Yale University
Department of Computer Science

Decision Making in the Presence of Noise

Michael J. Fischer Sophia A. Paleologou

YALEU/DCS/TR-875
October 1991

This research was supported in part by National Science Foundation grant IRI-9015570.

Decision Making in the Presence of Noise*

Michael J. Fischer Sophia A. Paleologou
Department of Computer Science
Yale University

Abstract

We consider problems of decision making based on imperfect information. We derive
Bayesian optimal decision procedures for some simple one-person games on trees in
which the player is given redundant but noisy information about the true configuration
of the game. Our procedures are computationally efficient, and the decision rules which
they implement are describable by simple formulas. Not surprisingly, the presence of
noise greatly affects the decision procedure, and decisions procedures that are optimal
for the corresponding noiseless games may be far from optimal in the presence of noise.
In many cases, the optimal decision depends not only on the given noisy data but also
on knowledge of the expected amount of noise present in the data. For arbitrary m € A,
we present examples in which the optimal decision changes m times as the probability
of error in an individual datum increases from 0 to 1/2. Thus, no decision procedure
that is insensitive to (or does not know) the amount of uncertainty in the data can
perform as well as one that is aware of the unreliability of its data.

1 Introduction

Many complex real-life situations require that people make decisions based on imperfect
information. Widely used algorithms for decision making in such complex environments
often overlook the fact that the information with which they are provided is unreliable and
use this information as if it were accurate, hoping that this will nevertheless lead to a good
decision.

A typical example of such an algorithm is the Shannon chess playing algorithm, which
looks k levels ahead in the game tree, evaluates the strength of each resulting board po-
sition, and then uses standard “min-max” techniques to choose the most promising next
move. If the evaluations were 100% accurate, this would lead to optimal play, but it is
unclear how good a move this produces in real chess programs. In a recent conference for
Learning, Rationality, and Games at the Santa Fe Institute, John Geanakoplos and Larry
Gray [GG91b] gave examples of simple one-person games in which the Shannon algorithm
was provably non-optimal and in which its performance actually deteriorated as the amount
of permitted look-ahead (and hence the amount of data upon which to base one’s decision)
increased.!

In this paper, we investigate the structure of the Bayesian optimal decision in the simple
games of Geanakoplos and Gray. Rather surprisingly, the optimal decision can be expressed

*This research was supported in part by National Science Foundation grant IRI-9015570.
! Judea Pearl has also noted such phenomena in chess and given probabilistic game models in which
reaching deeper consistently degrades the quality of the Shannon algorithm’s decision [Pea83].

by compact, closed-form formulas of low computational complexity. From these formulas,
we gain qualitative insights into the Bayesian optimal decision. We observe, for example,
that no algorithm that bases its decision solely on the information contained at the level-k
nodes of the tree (as the Shannon algorithm does) is Bayesian optimal. We also give an
example to show that the optimal decision sometimes depends not only on the information
contained at the nodes, but also on knowledge of the expected amount of noise present in
the data. Thus, an algorithm that is aware of the imperfection of its data can do better
than one that is not.

It is tempting to apply these insights to chess in order to obtain improved algorithms,
and we are hopeful that workers on chess will find our results enlightening. Nevertheless, we
should point out a number of important differences between our games and the problem of
playing chess. In our games, uncertainty arises from two underlying sources of randomness.
The instance of the game to be played is chosen at random (as in card games such as
bridge or poker), and the information about the chosen game that is given to the player is
also chosen at random. Thus, a player is presented with probabilistic, partial information
about the true underlying game. The difficulty the player faces is in knowing which game is
being played, not how to play the game once it is known. In chess, on the other hand, the
underlying game tree is fixed, and the player’s information is computed by a deterministic
procedure of low computational complexity. The barrier to optimal play is not the lack
of accurate information but the apparent intractability of the computational problem of
making good use of that information. An important research problem is to clarify the
relationship between probabilistic and computational sources of uncertainty in decision
problems.

2 A Basis of Tree Games

In this section, we provide the notation and definitions we will be using throughout the
paper.

For any complete binary tree T', nodes(T') and leaves(T') are the sets of nodes and leaves
of T respectively. For notational convenience, we often identify 7' with nodes(T') and use
z € T to mean z € nodes(T). If z € nodes(T) — leaves(T), then Lchild(z) and Rchild(z)
denote the left and right children of z respectively. Whenever we consider subtrees of T', we
restrict ourselves to subtrees that satisfy the following property: if z € nodes(T) is the root
of the subtree X, then all the descendants of z are also in nodes(X). Similarly, whenever
we consider paths in T', we restrict ourselves to paths from the root of T to a leaf; paths(T)
is the set of all such paths in T'. Finally, if 7 € paths(T), nodes(r) is the set of all nodes of
T on path .

Definition 1 Let T be a complete binary tree. A function A : nodes(T) — {0,1} is called
a labelling of T, and the tuple (T,)) is called a labelled tree. For z € nodes(T), A\(z)
is then called the label of node z under .

If \ is a labelling of T, then Ay is the restriction of A to the nodes of X jle, Ax = /\|nodes(X)-
Obviously, Ar = A. Also, if r is a single node of T', we sometimes write A, to denote A|{r}.

Definition 2 Let T be a complete binary tree. A labelling X of T is called proper iff it
satisfies the maz-property; that is, for all € nodes(T) — leaves(T),

A(z) = max{A(Lchild(z)), \(Rchild(z))}.

2

The tuple (T, A) is then called a MazTree.

Definition 3 Let T be a complete binary tree. A proper labelling) of T is called winning
iff there exists a € leaves(T) such that A(a) = 1. A proper labelling that is not
winning is called losing.

