This work was partially funded by the National Science Foundation under
grant number MCS-81/05894..

THREE FAST ALGORITHMS FOR FOUR PROBLEMS IN
STABLE MARRIAGE
Dan Gusfield
YALEU/DCS/TR-407

July, 1985




THREE FAST ALGORITHMS FOR FOUR PROBLEMS IN STABLE MARRIAGE

Dan Gusfield
Department of Computer Science, Yale University

Table of Contents

1Itroduction . . v & v ¢ v ot e e e e e e e e e e e e e e e e e e e e e e e
9 Definitions and Background Results. . . . . . . . . .. .. ... ..... -
3 Finding all stable pairs in time Om?). . v v i e

3.1 Rotationsand Algorithm A . . . . . . . .. . ... ...
4 Enumerating all stable marriages in optimal time and space . . . . . . .. ...

4.1 The enumeration algorithm . . . . . . . .. ... ... 00
5 The minimum regret stable marriage problem . . . . . . . . .. ... ... ..
BOPED QUESEIOM . « « & v 4 e e v e e e e e e e e a e e
TAPPERdiX. . « « v v v v e e e e e e e e e e e e e e e e e e e e e
SREfEreNCes . . . « v ¢ ¢ ¢ ¢« ¢ o s s o o o s e e e e e et e e e e e e e
9 Acknowledgements . . . . . . . .. ..o oo oo e e e

This work was partially funded by the National Science Foundation under
grant number MCS-81/05894.




1. Introduction ,

The stable marriage problem is a well-known problem of matching n men to n women to
achieve a certain type of “stability”; the Gale-Shapley [GS] algorithm for finding two particular,
but extreme, stable marriages (out of a possibly exponential number of stable marriages) is also
well known, and is the basis of a national system for matching hospitals to resident doctors [R].
In this paper we consider four problems concerned with finding information about the set of all
stable marriages, and with finding stable marriages other than those obtained by the Gale-
Shapley algorithm. In particular, we give an O(nz) time algorithm which, for any problem
instance of n men and n women, finds every man-woman pair that is contained in at least one
stable marriage; we show that same algorithm finds all the “rotations” for the problem instance
in O(n?) time (rotations are central in efficiently finding the optimal or most “egalitarian” stable
marriage [ILG], and in the efficient enumeration of all stable marriages); we give an O(n?+n|S|)
time and O(n?) space bounded algorithm (which is time and space optimal) to enumerate all
stable marriages, where S is the set of them; and we give an O(nz) time algorithm to find the
minimum regret stable marriage (the best marriage, as measured by the person who is worst off
in it). We believe the previous best time bounds for these problems are respectively O(n?) (from
a related problem in [K]), O(n%) [ILG], O(n3|S]) [K], and O(n*) [K]. The basic idea leading to the
improved running times is to exploit theorems (from [K], [MW], [IL], and this paper) about the
structure of stable marriages in order to avoid back-up and duplicated work inherent in earlier
algorithms.

2. Definitions and Background Results

An instance of the stable marriage problem consists of n men and n women, each of whom has
a rank-ordered preference list of the n people of the opposite sex. A marriage M is a one-one
matching of the men and the women. Marriage M is said to be unstable if there is 2 man m and
a woman w who are not matched to each other in M, but who both prefer each other to their
respective mates given in M. Such a pair is said to block M. A marriage that is not unstable is
called stable. The fundamental theorem [GS] is that there is a stable marriage for any problem
instance. It is known [K] that there can be an exponential number of stable marriages, and the
problem of counting them is #P- complete [IL].

The lattice of stable marriages

Let M and M’ be two stable marriages, and let max; (M, M") be the women man i most
prefers between his two assigned mates in M and M’. Let min(M, M’) denote the other woman.
Then max(M, M) is the mapping of each man i to max;(M, M°), and min(M, M°) is the opposite
mapping. We say that marriage M dominates marriage M’ (from the perspective of the men) if
and only if M = max(M, M’), and a marriage X is between M and M’ if and only if M dominates
X and X dominates M’, and X differs from both M and M. It is surprising, but easy to show




([K], [GS84]) that max(M, M) and min(M, M) are both stable marriages. Hence, under the
relation of dominance, the set of all stable marriages forms a lattice L where the join and union
operations are the max and min operations above. The unique maximum (most dominant)
element of L is called the man- optimal marriage, and the unique minimum (most dominated)
element is called the woman optimal marriage. The man optimal marriage has the very strong
property that for every man m, there is no stable marriage in which m is married to a woman he
prefers to his mate in the man optimal marriage.

If dominance is defined from the womens’ point of view, and wmax and wmin are the max and
min operations with respect to the women, then max(M, M’) = wmin(M,M’) and min(M, M’) =
wmax(M,M"), so the lattice obtained using wmax is an inverted copy of the lattice obtained using
max. Hence the man optimal marriage is woman pessimal i.e. for every woman w, there is no
stable marriage in which w is married to a man she prefers less than her mate in the man optimal
marriage. Similarly, the woman optimal marriage is man pessimal. In this paper, dominance will
always be from the men’s point of view unless explicitly stated otherwise. The following is an
immediate consequence of the above facts.

Lemma 0 [K], [GS84]: For any two stable marriages M and M’, M dominates M’ from the
men'’s point of view, if and only if M’ dominates M from the women's point of view.

Gale-Shapley Algorithm

The algorithm of [GS] finds the man optimal marriage, although it can, by relabeling, also find
the woman optimal marriage. This algorithm will be the basis of two of the algorithms given in
this paper, so we briefly review it here.

Algorithm GS

At the start of the slgorithm, each person is free and becomes
engaged during the execution of the sigorithm. Once s women is
engaged she never becomes free agsin (slthough who she is engaged to
may change), but men can alternste between being free snd being
engaged. The following step is iterated until sll men are engaged:

Choose a free man m, and have m proposec to the highest (most
preferred) woman w on his list, such that w has not already rejected
m. If w is free, then w and m become engaged. If w is engaged to
man m’, then she rejects the man (m or m’) that she least

prefers, and becomes, or remsins, engaged to the other man. The
rejected man becomes, or remsins, free.

When all men are engaged, the engaged pairs are ssid to be mated
or pasred and form the man optimal stable marriage.

Proof of the correctness of this method appear in many places [K], [GS], [L]. There are




specializations of the above algorithm derived by imposing rules specifying which free man makes
the next proposal. In the remainder of the paper, we will use the rule that if a man m has just
been rejected, then man m makes the next proposal. With this rule, it is clear that the Gale-
Shapley algorithm can be implemented to run in time O(n?).

Breakmarriage
Definition: Let M be a stable marriage. Let man m be married (paired) in M to woman
w. The operation breakmarriage(M,m), developed in [MW), is defined as follows:

With the men and woman paired as in M, restart the Gale-Shapley algorithm by breaking the

m fre .
pairing of m and w, maki — ence man m now proposes to the next (most
PSR -Fvsg and ompares "" re ‘-“—'J o Mm.,

preferred women who he has not proposed ') woman on his list, and this uutlates a sequence of
proposals, rejections and acceptances as given by the Gale-Shapley algorithm. Operation
breakmarriage(M,m) terminates either when some man has been rejected by all women, or when
all men are engaged (this will happen the first time w receives a g roposal). Note that during the

Vo A maen she profors fom.
entire running of breakmarriage(M,m) there is exactly one free man at any time, fence (unlike
the Gale-Shapley algorithm above) the sequence of proposals is completely determined: the next

proposal is always made by the unique free man.
The following is simple to prove:

Lemma 1 [MW]: If breakmarriage(M,m) terminates with all men engaged, then the engaged
pairs form a stable marriage.

