server to
communicate with devices using the Messenger protocol at the MessengerServerPort value. Ad-
ditionally, it performs the basic interaction needed to follow the OpenFlow protocol, such as ne-
gotiating an OpenFlow version and responding to echo requests from switches. Therefore, to run
an OpenFlow controller, a user simply defines their main function to invoke nettle Driver for an
appropriate controller, as in:

main :: 10 ()
main = nettleDriver (2525,9999) controller
controller = ...

This main program can be compiled to an executable with a Haskell compiler, or run interactively
using a Haskell interpreter.

The implementation of Nettle, including the TCP servers and parsing and unparsing libraries
for OpenFlow messages, is written entirely in Haskell. Implementing the entire library in Haskell
provides us with great flexibility to redesign any aspect of our language and implementation.

6 Examples

In this section we demonstrate how controllers can be written in this language with some small
example controllers.

12

The following is a controller that prints every received packet to the console:

sf1 :: (HasSwitchEvents i, HasConsoleOutput o) = SF i (Event o)
sfl = proc ¢ — do
returnA — packetInE i => e — consoleOut (show e)

The following controller acts as sf1, but also explicitly floods every packet:

sf2 :: (HasSwitchEvents i, HasConsoleOutput o, HasSwitchCommands o) = SF i (Event o)
sf2 = proc i — do
returnA — packetInE i => Ae — consoleOut (show e) & sendReceivedPacket e [flood |

In this example, we have made use of a Nettle function, sendReceivedPacket:: HasSwitchCommands o =
(SockAddr, PacketInfo) — [Action] — o, easily defined in terms of the functions explained above,
that returns a command to perform an action on a particular packet received by a switch.

The previous controller never installs flow table entries at the switches, and hence must process
each packet in the network. Instead, the following controller installs a flow table entry at each
switch to flood all packets, and this is installed whenever a switch connects with the controller:

sf8 2 (HasSwitchEvents i, HasConsoleOutput o, HasSwitchCommands o) = SF i (Event o)
sf8 = proc i — do
returnA — helloE i => \(sw, _) — addFlowRule (priority 1) (anyPacket = [flood]) sw

This example illustrates that controllers can act proactively to configure the flow tables of switches,
rather than reacting to packet arrivals.

We can also define controllers that will provide useful functionality for many other controllers.
For example, the following controller deletes all flow table entries when a switch connects with a
controller:

switchInitializer :: (HasSwitchEvents i, HasSwitchCommands o) = SF i (Event o)
switchInitializer = proc i — do
returnA — helloE i => \(sw, _) — deleteFlowRules anyPacket sw

Another useful signal function is hostDirectionTracker, which is not a complete controller by
itself, but provides useful information to other controllers. This signal function maintains a map-
ping indicating for each host and switch, on which port, if any, the switch most recently received
a packet from the host:

type HostDirectionMap = Map (SockAddr, EthernetAddress) PortID
hostDirectionTracker :: HasSwitchEvents 1 = SF i HostDirectionMap

13

hostDirectionTracker =
proc i —
hold Map.empty <& accum Map.empty — packetInE i => update

where update (sw, pktinfo) hdMap =
let inPort = packetInPort pktinfo
ethSrcAddr = sourceAddress (enclosedFrame pktinfo)
in Map.insert (sw, ethSrcAddr) inPort hdMap

Unlike previous examples, this signal function is stateful, and it accomplishes this by using the hold
and accum signal functions mentioned in Section 4. The output of this signal function starts off
as the empty map. It then holds its value until a packet-in event is received, at which point it
outputs the map resulting from applying the update function to the current map, and repeats this
process indefinitely. The update function makes use of the Nettle library function enclosedFrame ::
PacketInfo — EthernetFrame, which parses the packet data enclosed in a PacketInfo value into a
structured representation of an Ethernet frame.