Definition 4 Let (T,) be a MaxTree. A path 7 € paths(T) is called winningiff A(z) = 1
for all z € nodes(r). Similarly, a leaf a € leaves(T) is called winning iff A(a) = 1.

Figure 1: A MaxTree with two winning leaves.

As a result of the max-property, any proper labelling A can be uniquely specified by
the labels it assigns to the leaves of T'; the labels of all the internal nodes of T can then
be recursively computed as the maximum of the labels of their children. This recursive
node-labelling process is widely known in game theory as backward induction (see [Shu82)).
An example of a MaxTree T of uniform depth k¥ = 3 is given in Figure 1.

In this paper, we generally consider MaxTrees with ezactly one leaf labelled 1 and all
other leaves labelled 0. For every a € leaves(T), A* denotes the proper labelling of T
which assigns the label 1 to & and the label 0 to all other leaves of T} i.e., A¥(a)=1,and
A%(B) = 0 for all B € leaves(T) — {a}.

MaxTrees can be thought of as game trees for natural one-person games which model
multistage decision processes. Each node of the tree models a state of the game. At every
internal node, the unique player of the game is faced with two alternatives, going Left or
going Right, while the leaves of the tree represent final states of the game. They can be
used as a basis for defining a variety of related simple (single-stage) one-person games. An
example of such a simple game follows:

Example 1 Let (T,) be a MaxTree. Given (T,)), the player is asked to choose a path
from the root of T to a leaf. If the path she chooses leads to a leaf labelled 1 under
A, the player wins; otherwise, she loses.

An obvious way for the player to play the game of example 1 is to choose Left and Right
according to which of the two children of the current node is labelled 1. This strategy will
cause the player to “walk” down a path labelled with 1’s and to reach a winning leaf after k

moves, where k is the depth of T'. In the special case where all nodes of the given MaxTree
are labelled 0, the player always loses.

The game of example 1 is not interesting, since it provides the player with complete
and accurate information, thereby turning her decision-making into a trivial process. In
example 2 below, we present a variant of that game where the information visible to the
player has been corrupted by noise.

Before we proceed with the necessary definitions, we introduce the following notational
conventions: if Z is a random variable, we identify Z with the corresponding random
experiment and use z to denote the outcome of this experiment, sometimes also referred to
as the realization of the random variable Z. Furthermore, whenever there are no grounds
for confusion, we use prob[z] to denote prob[Z = z], the probability that Z = z.

Definition 5 Let p € (0,1/2) be a constant.?2 A 0/1 random variable Z is called a random
coin with bias p iff

prob[Z =0]=1-p and prob[Z =1]=p.

Definition 6 Let p € (0,1/2) be a constant. Let {Z, : z € nodes(T)} be a collection of
independent random coins with the same bias p. Let (T,A) be a MaxTree and let
z € nodes(T). A 0/1 random variable V, is called a random corruption of the label
A(z) with error probability p iff

Ve = AM2)® Z,.

According to definition 6, the random corruptions of the labels of the nodes in T satisfy the
following two properties:

e locality: for all z € nodes(T), the corruption V; depends only on the label A(z) and
is independent of the labels A(y) of all y € nodes(T) — {z};

o independence: for all z,y € nodes(T') with z # y, the corruptions V; and V; of the
labels A(z) and A(y) are independent random variables.

Definition 7 Let (T,A) be a MaxTree. If, for every node z in T, v, is the outcome of
a random corruption V; of its label A(z) with error probability p, then the labelling
6 : nodes(T) — {0,1}, such that 6(z) = v,, is called a corrupted view of the proper
labelling A with error probability p.

We refer to the labels of the nodes of T under X as actual labels, while we refer to the labels
of the nodes of T under 8 as corrupted or observed labels. Unlike A, § does not necessarily
satisfy the max-property of proper labellings.

Example 2 Let (T, A) be a MaxTree with A a random labelling of T following a probability
distribution P. Let A be the outcome of A and let § be a corrupted view of A with
error probability p. Given (7,0, p) and the probability distribution P, the player is
asked to choose a path from the root of T to a leaf. If the path she chooses ends in a
leaf labelled 1 under A, the player wins; otherwise, she loses.

%If p = 1/2, the corruption V; is independent of the labelling A(z). Also, if p > 1/2, the player can use
the corrupted view 8 to construct a new labelling 8’ by taking 6'(z) = 1®6(z). We can think of 8’ as another
corrupted view of A with error probability p’ = 1 — p < 1/2. Thus, it is reasonable for us to focus on the
case p € (0,1/2), since all other cases are either not interesting or can be reduced to the case p € (0,1/2).

4

In general, no algorithm for the game of example 2 can guarantee the player a win,
since she has access only to the corrupted labels of the nodes in T. In the absence of an
algorithm that guarantees success, the player might alternatively look for an algorithm that
maximizes her chances of winning, thereby exploiting the probabilistic structure of the game
under consideration. She can use the view 8 and the error probability p to update her prior
knowledge of the distribution P and choose the leaf that is most likely to be winning, given
the data visible to her (see section 4). An algorithm that computes the decision with the
maximum probability of winning, given all available information, is Bayesian optimal.

In this paper, we present and analyze two simple games defined on MaxTrees, the sec-
ond of which is the game of example 2 above. We show that, in many cases, seemingly
intractable computations can be reduced to efficient algoritms for computing Bayesian op-
timal decisions. (For a general introduction to probability theory, see [Ros76].)