The following is the central theorem in [MW].

Theorem 1 [MW]: Every stable marriage M’ can be obtained by a series of breakmarriage
operations starting from the man optimal marriage M,

The proof is simple, and we will not repeat it. However, the key point in the proof is that if M
is any stable marriage which dominates M’, and man m’s mate in M’ is different than his mate
in M, then breakmarriage(M,m) either results in M’ or in a stable marriage between M and M’
(i.e. breakmarriage(M,m) does not move any man to a woman below his proper mate in M*).
Hence M’ can be derived from M, by successively (and arbitrarily) choosing a man who isn’t yet
married to his mate in M’, and executing a breakmarriage operation. Each such operation either
results in M’ or in a stable marriage that dominates M’, but which is closer to it.

In order to make the transformation from M, to M’ completely deterministic, we can impose
an ordering on the men so that when a new breakmarriage operation must be started, we select
the first man (in the ordering) who is not yet married to his intended mate in M’. Hence the set
of proposals and their order is determined by MO’ M’ and the order of the men. This will be
useful in Algorithm A below.




We note two useful corollaries to theorem 1.

Corollary 1: If breakmarriage(M,m) results in marriage M’, then M’ dominates all marriages
which are dominated by M and in which m is not married to his mate in M.

Corollary 2: If m is married in M to a woman other than his mate in the woman optimal
marriage, then breakmarriage{M,m) terminates with a new stable marriage, i.e. no man is
rejected by all the women.

Corollary 1 is proven simply by letting M* be any stable marriage dominated by M where m is
not married to his mate in M. The first step in transforming M to M” is to execute
breakmarriage(M,m), hence breakmarriage(M,m) results in a marriage which dominates M" and
in which m has a different mate than in M. This corollary reverses the orientation of theorem 1:
in the theorem, there is a known target marriage which is obtained from M, by successive
breakmarriage operations, while with corollary 1 we will do breakmarriage operations without
having any target marriage in mind, and we will extract information from the results. Corollary
1 will be central in section 5, and Corollary 2 will permit a simpler exposition.

3. Finding all stable pairs in time O(n?)
Definition: Given an instance of the stable marriage problem, a man-woman pair (m,w) is said
to be a stable pair if and only if m is married to w in some stable marriage.

There is a fairly direct method [K] to test whether any given pair (m,w) is a stable pair. The
pair is stable if and only if there is a stable marriage omitting m and w, where each man who w
prefers to m is mated to a woman he prefers to w, and where each woman who m prefers to w is
mated to a man she prefers to m. This can be tested by a direct modification of the preferencé
lists and of the Gale-Shapley algorithm. This approach would then need 6(n2) executions of the
modified algorithm, so the best resulting bound would be O(n%), although it would not only
identify the stable pairs, but marriages which contain them.

Knuth [K] mentions the usefulness of knowing the non-stable pairs, and shows how the man
optimal and woman optimal marriages can be used to identify some, but not necessarily all, non-
stable pairs. In this section we give a method to exactly identify all stable pairs (hence all non-
stable pairs) in O(n’) time (the same time needed to find the man and woman optimal
marriages); this is also the best time bound that we know of to determine if even a smgle pair is
stable.

Theorem 2: Let M, and M, be the man optimal and woman optimal marriages respectively.
Let My, M, ... M, be a sequence of stable marriages such that for each i from 0 to t-1, M,
dominates M; , and there is no stable marriage between M, and M;_,. Then every stable pair




appears in at least one of the marriages in the sequence.

Proof: Let M; and M; +1 be two consecutive stable marriages on the sequence, and let m be a
man who is married to w, in Mi and to /7% e w, in Mi+l’ Of course, man i prefers w.tow, ..
Now let w be a woman who man m prefers to v but not to w;. If there exists a stable
marriage M in which m and w are married, then M* = min[M,, max(M, M;, )] is also a stable
marriage in which m and w are married, hence M’ is different from both M; and M;_,. But
then, since M, dominates M’ and M’ dominates M, + M’ is between M; and M, +0 3

contradiction. O

Corollary 3: Let H be the Hasse diagram (the graph representing the tramsitive reduction) of
the lattice of all stable marriages. Then the marriages along any path (directed by the
dominance relation) in H between the man optimal and woman optimal marriages contain all the
stable pairs.

Figure 1 shows the problem instance given in [MW] and displays the Hasse diagram of the set
of all stable marriages. Corollary 3 and the facts about operations max, min, wmax, and wmin
are easy to verify in this example.

We now show how to efficiently find all stable pairs by enumerating a short sequence of stable
marriages which satisfy the conditions of theorem 2. The particular marriages are obtained as a
by-product of successive breakmarriage operations that transform the man optimal marriage into
the woman optimal marriage. This method will later be used in the algorithm to find all stable
marriages efficiently.

Algorithm A: pausing breakmarriage

The following algorithm finds a sequence of stable marriages that satisfy the conditions of
theorem 2. The key algorithmic idea is to modify the breakmarriage operation so that it pauses
at certain points where the next marriage in the sequence is output. In particular, the algorithm
will pause when the proposal sequence generated by going from M, to M, discovers a certain type
of cycle called a p-cycle (we will see later that these are the rotations in [IL]). At each pause, the
p-cycle is output, and the next marriage in the sequence is generated from the previous marriage
by making changes dictated by the p-cycle. To more quickly understand the algorithm and its
running time, it is helpful to keep in mind that the sequence of proposals, acceptances and
rejections, is exactly the same sequence as used in transforming M, to M, by successive
breakmarriage operations, as discussed above, without pauses. The additional detail in the
algorithm, which is interwoven into the proposal sequence, is used to extract and output p- cycles
and the sequence of desired marriages.

Algorithm A




0. Set i = 0; find and output the man optimal marriage M,; find
the woman optimal marriage M,. All women are unmarked at this

point.

1. If M; = M, then stop. Else unmark any marked women and
let m be the first man (in the fixed ordering of men) whose mate in
M, is different from his mate in M,.

2. Set M to M.. Let w be m’s mate in M. Mark w and initiate
breakmarriage(,M,m); carry out (or continue, if returning from 3d.)
the sequence of proposals, acceptances and rejections as determined
by breakmarriage(M,m), with the following modifications:

a) Whenever any unmarked woman accepts a proposal, mark that
woman.

b) Whenever a marked woman, say w’ (which could be w),
receives a proposal from a man, say m*, who she prefers to
her mate in M;, go to PAUSE breakmarriage(M,m).

Note that the comparison here is to the mate of w’ in M, not
to who she is presently engaged to. Note also that the pause comes
before w’ decides to accept or reject the proposal from m”.