Over time, hostDirectionTracker will construct a map indicating in which direction a switch
should send a packet to a host. This can be used as a component of a so-called learning switch
controller. Traditionally, a learning switch is an Ethernet switch which initially acts much like an
Ethernet bridge, flooding frames received on one port to all other ports. However, a learning switch
also maintains a table of Ethernet addresses and ports, such that if (a,p) is in the table, then p is
the port at which the switch most recently received a frame from the host with address a. When
a switch receives a frame addressed to a, it forwards the frame on port p if (a,p) is in its table at
that time, or else floods it on all ports other than the incoming one.

Our implementation of the learning switch essentially involves the parallel composition of two
signal functions. One signal function, table Updater, manages the forwarding tables of the switches,
while the other signal function, packetSender, handles packets that fail to match any entries at the
switches:

learningController = proc i — do
tableCmds < tableUpdater — 1
sendCmds <+ packetSender — i
returnA — tableCmds @ sendCmds

The signal function table Updater initializes the flow table of any switch connecting with the con-
troller by clearing its flow table. In addition, it tracks host locations using hostDirectionTracker
signal function defined above, and updates the forwarding tables of the switches by inserting appro-
priate flow entries whenever two hosts whose locations have been learned attempt to communicate:

tableUpdater = proc ¢ — do

clearCmd < switchInitializer —1
hostDirMap < hostDirectionTracker — i

14

updateCmd = mapFilterE (update TableCommands hostDirMap) (packetInE i)
returnA — clearCmd & updateCmd

The heart of the logic for tableUpdater is in the updateTableCommands function. This function
takes as arguments the current host direction map and a packet-in event, and optionally returns
a command to update the flow tables of switches. It does mot update the flow tables if either the
location of the source or destination of the packet is unknown and returns Nothing in this case. It
is in fact crucial to the correctness of this controller that it not add flow table entries matching only
on the destination address of a frame, because if it did so, the entry would match frames whose
sender location is unknown. These frames would be forwarded toward the destination rather than
be sent to the controller, and hence the controller would not learn about the sender’s location.
Thus, such a flow table entry would interfere with the “learning” process of the controller.

In the case that the locations of both the sender s and receiver r of a packet are known and
their source and destination ports on switch sw are ps and pr, respectively, update TableCommands
will return a command that updates the flow table of the sending switch sw with a pair of flow
table entries, using this command:

addFlowRules (priority 1) [flowFromTo s ps r pr, flowFromTo r pr s ps| sw
where flowFromTo s ps r pr = inPortls ps A\ ethSourceDestAre s r = [sendOnPort pr|

Here we use a function ethSourceDestAre defined as
ethSourceDestAre s d = ethSourcels s N\ ethDestls d

Note that the inserted rules match on the expected incoming port of a frame from a source. If
the source changes location in the network, connecting to a different switch or port, the previously
installed flow entry will no longer match that source’s frames and frames from this source will be
sent to the controller. This allows the controller to adjust the flow tables for the source’s new
location. In light of this, the controller removes any existing flow entries for a source-destination
pair when adding new entries. Concretely, the command returned by update TableCommands is:

deleteFlowRules (ethSourceDestAre s vV ethSourceDestAre r s)) sw @
addFlowRules (priority 1) [flowFromTo s ps r pr, flowFromTo r pr s ps| sw

Figure 8 shows the update TableCommands function in its entirety. Note that we make use of the
Maybe monad, to succinctly express the conditions under which the function returns Nothing, that
is, whenever the address lookups fail.

The signal function packetSender is straightforward. It simply floods every packet for which a
packet-in message is received:

packetSender = proc ¢ — do
returnA — packetInE i => e — sendReceivedPacket e [flood]

15

update TableCommands hostDirMap (sw, pktInfo) =
do let ethFrame = packetInFrame pktinfo

let s = sourceAddress ethFrame

let r = destAddress ethFrame

ps + Map.lookup (sw, s) hostDirMap
pr < Map.lookup (sw, 1) hostDirMap

return (deleteFlowRules (ethSourceDestAre s r V ethSourceDestAre r s)) sw
addFlowRules (priority 1) [flowFromTo s ps r pr, flowFromTo r pr s ps] sw)

where flowFromTo s ps r pr = inPortls ps A\ ethSourceDestAre s r = [sendOnPort pr|
ethSourceDestAre s d = ethSourcels s A ethDestls d

Figure 8: The update TableCommands function

This ensures that packets from or to hosts with unknown locations are sent toward their destination.
As the tableUpdater learns the locations of hosts and installs flow entries in the switches, most
frames will be forwarded directly by the switches and will no longer be flooded by the packetSender.