3 Game I: Choose a Subtree

We first consider a one-player, one-move game played on a MaxTree. The current state of
the game is modelled by the root node, and the player is asked to choose one move—Left
or Right, that takes her closer to a winning leaf. More formally, we have:

Game I: Let (T,A) be a MaxTree with A a random labelling following a probability
distribution P. Let A be the outcome of A and let 8 be a corrupted view of A with
error probability p. Given (T,0,p) and the probability distribution P, the player is
asked to choose a subtree Y € {L, R}, where L and R are the left and right subtrees
of T. If Y contains a leaf labelled 1 under A, the player wins; otherwise, she loses.

For the purposes of our probabilistic analysis, we fix the following probability distribu-
tion P: for all proper labellings A of T,

1/2F if A = X for some a € leaves(T)

prob[/\] = { 0 otherwise O

where k is the depth of T. Thus, we assume exactly one leaf is labelled 1. However, the
techniques we use in this paper to analyze Games I and II can be extended so as to handle
arbitrary probability distributions (see [GG91a)).

Let X be a subtree of T and let L and R be the left and right subtrees of X. In general,
the event (Ax winning) can be viewed as the disjoint union of three events: (\r, losing) &
(Ar winning), (AL winning) & (Mg losing), and (Ar, winning) & (A winning). However, in
the special case of the distribution P that we fixed in equation 1 above, the first two of
those events are equiprobable, while the third event is impossible; that is,

¢ prob|(AL losing) & (AR winning) | Ax winning] = 1

¢ prob|[(A; winning) & (Ag losing) | Ax winning] = 1

¢ prob[(AL winning) & (Ag winning) | A\x winning] = 0

3.1 Probabilistic Analysis of Game I

In this section, we provide an exact probabilistic analysis of Game I. Given the corrupted
view of the game tree and the a priori information about the underlying distribution of

5

labellings, we compute the conditional probability of winning the game for both choices
Left and Right. Although this analysis might look intractable at first glance, we show
how the combinatorics nicely collapse to yield compact recursive formulas that are easy to
compute.

Let X be a subtree of T' and define the following two quantities:

e Ilx is the probability that a random corruption of a losing labelling yields in fx; i.e.,

Ix = prob[fx | Ax losing],

¢ wyx is the probability that a random corruption of a winning labelling yields in 0x;
i.e., ‘
wx = prob[fx | Ax winning].

In Lemmas 1 and 2, we derive recursive formulas that allow us to compute Ix and wx
for any subtree X.

Lemma 1 Let X be a subtree of T. Then,

lv = (1= p)t-vpv if X is a single node @)
XZY Ip-lgp-(1-p)t=*p® otherwise

where L and R are the left and right subtrees of X, and v = Ox(r) is the observed label of
the root r.

Proof: Let tree X consist of a single node r with observed label v = 0x(r), and assume Ax
is losing; i.e., Ax(r) = 0. Then, v = 0 with probability (1 — p), while v = 1 with probability
p. The two possibilities can be expressed in one formula as follows:

Ix = prob[fx | Ax losing] = (1 - p)!~"p” (3)
In the case where X is not a single node, lx can be computed in terms of /1, and Ig.

Ix = prob[fx | Ax losing]
= prob[f; & 0g & 0, | Ax losing] 4)

The independence of the corruptions allows us to express lx in equation 4 as the product
of the conditional probabilities of the independent events 8y, 8g, and 4,.

Ix = prob[fL | Ax losing] - prob[fr | Ax losing] - prob([f, | Ax losing] (5)

Because of the locality of corruptions, the observed label of any node in X depends only on
its own actual label. Furthermore, Ax is losing if and only if all Af, Ag, and A, are losing.
Combining these observations with equation 3, we obtain:

prob[fz, | Az losing] - prob[fg | Ag losing] - prob[é, | A, losing]
IL-lr-(1-p)'"p"

Ix

Il

v Y

Lemma 2 Let X be a subtree of T. Then,

_J @ =pypt- if X is a single node ()
wx = 3Ur-wr+wr-1g)-(1—p)’p'™" otherwise

where L and R are the left and right subtrees of X, and v = 0x(r) is the observed label of
the root r.

Proof: Let tree X consist of a single node r with observed label v = 8x(r), and assume Ax
is winning; i.e., Ax(r) = 1. Then, v = 0 with probability p, while v = 1 with probability
(1 - p). The two possibilities can be expressed in one formula as follows:

wx = prob[fx | Ax winning] = (1 — p)*p'~")

In the case where X is not a single node, wx can be computed in terms of 1, Ig, wr, and
wWR.

wx = prob[fx | \x winning]
= prob[f; & 0r & 0, | Ax winning] (8)

The independence of the corruptions allows us to express wy in equation 8 as the product
of the conditional probabilities of the independent events (6, & 0r) and 0,.

wx = prob[f & 6g | Ax winning] - prob[, | Ax winning] 9)

However, under P, the event (Ax winning) is the disjoint union of the equiprobable events
(AL losing) & (Ar winning) and (Az, winning) & (AR losing). Equation 9 then becomes:

wx = -21- { prob[d;, & Or | (AL losing) & (AR winning)]

+ prob[f;, & Og | (A\r, winning) & (Ag losing)]] - prob[f, | Ax winning] (10)

Finally, we use the independence and locality of the corruptions to further simplify equation
10:

wx = % [prob[d;, | AL losing] - prob[fg | Ar winning]
+ prob[fr, | AL winning] - prob[fg | Ar losing]] - prob[6, | A, winﬁing]
1 .
= 5(r-wr+wy-lgr)-(1-p)'p'™

where prob[f, | A\, winning] was substituted from equation 7. =

In Theorem 4 below, we derive formulas that allow us to compute exactly the conditional
probabilities of winning for the two choices of the player—Left and Right—based on the
corrupted labelling of the game tree visible to her.