3. PAUSE: When breakmarriage(M,m) pauses do:

3a. Let R(W) be the set containing w’ and all the women who
were marked since the most recent time that w’ became marked; let
R(M) be the mates of R(W) in M;; and let p-cycle R, be

the ordered set of pairs consisting of RMand their respective

mates in R(M), where the pairs are ordered in the order that the
women in R(W) were most recently marked.

3b. Let M +1 be the marriage where w” is paired withm*,

where every other woman in R(W) is paired to the man she is
currently engaged to (as given in the current status of
breakmarriage(M,m)), and all other women are paired to their mates
in M;. Output the p-cycle R, and marriage M, +p 8eti

== i+1 and unmark all women in R(W).

3c. If w=w’, then let w’ accept the proposal from m"’
(which completes breakmarriage(M,m)), and go to step 1.

3d. If w £ w’, then let w’ accept or reject the proposal
from m’ (by comparing m” to the man she is currently engaged
to in the currcnt status of breakmarriage(M,m)).

If w’ rejects the proposal from m’, then mark w’; return to step 2
and continue with breakmarriage(M,m) (i.e. m* next proposes to the woman on
his list below w”). .




If w’ accepts the proposal from m’, then leave w’ unmarked; go to
step 2 and continue with breakmarriage(M,m) (i.e. the man who was engaged to
w’ when m’ made his proposal is now free and makes the next proposal).

Note that by Corollary 2, each breakmarriage{M,m) operation, initiated in step 2, will
ultimately finish with a new stable marriage (i.e. no man is rejected by all the women). It
should also be clear that each M, in the sequence is a marriage, although we must still
demonstrate stability.

The five p-cycles output by algorithm A on the problem instance given in figure 1 are m =
{(1,5), (3.8)}, T, = {(1,8), (2,3), (4,8)}, Xy = {(3,5), (6,1)}, T, = {(5,7), (7,2)}, Ty = {(3,1),
(5,2)}, where the first number in each pair in a p-cycle is a man and the second a woman. The
p-cyles are listed in the order that the algorithm finds them, where the algorithm has used the
given numerical order of the men. Notice that x, and x, were found in the running of a single
breakmarriage operation, which started with man 3. All the other breakmarriage operations
discovered exactly one p-cycle.

Before proving the correctness of algorithm A, the followix;g interpretation of the algorithm
may be helpful, especially in explaining step 3d. Suppose m is mated to w in M; and
breakmarriage(M,,m) pauses when a marked woman w’ 3 w is proposed to. Consider all of the
proposals made from the start of breakmarriage(M;,m) up to and including the first proposal that
w’ accepts; let the sequence of these proposals be called P(w’). Now consider
breakmarriage(M; ,,m). The key point to note is that breakmarriage(M, +pm) initially executes
exactly the same sequence of proposals P(w’) in exactly the same order. The proposal
immediately following P(w’) in breakmarriage(M, +pm) differs from the one in
breakmarriage(M;,m), and is, in fact, the next proposal made by algorithm A in step 2, after
returning from the pause in breakmarriage(M;,m) caused by the proposal to w’. Algorithm A
can be thought of as an optimized algorithm that successively runs breakmarriages on Mg, M, ..,
M, ,, each until a p-cycle is encountered. The optimization makes sure that in each successive
pair of breakmarriage operations no proposal in P(w’) is repeated. Step 3d of algorithm A
adjusts the mark of woman w’ appropriately so that the last proposal in P(w*) is not repeated.

The following facts are easy to establish by examining the actions of algorithm A. They will be
needed in the proof of correctness and time.

Fact 1. The men and women who have different mates in M, than in M_ +1 are exactly the
men and women in the pairs of R,. The men in Ry (strictly) prefer their mates in M, to their
mates in M, _,, and the women in Ry (strictly) prefer their mates in M, +1 to their mates in M,.

Fact 2. If m; and m, are the men in any two consecutive pairs (in the circular order) of R,




and they are married to w, and w, respectively in M,, then m, is married to w,in M, _,.

Fact 3. If m, and m, are as above, then w, is the first woman below w, on m"s list such that
W, prefers m; to m,, her mate in M,.

Time Analysis and Correctness of Algorithm A

With the exception of the time needed to output the marriages, algorithm A runs in time
O(nz), since step 1 is within this time bound, and since no man proposes to the same woman
twice, and all other work is proportional to the number of proposals. In more detail: at any
point in the algorithm the unique free man makes the next proposal which is to the next woman
on his list; a linked list connecting the women in the order that they are marked allows R, to be
found in constant time per pair; and the total number of pairs in all the p-cycles is O(n?) since no
pair is in more than one p-cycle (this follows from fact 1). For the purpose of efficiently
outputting the pairs which appear in the sequence of marriages, we can simply output the p-
cycles and marriage M,; each pair that appears in any of the marriages in the sequence is then
output exactly once, and hence O(n?) time suffices to output these pairs.

In order to show that the output pairs are in fact stable, we need the following two lemmas:
Lemma 2: Each M, found by the algorithm is a stable marriage.

Proof: We prove this by induction. M, is stable and we assume that all marriages up through
M, are stable. Suppose M, +1 is not stable, then there is a man m and a woman w who block
M, ., Since, by fact 1, each woman either improves in M (over M, ) or keeps her same mate,
m must be in a pair in R, otherwise m and w would block M,. For the same reason, m cannot
prefer w to his mate in M, so w must be strictly between (in order of preference) m's mate in M,
and his mate in M, Let B denote these women. But by fact 3, none of the women in B prefer
m to their mates in M,, and so by fact 1, none of these women prefer m to their mates in M
Hence M, _, is stable. O

Lemma 3: There is no stable marriage between M, and M, 1

Proof: Suppose, to the contrary, that M is a stable marriage between M, and M, ,. We
claim first that no man m can be married in M to a woman between his mate in M, and his mate
in M, ;. Let w be such a woman between m’s respective mates, and let m_ be the mate of w in
M,. By fact 3, w prefers m  to m, and since M, dominates M and m_ is not married to w in M,
m_ prefers w to his mate in M. Hence m_ and w block M. So if a stable M exists between M,
and M _ |, then every man is either mated to his mate in M, or to his mate in M, . and there
must be at least one man of each type (else M is either M, or M, .,). Now in the circular order
of pairs given in R, let m and m’ be any two consecutive men in Rk’ and let w and w’ be their
respective mates in M,. Recall that w” becomes the mate of m in M, ., Hence it is not possible



that in M, m marries his mate in M, +1 3nd m’ marries his mate in M,, since they both would
then marry w’. Similarly, it is not possible that in M, m marries his mate in M, and m’ marries
his mate in M.,r for then w’ would be unmarried in M. But then either M = M orM =
M, , > and hence there is no marriage M between M, and M, + O

Hence by lemmas 2 and 3, and theorem 2:

Theorem 3: The marriages found by algorithm A contain all the stable pairs, and all stable
pairs can be found and output in time O(n?).

3.1. Rotations and Algorithm A

Theorems 2 and 3 along with algorithm A above showed that a small set of stable marriages
contain all stable pairs. This fact, given by direct proofs above, also follows from a much deeper
analysis of the structure of the set of all stable marriages, given in a powerful paper by Irving
and Leather [IL]. Here we define rotations, the basic object in [IL], and show that algorithm A
finds each of them exactly once. Finding all the rotations is the first step in the algorithm of the
next section which enumerates all stable marriages in time O(n®+n|S|); the O(n?) term contains
the time used in Algorithm A to find the rotations. Finding all the rotations is also the first step
in the algorithm in [ILG] to find the optimal or most egalitarian stable marriage.