7 Related Work

NOX [2] is an open-source library for writing controllers of OpenFlow switches in C++ and Python.
NOX aims to provide a convenient method to program controllers, and hides many of the low-level
details, such as the binary formats of OpenFlow messages, from controller writers. It provides an
event-driven programming model in which modules, implemented as C++ classes, can register to
handle events generated by other modules and can generate events themselves.

We have not conducted a thorough investigation of NOX’s features, and therefore cannot give
a detailed comparison of Nettle and NOX here. Instead, we highlight some of the main similarities
and differences.

NOX and Nettle both provide a setting in which to write programs that respond to events from
switches and can generate output for switches. In NOX, users respond to events by registering
imperative callbacks, while in Nettle users program more declaratively with entire event streams.

Asin NOX, Nettle programs expose an event-based interface. In NOX, this is done by registering
handlers in a global registry and generating events. In this model it is unclear which components will
be interacting, and in what order. In contrast, Nettle programs make their event interface explicit
in their input and output types and their interactions can be precisely described by connecting
signal functions using the arrow combinators. Nettle programs can broadcast events, just as NOX
modules do, but they can also interact in more varied ways.

By using FRP, Nettle also provides continuous quantities, which are essentially a non-event
based form of module interaction, in which modules continually interact. NOX does not provide a
comparable functionality.

16

8 Conclusion

In this report we described Nettle, an embedded DSL in Haskell, for dynamically controlling Open-
Flow switches and demonstrated several example controllers in this style. Nettle is based on the
Yampa language, a language for functional reactive programming.

This layer of Nettle will form a crucial platform for the construction of higher-level languages
for expressing particular network concerns, such as dynamic traffic control, security, and business
contracts and objectives. In upcoming work, we intend to design DSLs for some of these areas and
to utilize Nettle to integrate expressions in different languages to create complete network control
applications.

9 Acknowledgements

This research was supported in part by an STTR grant from the Defense Advanced Research
Projects Agency. We wish to thank our STTR industrial partner, Galois, Inc. for its support as
well. Vijay Ramachandran motivated our initial foray into language design for networking.

17

References

1]
2]
3]

http://www.openflowswitch.org/.
http://noxrepo.org/wp/.

M. Caesar and J. Rexford. BGP routing policies in ISP networks. Network, IEEF, 19(6):5 — 11, nov.-dec.
2005.

C. Elliott and P. Hudak. Functional reactive animation. In International Conference on Functional
Programming, pages 263273, June 1997.

P. Hudak. Building domain specific embedded languages. ACM Computing Surveys, 28A:(electronic),
Dec. 1996.

P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Robots, arrows, and functional reactive program-
ming. In Summer School on Advanced Functional Programming, Oxford University. Springer Verlag,
LNCS 2638, 2003.

R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP misconfiguration. In SIGCOMM,
pages 3-17, Pittsburgh, PA, Aug. 2002.

I. Pembeci, H. Nilsson, and G. Hager. Functional reactive robotics: an exercise in principled integration
of domain-specific languages. In PPDP ’02: Proceedings of the 4jth ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 168179, New York, NY, USA,
2002. ACM.

J. Peterson, G. Hager, and P. Hudak. A language for declarative robotic programming. In International
Conference on Robotics and Automation, 1999.

J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots with Haskell. In First
International Workshop on Practical Aspects of Declarative Languages. SIGPLAN, Jan 1999.

S. Peyton Jones et al. The Haskell 98 language and libraries: The revised report. Journal of Functional
Programming, 13(1):0-255, Jan 2003.

A. Reid, J. Peterson, G. Hager, and P. Hudak. Prototyping real-time vision systems: An experiment in
DSL design. In Proc. Int’l Conference on Software Engineering, May 1999.

18