Lemma 3 Let (T, A) be a MazTree and let 6 be a corrupted view of A with error probability
p. Then,
prob[f | Ay winning] = wg-lg-(1-p)’p'™" (11)
prob[d | Ag winning] = I-wg-(1-p)'p'™" (12)

where L and R are the left and right subtrees of T, and v = 6(r) is the observed label of the
root r.

Proof: We show the derivation of the formula for prob[f | Ay winning]; the formula for
prob[f | Ar winning] is derived similarly.
From the independence of the actual label corruptions, we have:

prob[d | AL winning] = prob[f;, & 6r & 0, | A winning]
= prob[f | A winning] - prob[fg | A, winning] - prob[6, | A, winning] (13)
However, since A was chosen from the probability distribution P, A is always winning, and

AL is winning if and only if Ag is losing. Combining this observation and the locality of the
label corruptions, equation 13 yields:

prob[f | AL winning] =
= prob[fr | A, winning] - prob[fr | Ag losing] - prob[é, | A, winning]
= wp-lr-(1-p)p'™"

Theorem 4 Let (T,) be a MazTree and let 8 be a corrupted view of A with error probability
p. Then,

- wr, - IR 7
prob[Ar winning | 6] P BTy F— (14)
prob[Ar winning | §] = wR -l (15)

wr-lp+1p-wr
where L and R are the left and right subtrees of T.

Proof: We show the derivation of the formula for prob[);, winning | 6]; the formula for
prob[Ag winning | 8] is derived similarly.

Since A was chosen from P,) is always winning, and it is equiprobable that either one
of Az and AR is also winning. Thus,

prob[d] = % (prob[f | A, winning] + prob[f | A winning]) (16)
Using formulas 11 and 12, equation 16 becomes:

1 —v
prob[d] = E(wL “lp + 1 - wgr)(1 - p)*p’ (17)

where v = §(r) is the observed label of the root r of T. Finally, we use Bayes’ Theorem to
combine equation 17 with formulas 11 and 12:

prob[f | A, winning] - prob[A\;, winning]
prob|[d]
3w -lp- (1 - p)’p'~*
3(wr - IR+ 1L - wr)(1 - p)*p*~"

prob[Az winning | 6]

wr, -l
wr - lp+1L - wpr

In trying to compute prob[Ar winning | 8] and prob[Ar winning | 6] using equations
14 and 15, we run into computational difficulties. The quantities Iz, IR, wr, and wg very
quickly approach zero, so any arithmetic based on those values (using an ordinary floating-
point representation) becomes impossible. However, we can rewrite those formulas in terms
of the ratios wr/l;, and wgr/lg. It is convenient to also pull out some constants. Let
a=2(1-p)/pand ¢ = ((1 - p)/p)? Let X be a k-depth subtree of T and define:

k+1
a wx
by = — . . — 18
X=—g (18)
Lemma 5 gives a recursive formula for computing ® x for any subtree X.
Lemma 5 Let X be a k-depth subtree of T. Then,

_J e if X is a single node
Bx = { (®L+ ®R) - ¢” otherwise (19)

where L and R are the left and right subtrees of X, and v = Ox(r) is the observed label of
the root r.

Proof: If X is a single node, X has depth k¥ = 0, and formulas 2, 6, and 18 yield:
— —_ m\Vpl-v _ 2v
Byp=t.0x _1 p (1 p)lp =(1 p) -
2 Ix p (@A-pip P

If X is not a single node, we can use formulas 2 and 6 to express ®x in terms of &y,
and ®p: '

k+1

- o7 wx
ox = 2y
= gk +1 . 2L -wr+wr - lR)(1 - p)’p*™ (20)
2 I-lr-(1-p)'=p¥

Taking into account that both L and R have depth (k — 1), equation 20 can be rewritten
as:

k k _ 2v
oy = L. P_ (& WL, O YR (1_11)
2 1-p "2 Iy 2 Ig p
= (8L+%R)- ¢

|

The following is a restatement of Theorem 4 in terms of ®7, and ®p.

Theorem 6 Let (T,)\) be a MazTree. Then,
. oL

b[A] = ———— 21
prob[)\r winning | 6] 3.+ 2 (21)
prob[Ar winning | §] = %ﬂ (22)

where L and R are the left and right subtrees of T.

9

Corollary 7 Let (T, \) be a MazTree and let 0 be a corrupted view of A with error probability
p. Then
prob[A;, winning | 6] > prob[Ag winning | 6] iff & > ®r (23)

Finally, we provide the solution to equation 19, the recursive definition of ®x. Define
the function f:paths(T) — N such that, for every path T,

flmy= 3 6) (24)

z€nodes(r)
Thus, f(r) is the number of 1’s among the corrupted labels of nodes on .

Theorem 8 Let X be a subtree of T. Then

ox= Y, O (25)
wEpaths(X)

Proof: By induction on the depth k of X. [|

We sometimes write ®x(c) to emphasize the fact that ®x depends on ¢ as well as on X.

3.2 Bayesian Optimal Algorithms for Game I

In this paragraph, we turn our attention to the problem of computing the Bayesian optimal
decision for Game I. The first algorithm, A;, shown in Figure 2, is a direct application of
Corollary 7 and Lemma 5.

Theorem 9 Let A, be the algorithm shown in Figure 2. Let (T,) be a MazTree of n nodes
and let § be a corrupted view of A with error probability p. On input (T, 0, p), algorithm A,
requires O(n) additions and O(n) multiplications/divisions to compute the Bayesian optimal
decision for Game I

Proof: It can be easily seen that computing ® recursively from equation 19 in step 1
of algorithm A; requires a number of additions (multiplications) equal to the number of
internal nodes in L. Similarly, computing &g recursively in step 2 requires a number of
additions (multiplications) equal to the number of internal nodes in R. Thus, steps 1 and
2 of algorithm A; require a total of O(n) additions and multiplications. Step 0 of the
algorithm requires only a constant number of additional operations. |

By restructuring the computations involved in algorithm A; and using table look-up, we
can reduce the number of multiplications/divisions to O(log(n)). The resulting algorithm,
Az, shown in Figure 3, makes use of the results of Corollary 7 and Theorem 8.