Rotations

Definition: Let M be a stable marriage. For any man m let S(m) be the first woman w’ on m’s
list such that i) m prefers his mate in M to w”, and ii) w’ prefers m to her mate in M. Let S’(m)
be the man who S(m) is married to in M.

Definition [IL]: Let R = {(m,, w,), (mg, W,),...(m_, w )} be an ordered list of pairs from M
such that for each i from 1 to z, $'(m;) is m;, (mod 5)° Then R is called a rotation (exposed in
M).

Note that for a given marriage there may be many or there may be no exposed rotations.

Given an instance of the stable marriage problem, consider the set of all stable marriages for
that instance, and consider the set of all rotations exposed by those marriages (any given rotation
may be exposed by many marriages).

It is shown in [IL] that

Theorem 4 [IL]: Except for the stable pairs that are in the woman optimal marriage (which are
in no rotations), each stable pair is in exactly one rotation, and, of course, each pair in a rotation
is stable.
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Finding all rotations in O(n?) time

Clearly, each p-cylce R, is a rotation (exposed in M,) and hence algorithm A finds a set of
distinct rotations! that contain all stable pairs other than those in both the man and woman
optimal marriages. Therefore, by theorem 4, algorithm A finds all rotations, and outputs each
one exactly once, and so

Theorem 5: Given a n by n instance of the stable marriage problem, all the rotations can be
found and output in O(n?) time.

Combined with Corollary 3, we have

Theorem 6: Let P be any path in H from the man optimal to the woman optimal marriage.
Then any two consecutive marriages on P differ by a single rotation, and the set of the rotations
between marriages along P contain all rotations exactly once.

It is also now easy to see that any sequence of stable marriages which satisfy the conditions of
Theorem 2 must lie on such a path P in H, and so, algorithm A enumerates the marriages along
some path in H from M, to M,.

4. Enumerating all stable marriages in optimal time and space

McVitie and Wilson [MW] give an algorithm for enumerating all stable marriages in a problem
instance with n men and n women. Their algorithm can be shown to take at least
(n%|S|/(log|S|?)) time, and no more than O(n3[S|) time, where S is the set of stable marriages.
Knuth [K] describes a similar algorithm which has the same complexity? . Wirth [W] gives a
different enumeration algorithm even less efficient than these two.

In this section we give an algorithm for enumerating all stable marriages in O(n? + n|S|) time
and O(n?) space. Considering the time needed just to output the marriages, and the space
needed just to store the input preference lists, this time and space use is necessary; it is surprising
that is is also sufficient. The algorithm depends critically on results in [IL], so we will first briefly
review some of the results in [IL]. We will next modify the central construction given in [IL}, and
then combine these results with algorithm A and the modified conmstruction to obtain the
enumeration algorithm. We also note that in the same time bound, the Hasse diagram of the
lattice of all stable marriages can be explicitly constructed.

1We used the terminology “p-cycle® to avoid any confusion between what is derived directly from algorithm A, and
what is known about rotations from [IL}.

’It is reported in [K] that the time is O(n?S]), but this is incorrect. We give constructions in the appendix showing
that the algorithm can take 2(n%|S|/[log|S|?]) time.
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Partial orders and precedence graphs

Definition: For a given instance of the stable marriage problem, let x be a rotation exposed in
stable marriage M, and let M(x) be the marriage obtained by mating each man m in x with S(m),
and mating all men not in 7 with their mates in M. We say that x moves each man and women
in x from their mates in M to their mates in M(x). Note that a rotation always moves a man
“down” his preference list, and always moves a woman “up” her preference list, and that the
moves made by a rotation are independent of the marriage it is exposed in.

Definition: A pair (m,w), not necessarily a stable pair, is said to be eliminated by rotation r if
7 moves w from m or below in her preference list to strictly above m.

Note that if (m,w) is a pair in x then x eliminates (m,w), and that if (m,w’) is any other pair
eliminated by x, then m prefers w to w’, for otherwise no marriage in which r is exposed could
be stable. Note also that if w is the woman most preferred by m such that (m,w) is eliminated
by a rotation, then (m,w) is a stable pair, and is in the eliminating rotation.

Lemma 4 [IL]: No pair is eliminated by more than one rotation, and for any pair (m,w), at

most one rotation moves m to w.
This follows directly from algorithm A and theorem 4.
Now we define the following relation between rotations:

Definition [IL]: Let x and p be two distinct rotations. Rotation x is said to ezplicitly precede p
if and only if 7 eliminates a pair (m,w), and p moves m to a woman w* such that m (strictly)
prefers w to w’. The relation precedes is defined as the transitive closure of the relation
“explicitly precedes”.

It is easy to verify that the relation “precedes” defines a partial order among the rotations. In
order to get some intuition for the importance of this relation, we claim (proofs follow from
details in [IL]) that if x precedes p, then no matter how the men are ordered, algorithm A finds x
before it finds p. Hence in any transformation of M, to a marriage M by breakmarriage
operations, the moves specified by rotation p will be made only if the moves specified by rotation
= are made first. These claims are strengthened in the following definitions and theorem.

Definition: Given an instance of the stable marriage problem, let D be a directed acyclic
graph, where the nodes of D are in one-one correspondence with the set of rotations (we give each
node the name of its corresponding rotation) and for any two nodes x and p, there is a directed
edge from 7 to p if and only if rotation # precedes rotation p. Note that D may have 9(n2)
nodes and 6(n%) edges.

We will often refer informally to a rotation x in D, instead of the node in D corresponding to
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rotation ; this should cause no confusion.

Definition: A subset of rotations SN of D is closed if and only if SN contains all rotations
which precede the rotations in SN.

The following is the central theorem of [IL]:

Theorem 7 [IL]: Let S be the set of all stable marriages for a given problem instance, and let D
be the corresponding directed graph formed from the set of all rotations. Then there exists a
one-one correspondence between S and the family of closed subsets in D, i.e. each closed subset in
D specifies a distinct stable marriage, and all stable marriages are specified in this way.

For a closed set SN the corresponding stable marriage is obtained by starting with M, and
making the moves specified by the rotations in SN, in any order consistent with the precedence
relations, i.e. the moves of rotation x can be made only after the moves of all rotations which
precede .

Refining D

The algorithm to enumerate all stable marriages will enumerate each closed subset of D exactly
once. The style of the enumeration (without concern for time and space complexity) is not
completely new, and a similar method is implicit in [IL], although the question of generating all
stable marriages is not explicitly discussed there. The new contributions here are several
observations which allow the approach to run fast and in small space. In particular, explicit use
of D does not lead to the O(n?+n|S|) time bound, since construction of D would take more than
O(n?) time (O(n®) using fast transitive closure is possible), and the enumeration itself would take
more than O(n) time per marriage (O(n?) is possible). Further, D needs 6(n*) space just to store
it, hence the O(nz) space bound could not be achieved using D. The main idea in this part of the
paper is to use a sparse subgraph of D which preserves all the closed subsets, and which can be
built quickly. It is not difficult to see that any subgraph of D whose transitive closure is D,
preserves the closed subsets. We will construct such a subgraph G, in O(n?) time, with the
property that G has O(nz) edges, and that no node in G has outdegree more than n. The
bounded outdegree is the one of the keys to the n|S| term in the time bound, and the sparsity is
of course central to the space bound.

Definition: G is a directed acyclic subgraph of D containing all the nodes of D but only edges
defined by the following two rules, which are applied for each man m whose mate in M, is
different than his mate in M;:

Rule 1. Let W(m) = {w,, w, ... , w } be the set of women, in decreasing order of preference
by m, such that for each i from 0 to r, (m, 'i) is a stable pair. Fori from 0 to r-1, let m; be the
rotation containing pair (m, w;), and let IT{m) be the set of these rotations. Then for i from 0 to




13

-2, G contains an edge from =, to %

Rule 2. Suppose (m,w) is a non-stable pair eliminated by a rotation x, such that m prefers w
to any other woman w’ in any other pair (m,w’) eliminated by x. If there are women w, and
W, in W(m) such that m prefers w; to w and m prefers w to w. .1 then G contains an edge
from x to ..

Note that G is defined to contain only one copy of any edge, even though the same edge may
be specified more than once by the above rules.

Figure 2 shows graph G constructed from the problem instance and rotations of figure 1; edge
<mg, 7,> is defined by an application of rule 2, while all the other edges are defined by rule 1.
The graphs are not always so tree-like as in this example.

Lemma 5: G has only O(n?) edges; it can be constructed in time O(n?); and no node in G has
outdegree more than n. ' :

Proof: Given the rotations, which can be found in O(n?) time, we label each pair that is
eliminated by some rotation with the name of the (unique) eliminating rotation. To do this we
examine each rotation x, and for each woman w in a pair in x we note the men that 7 moves w
over; each of these pairs is labeled with x. Since x eliminates a set of pairs corresponding to a
contiguous sequence of men in w's preference list, finding these pairs takes constant time per
pair. Then, since no pair is eliminated by more than one rotation, these labelings can be done in
O(n?) total time.

Now G can be constructed by processing each man m’s list top down, keeping a mark on the
most recently encountered stable pair in m's list. When a new stable pair is encountered, we
create an edge in G from the rotation labeling the marked pair (if there is one) to the rotation
labeling the new pair, and we update the mark. When a non-stable pair is encountered, we check
(in unit time using a random access list of the rotations) if its label has already been encountered
in m’s list. If not, then we create an edge in G from the rotation labeling the marked pair (there
will be one) to the rotation labeling the current non-stable pair. Each scan down a man’s list
takes O(n) time, hence O(n?) time in total.

Since the total time to build G is O(n?), it can only have O(n?) edges. It is also clear from the
details above that for any rotation «, the scan down a given man m’s list adds at most one edge
out of m, hence the outdegree of any node in G is bounded by n, the number of men. O.

To complete our claims about G, we need the following

Lemma 6: For any two rotations x and p, x precedes p if and only if x reaches p by a directed
path in G, hence the transitive closure of G is D, and so the closed sets of G and D are identical.
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Proof: Clearly, G is a subgraph of D since each edge in G specifies a precedence relation
between the rotations at the endpoints of the edge. To prove the other direction, it suffices to
show that if » czplicitly‘ precedes p then x reaches p in G. By definition of “explicitly precedes”,
there must be two women w and w* such that (m,\i) is eliminated by x, and p moves m to w*,
and m prefers w to w*. Then w* is in W(m), and p € IT{m); say p = ., where, by definition, p
moves m from W, to w*. So in G there is a directed path from x, to p for every T € IT(m) such
that i < i*. :

Now let w’ be the woman most preferred by m such that (m,w’) is eliminated by 7. By
construction of G, there is an edge (associated with the pair (m,w’)) from x to x;. for some x.. €
II(m); let w.. be the woman that x,. moves m from. So if i’ < i* (i.. w,. is equal to or is
preferred to w.,), then there is a directed path in G from x to p. But m prefers w,. tow, and w*
to w, and since, by the actions of algorithm A, man m is moved over any particular woman by at
most one rotation, w., cannot be preferred to w’; hence w;. must either be w., or be preferred to
Wis, and the lemma follows. O

Note that G is not necessarily the transitive reduction of D. As stated above, any subgraph of
D whose transitive closure is D, preserves the closed sets, and.since we want a sparse subgraph,
the transitive reduction of D would be the best. However, general algorithms to produce the
transitive reduction of D (even assuming D is given) would take much more than the O(n?) time
to construct G. Perhaps the transitive reduction of D can be computed from the rotations in
O(n?) time for this special problem, but G is sufficient for the needs of this paper.

4.1. The enumeration algorithm

We will first describe how to use G to build a tree T with root r, where every edge in T is
labelled with a rotation, such that the path from the root to any node in T enumerates a distinct
closed set SN of rotations in G (and D), and such that each closed set in G is enumerated in this
way. Hence by theorem 7, there is a one-one correspondence between the nodes of T and the set
of all stable marriages. Further, the order of the rotations along any path will be such that if 7
is a rotation on a given edge e = <x,y>, then all rotations that precede (in the partial order of
rotations) x will be on the path from the root to x. It follows inductively that the stable marriage
corresponding to any node x can be explicitly constructed by starting at the root and successively
executing the moves dictated by each rotation on the path to x. Since each such change takes
O(n) time, and each node in T corresponds to a distinct stable marriage, it follows that all the
stable marriages can be output in O(n) time per marriage, once T has been constructed. In
obtaining the output, if T is traversed depth first, then only one complete marriage must be
known at any time (the previous, as well as the next, marriage can be obtained from the
marriage and the relevant rotation), hence only O(n) additional space is needed for the traversal
of T.
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Building T ‘

First, we label the rotations numerically according to a topological ordering of G, i.e. every
node has a larger label than any of its predecessors. It is well known that these labels can be
found in linear time in the number of edges of G, hence in O(n®) time. There are ways to avoid
topological labelling, but the exposition becomes more complex.

To build T, we start at the root r and successively expand from any unexpanded node y in T
as follows: Let R(y) be the rotations along the path from r to vin T, and let e = <x,y> be the
last edge on this path. Let MR(y) be the set of maximal rotations (nodes in G with indegree
zero) when all the rotations in R(y) are removed from G, and let LR(y) be those rotations in
MR(y) whose label is larger than the label on edge e. Then y is expanded by adding |LR(y)| edges
out of node y, each labelled with a distinct rotation in LR(y).

Lemma 7: Given G, T can be constructed in O(n) time per node.