Theorem 10 Let A, be the algorithm shown in Figure 3. Let (T,)\) be a MazTree of
n nodes and let 6 be a corrupted view of A with error probability p. On input (T,6,p),
algorithm Az requires O(n) additions and O(log(n)) multiplications/divisions to compute
the Bayesian optimal decision for Game I.

Proof: Step 0 of algorithm A, takes a constant number of arithmetic operations. Step
1 requires ([log(n)] — 2) = O(log(n)) multiplications to compute all the powers ¢f,i =
0,1,2,...,[log(n)] — 1. Step 2 requires at most one addition for each node of L for a total
of O(n) additions. Step 3 requires at most one addition for each paths 7 € paths(L) for a
total of O(n) additions. Step 4 takes another O(n) additions. The result follows. [|

10

' -‘,

ALGORITHM 4,
Input:
T, a complete binary tree
0, a corrupted view of T
p, the error probability of the corruption

Output:
Left or Right

Description:

Step 0:
Compute ¢ = ((1 - p)/p)?.

Step 1:
Compute ®;, recursively using equation 19.

Step 2:
Compute ® g recursively using equation 19.

Step 3:
Compare &1, and ®g and choose the direction—Left or Right—
that corresponds to the maximum. Break ties arbitrarily.

Figure 2: A Bayesian optimal algorithm for Game I using O(n) arithmetic operations.

3.3 Dependence on p

In section 3.1, we showed that the Bayesian optimal decision for Game I is a function of
the corrupted view @ and the error probability p. The dependence of the optimal decision
on the view 6 is obvious. For example, a subtree whose corrupted view assigns the label 1
to all nodes is always preferable to a subtree whose corrupted view assigns the label 0 to
all nodes.

In this section, we analyze the dependence of the optimal decision on the error proba-
bility p for a fixed corrupted view of the game tree. For the purposes of this analysis, we
treat ¢ as the independent variable. As a result, the error probability p becomes a function
of ¢:

p=p(c)= 7 +1\/E (26)

It is not difficult to see that p(c) is a continuous and strictly decreasing function of ¢ over
R*. Furthermore, ¢ € (1,+00) if and only if p(c) € (0,1/2).

3.3.1 An example where knowledge of p matters

Definition 11 Let (T, \) be a MazTree and let 8 be a corrupted view of A with error prob-
ability p(c), ¢ € (1,4 0). Then the polynomial qr(c) is defined as follows:

gr(c) = @1(c) - @r(c) (27)

where L and R are the left and right subtrees of T.

11

ALGORITHM A,
Input:
T, a complete binary tree
0, a corrupted view of T
P, the error probability of the corruption

Output:
Left or Right

Description:

Step 0:
Compute ¢ = ((1 - p)/p)?

Step 1:
Compute and store in a look-up table all powers ¢,
t=0, 17**‘7(“"3("‘)] - 1)'

Step 2:
Compute the values of f(r), for all # € paths(L), as follows: Working down
from the root, compute for each node @ in L the number of nodes labelled
1 by 0 on the path from a to the root.

Step 3:
Add up the values of ¢/(™ for all paths = € paths(L), to compute $y.

Step 4:
Repeat steps 2 and 3 substituting R for L, to compute ®p.

Step 5:
Compare &7, and ®g and choose the direction—Left or Right—
that corresponds to the maximum. Break ties arbitrarily.

Figure 3: A Bayesian optimal algorithm for Game I using O(log(n)) multiplications.

It follows from Corollary 7 that the sign of gr(c) at any point ¢ determines the Bayesian

optimal decision for the corresponding instance of Game I.
We show that there exist instances of Game I where the Bayesian optimal decision
depends on p.

Theorem 12 There ezists a labelled tree (T,0), such that the Bayesian optimal decision
for Game I on input (T, 8, p) depends on p.

Proof: Consider the labelled tree (T, 8) of Figure 4 and let L and R be the left and right
subtrees of T. By inspection, L has 1 path with exactly 4 nodes labelled 1, 1 path with
exactly 3 nodes labelled 1, 2 paths with exactly 2 nodes labelled 1, and 4 paths with exactly
1 node labelled 1. From equation 25, we obtain

dr(c)=), ™ =t 4+ B+ 2% + 4c (28)
mEpaths(L)
By similar reasoning applied to R, we obtain:
®r(c) = Z ™M =4t 2 +c+1 (29)

mEpaths(R)

12

I B

1 0 0 0 0 0 0 O 0 1 1 1 1 1 11
Figure 4: A view requiring knowledge of p.

Subtracting equation 29 from 28 gives:

gr(c) = @r(c)— 2r(c)
= ¢*-3343c-1

(2 = 1)(c— p1)(c— p2) (30)

where

P1= 3 —2\/5- ~ 0.382 and p2 = 3 +2\/5

From equation 30, we see that gr(c) is strictly negative over the open interval (1, p;) and
strictly positive over the open interval (p2,+00). Thus, the optimal decision depends on
the value of ¢ (which in turn is a function of the error probability p):

~ 2.618

e If c € (1, p), then the Bayesian optimal decision for (T,#) is Right.
e If ¢ = py, then both Left and Right are Bayesian optimal decisions for (T, §).
¢ If ¢ € (p2, +00), then the Bayesian optimal decision for (T, 0) is Left.