Proof: We give here more implementation detail on expanding a node. Let e = <x,y> be
the last edge on the path to y, and let the rotation on e be x. We will assume, for now, that at
node x in T, there is a graph G(x), obtained from G by deleting all nodes in R(x), and all incident
edges. We also assume that the indegree of each node in G(x) is known. Then LR(y) is the set
of all neighbors of 7 in G(x) which have indegree 1 (note that these all have larger label than x
due to the topological labeling of G), together with the set of rotations in LR(x) whose label is
larger than 7. The first set can clearly be found in O(n) time since no node in G (hence in G(x))
has outdegree more than n, i.e. there are at most n neighbors of x in G(x). For the second set,
we claim that |LR(x)] < n, hence we can simply scan LR(x) to find those rotations with label
larger than 7. To see that [LR(x)] < n, note first that for any fixed m, if (m,w) and (m,w’) are
two pairs in (necessarily) distinct rotations, then one of these two rotations must precede (in the
partial order) the other. But, by construction or induction, each pair of rotations in LR(x) must
be incomparable, and so for any man m, m is in a pair in at most one rotation in LR(x).

So far, we have seen that if G(x) is given at node x, then the edges out of x can be determined
and labeled in time O(n). However, constfucting the graphs at each of the endpoints of these
edges must be done with some care. For example, if T is built in a breath first manner, then
[LR(x)| graphs have to be constructed and stored. In addition to the enormous space this would
require, it also would need more than O(n) time per node, since the graphs can have ©(n2) nodes
and edges. The solution is to expand T depth first: to expand a given node x in T, we find all
the maximal elements in G(x) and store them (essentially, constructing all the edges out of x),
but we construct a new graph G(y) for only one edge <x,y> out of x; node y is the next node in
T to be expanded. Graph G(x) can be transformed into G(y) in O(n) time, by deleting node y
and all incident edges from G(x); the indegree in G(y) of each neighbor of x is one less than its
indegree in G(x), and all other indegrees remain as in G(x), so the indegrees are also maintained
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in O(n) time. Backing up from y to x, we use G(y) and the rotation on edge <x,y> to
reconstruct G(x) in time O(n). Knowing G(x) and the untraversed edges out of node x, we choose
an unexpanded child y’ of x, transform G(x) into G(y*), and then expand y’. So T can be built
in O(n) time per node. O

Corollary: Given G, the set of all stable marriage can be enumerated in O(n) time per
marriage, and O(n?) total space.

Proof: The approach above was to first build T, and then to traverse it depth first to
explicitly construct the stable marriages. However, T was built depth first in order to obtain the
O(n) time bound, so we can construct the stable marriages as we build T. But then, we never
need to know the complete T at any given time. What is sufficient at any one time, staying
close to the above details, is the path from r to the current node being expanded, and the edges
(with their rotations) which directly hang off of that path. The depth of T is at most O(n?) since
each edge on a path corresponds to a distinct rotation, and the outdegree of each node in T is
O(n), hence if we construct and output the stable marriages as T is (implicitly) being built, depth
first, then we need only O(n%) space for T. However, all other space use is O(n?), and the total
space bound could be reduced to that if we didn’t store the maximal elements of G(x) at each
node x. These had been stored to facilitate the backup to x, and the next traversal out of x, and
to simplify the exposition. But, when backing up from node y to x, where edge <x,y> is labeled
with rotation x, the maximal elements of G(x) can be found from G(y) in O(n) time, since they
are the maximal elements of G(y), plus , minus the neighbors of x in G(x). So both G(x) and its
maximal elements can be recomputed in O(n) time on backup. However, we must be careful that
no edge out of x is traversed more than once. There are several ways to do this. One simple way
is to traverse the edges out of x in increasing order of their labels; each time we enter x we scan
the maximal elements of G(x) and choose the one with the smallest label larger than the label on
the edge just used to enter x (either backup or first entry). In this way, only a single path of T
needs to be kept at any one time, hence the total space is O(n2), and the time remains O(n) per
node. O

Figure 3 shows the tree T built from graph G of figure 2. Each node in T is labelled with the
corresponding stable marriage from figure 1.

We still need to show that the nodes in T correspond one-one to the closed sets of G, and that
the order of the rotations along a path in G has the desired properties claimed above This is
done in the following lemmas.

Lemma 8: Let x be an arbitrary node in T. Then R(x) is a closed set of rotations in D (hence
G).

Proof: By induction on the length of the path to x. The lemma is clearly true for the root,
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which corresponds to the empty set, and for nodes at distance one from the root, for each of
these correspond to a maximal rotation in D. Now let x be a node at distance k from r, and let
<x,y> be an edge out of x with label x. By inductive hypothesis, R(x) is a closed set, and, by
construction, r is maximal in G(x), so all the predecessors of x are in R(x), and hence R(x) + {x}
is a closed set in D, and this set corresponds to node y. O

Corollary: The stable marriage corresponding to node y can be constructed by traversing the
path from r to y, successively making the moves dictated by the rotations on the path.

Lemma 9: Every closed set in D is R(x) for some node x in T.

Proof: By induction on the size of the set. The lemma is clearly true for size zero and one,
since these sets are the empty set and the maximal elements in D. Now suppose the lemma holds
for sets of size k, and let SN be a closed set of size k+1. SN must have a minimal element with
respect to the partial order D; let x be the minimal element of SN with the largest label. By the
induction hypothesis, SN - {#} is R(x) for some node x in T. But then, x is a maximal node in
G(x), and since it has the largest label of the rotations in SN, it will label an edge <x,y> out of
x. Hence SN is R(y). O

Lemma 10: Let x and x” be two distinct nodes in T, then R(x) £ R(x "), hence no closed set is
enumerated twice in T.

Proof: Consider a node x and two edges <x,y> and <x,y’> out of x labelled x and p, where
« has a smaller label than p. Note that the labels along any path from r are in increasing order,
hence x cannot appear in the subtree of T rooted at y’. The lemma follows by applying this
observation inductively on the length of the paths. O

Constructing the Hasse diagram

We will not give any details here, but we claim that the Hasse diagram of the set of all stable
marriages can also be explicitly constructed in O(n® + n|S|) time, and (excluding the space for
the lattice itself) with modest space. To see that this is plausible, note that each node in the
Haase diagram can have outdegree of at most n, since each node is associated with a stable
marriage, and each edge out of the node is associated with a rotation exposed in that marriage,
and there clearly can be no more than n/2 rotations exposed in any stable marriage. Hence the
size of the lattice itself is at most O(n|S]).

5. The minimum regret stable marriage problem

Definition: For stable marriage M containing the pair (m,w), the regret of m is the position of
woman w in m’s list, and the regret of w is the position of man m in w's list. The regret of a
marriage M, denoted (M), is defined to be the maximum regret of any person, given the pairing
in M, i.e. M is measured by the person who is worst off in it.
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Knuth [K] discusses the problem of finding a stable marriage which minimizes r(M) over all
stable marriages. The solution given in [K] is attributed to Alan Selkow and naive analysis of it
gives a running time of O(n%). Here we use the breakmarriage operation and corollary 1 to
obtain a method that runs in time O(n?). It is corollary 1 that allows this speed up by avoiding
duplicated proposals and rejections.