3.3.2 Arbitrarily many flips as p varies

In section 3.3.1, we gave an example in which the optimal decision flips once as p varies
from 0 to 1/2. In this section, we show that the decision may flip an arbitrary number of -
times. In particular, for each m > 0, we construct a tree T for which the optimal decision
flips m — 1 times as p varies from 0 to 1/2.

The tree T will be built by embedding copies of trees with paths of various numbers
of 1’s. By adjusting the numbers of copies of each such tree placed in the left and right
subtree of T, we will be able to control rather precisely both the degree of gr(c) and the
placement of its roots. The claimed result follows by causing m — 1 simple roots to fall in
the open interval (1, +00).

13

Let T = {(T3,6;) : i = 1,2,...,m} be a collection of labelled trees such that for each i,
the root of T; is labelled 1, and the maximum number of nodes labelled 1 in any path from
the root to a leaf in T; is equal to ¢. The trees (T}, 6;) form the basis of our construction.

Let s = (81,52,...,8m) € N™ be an m-dimensional vector of non-negative integers. 7
and s define a forest F of trees which contains s; copies of labelled tree (T},6;) for each i.
In the following, we show how, given such a forest F, we can construct a single labelled tree
(X, 0x) satisfying the following:

Path Property: The number of paths in (X,60x) with exactly j nodes labelled 1 is
equal to the number of paths in the forest F with exactly j nodes labelled 1, for all
i=12,...,m.

The eventual construction of T will then be performed as follows. First, we construct
two forests F, and F; for appropriate m-dimensional vectors s and t. Next we construct
trees (L,01) and (R, 0R) having the path property with respect to F, and F;, respectively.
Finally, we construct T by choosing a root node and making L and R the left and right
subtrees, respectively. With appropriate choices of s and t, the polynomial ¢r(c) can be
made to coincide with an arbitrary polynomial g(c) with integer coefficients, up to a constant
factor. The details follow.

Let X be a complete binary tree, such that the number of leaves in X is greater or equal
to the total number of leaves in all trees of the forest F. Let roots(F) be the set of all
roots in the forest 7. We define an embedding e: roots(F) — nodes(X) which maps each
root of a tree in the forest F to a node of X. This embedding will satisfy the following two
properties:

o If 7 is the root of a tree of height® & in the forest F, then its image e(z) has height &
in X.

o If r,7’ € roots(F) and r # 7/, then e(r) # e(r'), and neither is a descendant of the
other in X.

It is obvious that e can be naturally extended to an embedding é of all nodes of trees in F
into the nodes of X. We define the labelling fx as follows: for all z € nodes(X),

ot - { 1670 et @

The labelled tree (X, f0x) satisfies the desired property by construction.
Let a;; be the number of paths with exactly j nodes labelled 1 in (T3, 6;) and let 3; be
the total number of paths with exactly j nodes labelled 1 in F. Then,

Bi = Es;a;j (32)
i=j

for all j =1,2,...,m. Since f; is also the total number of paths in (X,f8x) with exactly j
nodes labelled 1, ®x(c) can be written in the form:

Bx(c) = f: ;e (33)

=0

3The height of a node in a tree is its maximum distance to a leaf.

14

where fg is the number of leaves in X that are not images of any node z in the forest F
under é. We note that ®x(1) is equal to the total number of leaves in X.

Consider now a pair of vectors s = (s1,82,...,8m), t = (t1,t2,. .. stm) € N™. The
collection of trees T of the previous construction and the two vectors s and t define two
forests, 75 and F;. We use F5 and F to construct the left subtree (L,0L) and right subtree
(R,0R) of a bigger labelled tree (T,8). We choose L and R to have the same size, such
that the number of leaves in L or R is greater than or equal to the maximum of the total
number of leaves in the forests F5 and Fi. For all z € nodes(T), define:

0r(z) if z € nodes(L)
0(z) = ¢ Or(z) if z € nodes(R) (34)
0 if z is the root of T
We have thus defined a labelled tree (T,).

Lemma 13 Lets,t € N™, and let gr(c) = Yo 7;c’ be the polynomial of the labelled tree
(T, 8) constructed as above. Then:

m
EDWCERALY (35)
i=j
forallj=1,2,...,m, and
m
To=-Y_7; (36)
Jj=1

Proof: From equations 27, 32, and 33, we have:

m m
Vo= D s =Y tia

i1=j i=j
m

= D (s = ti)ayj
i=j

for j = 1,2,...,m, establishing equation 35. gr(1) is equal to the number of leaves in
L minus the number of leaves in R. Since L and R were chosen to have the same size,
qr(1) = 0, and equation 36 follows.]

Theorem 14 Let q(c) be a polynomial of degree m with integer coefficients, such that q(1) =
0. Then there ezists a labelled tree (T, 0) and a positive integer d such that gr(c) = d - q(c)
for all ¢, i.e., qr = d - q as polynomials. In particular, g7 and q have the same roots.

Proof: Let g(c) be as in the theorem. Write g(c) = Y™ 8;¢, where 6; € Z. We compute
a pair of vectors s, t, and a positive integer d so that the labelled tree (T, 8) defined by s
and t as sketched above has polynomial ¢r(c) = d - g(c).

Consider the following system of linear equations:

> oz = §; (37)

i=j

15

for all j = 1,2,...,m. This system always has a rational solution x = (z1,%2,...,%m)
because it is upper triangular and all o;; are positive integers. Let d be the least common
multiple of the denominators of the z;’s. Then d-z; € Z for all 4, and x’' = (d - 21,d -
T2,...,d - Ty) solves the system of linear equations:

m
> ezl =d-6; (38)
=3
forall j =1,2,...,m.
Now, define vectors s and t as follows. For all i = 1,2,...,m,

o if 2; > 0,set s; =d-z; and t; = 0;
o ifz; <0,set s; =0and t; = —d - z;.