For ease of exposition, we will break the problem into two problems: find, if one exists, a
marriage minimizing M) over all stable marriages in which at least one woman is a person of
maximum regret in the marriage, and find, if one exists, a marriage minimizing (M) over all
stable marriages in which at least one man is a person of maximum regret in the marriage. Let
the first type of marriage be called woman regret minimum, and the second type be called man
regret minimum. Note that for a given problem instance, it is possible that in every stable -
marriage, all people with maximum regret are women (men) and hence there is no man (woman)
regret minimum. This happens if and only if all people of maximum regret in the woman (man)
optimal marriage are women (men). These cases are easy to check and adjust for in the
algorithm so, for ease of the exposition, we will assume that neither of these two cases occur, and
hence both a woman regret and a man regret minimum marriage exist. The minimum regret
stable marriage is obtained from these two marriages. The following algorithm finds a woman
regret minimum, assuming both a woman and a man regret minimum exist.

Algorithm B

0. Find the man optimal stable marrisge My, and find the woman
optimal stable marriage. Set i = 0.

1. Let w be a woman with regret r(M.) in M., and let m be
her mate in M,. If m and w are s pair in the woman optimal
marriage, then stop and output M,; M. is a woman regret
minimum. Else perform operation breskmarrisge(M,,m) and let
M,,, be the resulting stable marrisge.

2. If there are no women with regret r(M, ) in. M

output M.; marriage M,

i+1, and go to step 1.

j+1+ bhen stop and
is 8 woman regret minimum. Else set i =

Correctness of Algorithm B

First, the algorithm must terminate since, after each breakmarriage operation, any woman
with a new mate prefers him to her previous mate, and any man with a new mate prefers his
previous mate. So unless the conditions in step 1 apply, ultimately there will be no women with
the maximum regret, and then the conditions of step 2 will apply. Note that by corollary 2, each
breakmarriage operation in the algorithm results in a stable marriage. Now if the algorithm
terminates in step 1, then M, is woman regret minimum, for there is no stable marriage in which
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W has a better mate than m. Hence we will assume that the algorithm terminates in step 2.

Let My, M,,....M,_ be the sequence of marriages produced by the algorithm (hence the algorithm
outputs M, ;). To prove that M, , is woman regret minimum we need the following two lemmas.

Lemma 11: For i from 0 to z-2, if M, is woman regret minimum then so is M,

Proof: All woman either have the same mate in both marriages or prefer their mate in M,
and, by the algorithm, for i from 0 to z-2, there is a woman in M, +1 with regret M, +l)' u]

Lemma 12: For every i from 0 to z-1, either M, is woman regret minimum or it dominates all
marriages which are.

Proof: This is clearly true for M, since it dominates all marriages. Suppose the claim holds
through M,; let w be a woman with regret iM,) in M,, and let m be her mate in M,. Now if
M, is not woman regret minimum, then w cannot be married to m in any marriage which is.
Hence we know that M, dominates all woman regret minimum marriages, and that m and w are
not paired to each other in any of these marriages. But by corollary 1, breakmarriage(M, ,m)
results in a marriage which dominates all marriages which are dominated by M, and in ‘which m
is not married to his mate in M,. Hence M, +1 dominates all woman regret minimum marriages.
Hence the lemma follows by inductively applying this argument until either i = 2-1, or until M,
is woman regret minimum, where lemma 11 applies. O

Now we can prove correctness of the algorithm.
Theorem 8: The marriage M 5.1 18 Woman regret minimum.

Proof: Let MW be a woman regret minimum marriage. Suppose M, , is not woman regret
minimum and let (m,w) be a pair in M, ; where w is a woman with regret M, )in M, ;. Then
we know that M_ , dominates MW (from lemma 12), and that m is not married to w in MW (by
the assumption that M, , is not woman regret minimum), so, by corollary 1, M, dominates MW,
and, by corollary 0, MW dominates M, from the women's point of view. But, by the algorithm,
there are no women among the people of maximum regret in M,, and so (again by corollary 0)
there can be no women among the people of maximum regret in any marriage dominated by M,,
in particular, in MW. But this is a contradiction, since at least one woman in MW must have
regret (MW), or else MW is not even in the set of stable marriages over which the woman regret
minimum is defined. Hence either M, , is woman regret minimum, or none exist, so, glven our
assumptions, the algorithm is correct. O
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Implementation and Time Analysis of Algorithm B

The algorithm moves M, towards M, using breakmarriage operations, hence the total number
of proposals in O(nz). Step O of the algorithm clearly requires only time O(nz), but steps 1 and 2
must be implemented with some care in order to obtain an overall O(n?) time bound. In each
iteration of steps 1 and 2 the maximum regret of the men and of the women must be determined
and compared, and a woman with overall maximum regret, if one exists, must be found. Simple
scanning of the men and women at each iteration would lead to a bound of O(n?) (O(n) time per
iteration, and O(n?) iterations). Below we sketch the details that give a time bound of O(n?) and
a space bound of O(n) (not counting the space for the preference lists).

At the start of each step 1, the status of the women in the current marriage will be represented
by n linked lists, one for each level of regret, where each list i links together (in no particular
order) all of the women with regret i in the current marriage. For each i, we let c(i) be the
number of women in list i; variable wr keeps the largest i such that c(i) 3% 0. We also need two
n length vectors of pointers, one to point to the current location of each woman in the list that
she is presently in, and one to point to the head of each list. Clearly all the lists and pointers
take O(n) space and can be initiated in O(n) time. An identical data structure is kept for the
men; K(i) is the number of men in list i, and mr is the largest i such that K(i) £ 0. Of course we
also need to record who the paris are in the current marriage, and other information needed to
efficiently execute breakmarriage operations, but these details are assumed, since they are trivial
and were needed in algorithm A.

Given the above data structures, a woman of regret r{M) in the current marriage M is found at
the head of the women’s list wr. After a breakmarriage operation, the women with new mates
are removed from their current lists (in constant time per woman using the vector of pointers),
and inserted at the heads of the appropriate new lists, and the variables c(i) are adjusted. If
c(wr) is now zero, then i is decremented from wr until c(i) 34 0 is found, and wr is updated.
Since wr only decreases during algorithm B, the overall time for this search is O(n). The men’s
lists are similarly updated after the breakmarriage, but for any k(i) which changes from zero to a
positive count, mr is set to max(mr,i). Step 2 is implemented by comparing wr to mr. When
computing the man regret minimum, the roles of men and women and their respective data
structures are interchanged.

6. Open question ,
Consider the following problem: Find a fast algorithm to determine if an input marriage is
stable. One obvious way to test for stability is to examine each man m to see if there is a
woman w who m prefers to his mate in M, such that w also prefers m to her mate in M. With the
obvious storage of the preference lists, each check takes unit time. One can also check each
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woman's preferences in the above way, but note that we need only check from the perspective
either of the men or from the perspective of the women, but not both. If we define r(M,i) to be
the number of people who person i prefers to their mate in M, then stability can be checked from
the perspective of the men in tune z r(M,m) Naively, this could be as many as n(n-1) = O(n?)
checks (table look-ups). Is there a way to beat this bound? Particularly, if preprocessing is
allowed, say to build D, or some other “reasonable” work, can the O(n2) bound per marriage be
reduced?

The worst case bound of n(n-1) is, in fact, not optimal: no more than n(n-1)/2 checks are
needed, and these can be found and done in that time.