It is obvious that s,t € N™ and d - z; = s; — t;, for all i = 1,2,...,m. Using equations 35
and 38, we have
m
v = Za;j(d- z;)=4d-§;
i=j
for all j = 1,2,...,m. Because both gr(c) and g(c) have a root at 1, yo0 = d - §p. Hence,
gr(c) = d - g(c) as desired. |

As a result of Theorem 14, we can select a polynomial g(c) of degree m with one root
at 1 and m — 1 simple roots in the interval (1,+00), so that the Bayesian optimal decision
for the corresponding labelled tree (T',6) flips (from Left to Right or from Right to Left)
m times as ¢ increases continuously in the interval (1,+o0). This observation is stated
formally in the following corollary of Theorem 14.

Corollary 15 For any m € N, there ezist a labelled tree (T,8) and m — 1 thresholds
0<7mn <7 <...< Ty < 1/2 defining intervals Iy = (0,71),I; = (11,72)y++ ey Iny =
(Tm=1,1/2) such that:

1. For all j = 0,1,...,m, the Bayesian optimal decision for (T,0) is the same for all
error probabilities p € I;.

2. Forallj =1,...,m -1, if the Bayesian optimal decision for error probability in the
interval I;_y is Left (Right), then the Bayesian optimal decision for error probability
in the interval I; is Right (Left).

Proof: Consider the polynomial g(c) = (¢ - 1)(c - 2)...(c — (m — 1))(c — m). Obviously,
all the coefficients of ¢(c) are integers, and the m roots of ¢(c) are the numbers 1,2,...,m.
By Theorem 14, we can find a tree (T, #) and a positive integer d such that ¢r(c) = d-qg(c).
Then gr(c) has also has simple roots 1,2,...,m, all but one of which falls in the interval
(1,400). Let 7; = p(m + 1 —1) for i = 1,2,...,m — 1. Since p(c) is a continuous and
monotonic decreasing function, 1,7,...,Tm—1 satisfy properties (1) and (2) above.

|

16

4 Game II: Choosing a Leaf

In this section, we consider a variant of Game I where the player is asked to choose a whole
path from the root to a leaf of the game tree.

Game II: Let (T, A) be a MaxTree with A a random labelling following the probability
distribution P. Let A be the outcome of A and let § be a corrupted view of A with
error probability p. Given (T, 8, p), the player is asked to choose a leaf a € leaves(T).
If « is labelled 1 under A, the player wins; otherwise, she loses.

We fix the underlying probability distribution P for A to be the one defined by equation
1 in section 3, that is, A is uniformly distributed among proper labellings in which a single
leaf is labelled 1.

4.1 Probabilistic Analysis of Game II

We provide an exact probabilistic analysis of Game II. Given the corrupted view of the
game tree and the a priori information about the underlying distribution of labellings, we
compute the conditional probability of winning the game for all choices of leaves in T'.

Let m be the number of nodes with observed label 1 and n the total number of nodes

in (T,6). Define:
b=(1- p)""(m+k+l)pm+k+1

where k is the depth of T'. Note that b is a constant which depends only on the value of p
and the corrupted labelling 8 of the game tree.

Lemma 16 Let (T,) be a MazTree and let 8 be a corrupted view of A with error probability
p. If o € leaves(T) and , is the path from the root of T to the leaf a, then:

prob[d | A%] = b - ¢f(7a) (39)
where ¢ = ((1 - p)/p)*.

Proof: Let A® be the actual labelling of T. Then, for every z € nodes(T), the probability
that the observed label f(z) agrees with the actual label A%(z) is (1 —p), and the probability
that the two labels disagree is p. Since the label corruptions happen independently of each
other, we can compute the probability of any corrupted view 8 by taking the product of the
probabilities of the individual label corruptions.

prob[6 | A*] = (IHa- P)"(’”’pl"’(”)) : (I a —p)l"’(””’pg(z’) (40)

ZTEMa z€(T-7a)

where the first product ranges over all nodes z on the path ., and the second product
ranges over all nodes z in any other path of T'. However, the second product can be rewritten
as follows:

— p)1-6(z) f(z)
_\1-0(z), 8(z) _ zer(1=p)'~"@p
xe(gﬂ)(1 P) p = Hzewc(l _ p)l-ﬁ(x)pﬁ(z) (41)

17

Substituting 41 in equation 40, we obtain:

prob[f | A] = (H(l- p)l—a(a:)pa(z))'<H (1;1;)0@)‘(P)l—e(x))

z€T ZTETa P 1- P
_ (k+1) 1-p 26(z)
o) ()
TCTa
= b.cf(m)) (42)

Theorem 17 Let (T,) be a MazTree and let 6 be a corrupted view of A with error proba-
bility p. Then, for all a € leaves(T),

cf(’ra)

probly* |6 = ==

(43)

where the sum in the denominator ranges over all 3 € leaves(T).

Proof: Since A was chosen from the probability distribution P, X is always winning. Fur-
thermore, it is equally probable that any one of 8 € leaves(T) is labelled 1 under); that
is,

1
prob[f] = - 55: prob[d | A#] (44)
Substituting prob[6 | A®] from equation 42, we obtain:
b
prob[d] = o Z cf(7s) (45)
B
Finally, we use Bayes’ Theorem to combine formulas 42 and 45, in order to compute
prob[* | 6]:

prob[fd | A\?] - prob[\¢]
prob[6]
of(ra)

prob[\® | 6] =

Corollary 18 Let (T,) be a MazTree and let § be a corrupted view of A with error prob-
ability p. If a, B € leaves(T), then:

prob[A | 6] > prob[¥® | 6] iff f(ra) > f(rp) (46)

Corollary 19 For all instances of Game II, the Bayesian optimal decision does not depend
on the value of the error probability p.

18

ALGORITHM B,
Input:
T, a complete binary tree
0, a corrupted view of T
P, the error probability of the corruption

Output:
a,aleaf of T

Description:

Step 1:
Compute the values of f(np), for all § € leaves(T), as follows: Working
down from the root, compute for each node 3 in T the number of nodes
labelled 1 by # on the path from 8 to the root. For 8 € leaves(T), this
number is f(g).

Step 2:
Compute max{f(xg), 8 € leaves(T)}.
Choose any leaf a, such that f(r,) is maximum.

Figure 5: A Bayesian optimal algorithm for Game IL

4.2 A Bayesian Optimal Algorithm for Game II

We use Corollary 18 to design algorithm B, shown in Figure 5, which is Bayesian optimal
for Game II. The player computes the number of nodes with observed label 1 on every
. path from the root of the game tree to a leaf and chooses the path that corresponds to the
maximum. Algorithm B; is much easier than the Bayesian optimal algorithms A; and A,
for Game I, in that it involves no arithmetic other than counting.

Theorem 20 Let B, be the algorithm shown in Figure 5. Let (T,) be a MazTree of n
* nodes and let § be a corrupted view of X with error probability p. On input (T, 8,p), algorithm

B, requires O(n) additions and no multiplications to compute the Bayesian optimal decision
for Game IL

Proof: Step 1 of algorithm B is the same as step 2 of algorithm A,, which was previously
shown to require only O(n) additions. |

4.3 Similar Games—Different Strategies

In section 3.3, we showed that the Bayesian optimal strategy for Game I—choosing a
subtree—depends on the error probability p. In other words, in order for the player to
compute an optimal decision, it is necessary for her to have some knowledge of the accu-
racy of the data at hand. On the other hand, in section 4.2, we showed that the optimal
strategy for Game II—choosing a leaf—does not depend on p. This observation leads us to
an interesting, but somewhat counterintuitive, result: repeated application of a Bayesian
optimal decision rule for Game I does not give a Bayesian optimal decision rule for Game
II.

19

Let (T,8,p) be an instance of Game II where T is of depth k. Consider the following
decision algorithm B; for playing Game II:

e Set X =T;

¢ Repeat k times: compute the Bayesian optimal decision Y for the instance (X, 6x,p)
of Game I and set X =Y

¢ Output X.
Theorem 21 B, is not a Bayesian optimal decision algorithm for Game II.

Proof: Let (T,8) be the labelled tree of Figure 4 and let ¢ € (1, p3).

The Bayesian optimal decision for Game II on input (7,8, p) is the leftmost leaf, since
the path from the root of T to the leftmost leaf has the maximum number of nodes with
observed label 1 over all such paths.

However, in Theorem 12, we showed that the Bayesian optlmal decision for Game I on
input (T, 0, p) is Right. As a result, on input (T, 6, p), Bz chooses a leaf in the right subtree
of T. Hence, decision algorithm B, is non-optimal. |

5 Conclusions and Future Work

In this paper, we look at the problem of game-playing/decision-making based on information
that is inaccurate because of the presence of random noise. In order for the player in our
games to compute a rational decision, she needs to somehow make use of all of all available
information. A Bayesian optimal strategy accomplishes this since it maximizes the expected
value of the player’s choice. We show that the Bayesian optimal decision for these games
is both easy to compute and expressible by simple, easily-understood formulas which allow
for some interesting observations:

¢ In answering the question “Which subtree has the winning leaf?”, the player can
make a better decision if she also has some knowledge of the accuracy of the data.
Consequently, any algorithm that bases its decision simply on the corrupted view of
the game tree will be inferior to one that also makes use of knowledge of the error
probabilities.

¢ In answering the question “Which is the winning leaf?”, consistency of the observed
data is most important, and the error probability does not affect the optimal decision.

Certain simplifying assumptions in our model seem to make our results very restrictive.
For example, we assume that our trees have uniform depth and constant branching factor
of two. We also assume a uniform error probability p at each node of the tree and binary
node labels in the corrupted view. Geanakoplos and Gray show that these assumptions can
be removed and similar results can still be obtained [GG91a, GG91b).

On the other hand, certain other assumptions in our probabilistic setting are difficult
to eliminate. For example, the independence of errors among the nodes can be easily
characterized as unrealistic, yet removing it entirely makes the problem seem intractable.
Perhaps it might still be possible to handle simple patterns of correlation between parent-
child nodes or sibling nodes—this is one possible direction for further research. Other

20

future directions include generalizing these results to two-person games and to iterated
(multi-move) games, where new information becomes available after each move.

Finally, we would like to apply Bayesian optimal reasoning to other problems of a similar
probabilistic flavor, where redundancy of the data can be used to offset the effect of data
corruption. One practical example, pointed out to us by Linda Shapiro, is in computer
vision, where noise in the visual data is an everpresent problem in the recognition of the
underlying physical objects or patterns.

References

[GGY1a] John Geanakoplos and Larry Gray, June 1991. Personal communication.

[GGI1b] John Geanakoplos and Larry Gray. When seeing further is not seeing better.
Manuscript, July 1991.

[Pea83] Judea Pearl. On the nature of pathology in game searching. Artificial Intelligence,
20:427-453, 1983.

[Ros76] Sheldon Ross. A first course in Probability. Macmillan, New York, NY, 1976.

[Shu82] Martin Shubik. Game Theory in the social sciences. MIT Press, Cambridge, MA,
1982. -

21