Lemma 13: If M is a stable marriage, then Z’ [r(M,m)] + Z [(M,w)] < n(n-1). Hence one of 2
[{(M,m)] or 2 [{M,w)] is less than or equal t.o n(n-l)/2 Wemen w

Proof: If M is a stable marriage and man m prefers woman w to his current mate, then
woman W must not prefer man m to her current mate, and similarly, if woman w prefers m to
her mate, them m must not prefer w to his mate. Hence the pair (m,w) can contribute at most
one to {M,m) + r{M,w) and the lemma follows. O

Hence we can test for stability by first computing L' r(M,m) and 2 r(M,w) (preprocessing
permits us to construct the correct data structure so that this sum can be done in O(n) time). If
they sum to more than n(n-1), then M isn't stable. If the sum is less than or equal to n(n-1),
then we check for stability from the perspective of the sex with smallest sum.




22

7. Appendix

The 0(a’lSI/Mog IS[7)
time bound for the enumeration algorithms in [K] and [MW)]
Definition: Assume the men and women are numbered from 1 to n. Let M be a stable
marriage, and let S(M,i) be the set of all stable marriages which are dominated by M, and in
which all men from 1 to i-1 have the same mates as in M.

Procedure E(M,i) will enumerate each element in S(M,i) exactly once. Clearly to enumerate all
the stable marriages we call E(M,1), where M, is the man optimal marriage. The procedure is
defined recursively, and is essentially the algorithm given in [K], but with terminology consistent
with the present paper.

Procedure E(M,i):

If i = n then output M and terminate E(M,i);

Else, call E(M,i+1).
Upon return from E(M, i+1) do:

If i is married to his mate in M
(the woman optimal marriage), then terminate E(M,i);

Else execute operation breskmarriage(M,i)

with the following modification: if ever s man numbered
less than i becomes free, then stop the breakmarriage
operation and terminate E(M,i).

If Breskmarriage(M,i) terminates naturally, i.e.
with new marriage M’, then csll E(M’,i).
Upon return from E(M",i), terminste E(M,i).

The algorithm may be a little clearer if the first line were “If i > n ..."; the present version is
correct, and somewhat faster.

It is stated in [K] that this method has worst case running time of O(n?|S|). We show here
that this is incorrect, and that the running time is fAn3[S|/[log [S]]?). The analysis (and the
exposition) here is very sloppy, and it is likely that the bound could be improved by better
 analysis of the constructions, or by another construction; our purpose in discussing it is only to
compare to and motivate the O(n? + n|S|) time bound in the present paper.

First, we have to be clear on the semantics of the bound O(n?[S|). In detail, it asserts that
there exists positive integers q, n, and s, such that for any problem instance P with n > n, men,
where there are |S| > s, stable marriages for P, the running time of the above algorithm is less
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than or equal to qn?|S|. Hence to show that O(n?|S|) is not a correct upper bound, it suffices to
show that for any s, there exists a family of problem instances P, such that each has [S| > s,
stable marriages, and, as a function of n, the time needed for the above algorithm grows faster
than any constant times n. We start with |S| = 2, and for illustration, n == §.

The mens list is: The womens list is:
I:1xxxx2 1:51xxx
2:2xxxx3 2:12xxx
3:3xxxx4 3:23xxx
4:4xxxx5 4:34xxx
5:9xxxx1 5:45xxx

where the x's are arbitrary as long as each row is a permutation of 1 through 5.

In this construction, each man gets his first choice in the man optimal marriage, and each
woman gets her second choice; in the woman optimal marriage each woman gets her first choice,
and each man his last. There is only one rotation exposed in M, (it is {(5,5) (1,1) (2,2) (3,3)
(4,4)}), and it moves the woman to the woman optimal marriage, hence there are only two stable
marriages in the construction. The crucial property of this construction is that for any man m,
during breakmarriage(M,,m) man m will be rejected by all but his last choice woman.

What happens when E(Mg,1) is executed on this constructions is that E(My,1) calls E(M,,2)
which calls E(M,,3),..., which calls E(M,,5) which outputs M, and terminates. Then E(M,4) is
reentered and man 4 is rejected by all the women below woman 4 until woman 5, his last choice,
is encountered; she then accepts 4 and rejects man 5; man 5 is then rejected to by all the women
until his last choice, woman 1, who accepts 5 and rejects 1. However, man 1 is now free, and 1
< 4, hence E(M,4) terminates and E(M,3) is reentered. Man 3 is rejected by all the women in
his list until his last choice, woman 4, and this frees man 4. But since we are in E(M,,3), man 4
is again at the top of his list, so exactly the same series of proposals and rejections are made that
were made in E(My,4). After these are completed, when man 1 become free, E(M,,3) terminates
and E(Mg,2) is reentered. Man 2 makes four proposals freeing man 3, and then the same
sequence of proposals are made as were made in E(M,,3). Continuing in this way we see that
man 5 becomes free four times, man 4 four times also, man 3 three times, man 2 twice, and man
1 once. Each time a man becomes free, exactly four proposals are made before the next man
becomes free. Hence the number of proposals is 4C(5,2) - 4, where C(5,2) is the binomial
coefficient “5 choose 2”.

For |S| = 2, and n arbitrary, the first choice of each man i is woman i, the second choice of
each woman i is man i, the last choices of the men are a clockwise rotation of their first choices,
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and the first choices of the women are a counter-clockwise rotation of their second choices. In
this construction, each man i becomes free i times (except for man n who is free n-1 times), and
each time a man is free he makes n-1 proposals before being accepted. Hence the total number
of proposals is roughly (n-1)n2. We will call the set of these proposals a “phase”, which will be
useful below.

Now for larger values of |S| we do the following. Assume |S| = 2K for some k. To generate an
n person instance, for n divisible by k, divide the men and women into k groups of n/k men and
women each, where the first group has men and women 1 through n/k, the second has men and
women n/k + 1 through 2n/k etc. The preference lists of each group are each a copy of the
construction above for n/k men and |S| == 2, with the appropriate renumbering of the names in
each copy. Each copy contains exactly one rotation exposed in M,, and each of these rotations
moves the men and the women in the group to the women optimal marriage, hence there are
exactly 2 stable marriages in this construction, as claimed.

For simplicity, we only examine the number of proposals in the last group. What happens over
execution of the algorithm is that the marriage status of these men will be reset to M, [S|/2 times
(plus or minus one), and after each time, the men in this group will execute a sequence of
proposals which is identical to a phase discussed above, for a problem instance with n/k men.
Hence the number of proposals is (very sloppy) (n-1Xn/k)?S|/2, and this can be taken to be
about n3|S|/[log|S|]2. So the work need in this algorithm is (n3[S)/[log|S]]?).

Very naive analysis of the algorithm gives O(n3|S|) as an upper bound on the time, but I make
no claims for it being tight.

The enumeration algorithm of [MW] is essentially the same as the one above, except that
operation breakmarriage(M,i) is modified so that it terminates if a man with number greater
(rather than less) than i is made free. The same construction above forces this algorithm to take
An®|S|/[log [S|]?) time, and it is easy to show an upper bound of O(n3[S]) time.
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Men’s preference lists Women'’s preference lists

1:57126843 1:53761284
2:23754186 2:86357214
3:85146237 3:15624873
4:32741685 4:87324156
5:72513684 5:64738125
6:16758423 6:28546371
7:25763481 7:75218643
8:38457261 8:74152368
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