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Abstract

Explicit methods for the solution of fluid flow problems are
of considerable interest in supercomputing. These methods
parallelize well. The treatment of the boundaries is of par-
ticular interest both with respect to the numeric behavior
of the solution, and the computational efficiency. We have
solved the three-dimensional Euler equations for a twisted
channel using second-order, centered difference operators,
and a three stage Runge-Kutta method for the integration.
Three different fourth-order dissipation operators were stud-
ied for numeric stabilization: one positive definite, [8], one
positive semidefinite, [3], and one indefinite. The opera-
tors only differ in the treatment of the boundary. For com-
putational efficiency all dissipation operators were designed
with a constant bandwidth in matrix representation, with
the bandwidth determined by the operator in the interior.
The positive definite dissipation operator results in a signifi-
cant growth in entropy close to the channel walls. The other
operators maintain constant entropy.

Several different implementations of the semidefinite op-
erator obtained through factoring of the operator were also
studied. We show the difference both in convergence rate
and robustness for the different dissipation operators, and
the factorizations of the operator due to Eriksson. For the
simulations in this study one of the factorizations of the
semidefinite operator required 70 - 90% of the number of
iterations required by the positive definite operator. The in-
definite operator was sensitive to perturbations in the inflow
boundary conditions. The simulations were performed on a
8,192 processor Connection Machine system model CM-2.
Full processor utilization was achieved, and a performance
of 135 Mflops/s in single precision was obtained. A per-
formance of 1.1 Gflops/s for a fully configured system with
65,536 processors was demonstrated.
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Thinking Machines Corp.
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Cambridge, MA 02142
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1 Introduction

Explicit methods are of considerable interest in supercom-
puting. Supercomputer architectures are parallel architec-
tures. Some of todays supercomputers have thousands to
tens of thousands of processors. The next generation su-
percomputers with a performance of a trillion floating-point
operations per second are all expected to have thousands to
tens of thousands of processors [5]. Explicit methods paral-
lelize well, but depend critically on the use of artificial vis-
cosity to stabilize the numerical scheme. The treatment of
the boundaries is important numerically and computation-
ally. With a lower order difference operator at the boundary,
the boundary operator can be designed to contain a subset
of the points of the operator in the interior. The complete
set of stencils for the interior and the boundary can be repre-
sented as a matrix of constant bandwidth. Such a collection
of operators results in good load balance and communica-
tion efficiency on parallel computers. Several methods for
the introduction of artificial viscosity have been proposed,
with the one proposed by Eriksson [3] being one of the most
common. It is positive semidefinite. We have also included a
positive definite [8] and an indefinite operator in our study.
We demonstrate how different implementations of the same
dissipation operator affect the robustness of an operator. We
also demonstrate the importance of a conservative dissipa-
tion operator on the flow in a twisted channel with grids of
up to 65,536 points. The simulations were carried out on
Connection Machine systems, model CM—2. Most of the re-
sults were obtained on a 8,192 processor configuration. A
performance of 1.1 Gflops/s was demonstrated on a 65,536
processor system. The data parallel implementation is de-

‘scribed in [6].

The Euler equations are stated in the next section. The
boundary conditions are extensively discussed in [7]. The
artificial viscosity is treated in section 3, and the compu-
tational results are presented in section 4. Summary and
conclusions are given in section 5.




2 The Mathematical Model

Our simulations are based on the conservative formulation
of the Euler equations in order to allow for shock capturing.
The conservative Euler equations are
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where the variable vector q is given by

p
pu

a=37" | pv |. (2)
pw
€

The components of the variable vector q have the following
meaning:

p density
pu  x-component of linear momentum
pv  y-component of linear momentum
pw  z-component of linear momentum
e total energy.

Here 7,¢, 7 and ¢ denote the variables in the computational
domain. The transformation between the computational do-
main and the physical domain represented by ¢, ©, y, and z is
assumed to be continuously differentiable and non-singular:

T =

f = £(t7 z,Y, Z)

n = n(t2,9,z2)

C = C(ty z,Y, z)

The Jacobian matrix J is defined by
1 0 0 0
J = ft E-’E fy SZ . (3)
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The subscripts denote partial differentiation. The functional
determinant of the Jacobian matrix, |J|, corresponds to the
reciprocal cell volume:

1 0 0 0
(Ve)F
T=det | & &= & S g [((vnT ), (@)
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The flux vectors F, G and H have the following components
(inviscid case):

0
F = —Uq-—-pIJI_l( Vé ) (6)
U-—-¢&

0
G = —Vq—pIJl'1< Vi ) (M)

V - Nt
0
H = -Waq-plJI7"|( V¢ |, ()
W — ¢
and U, V and W are the contravariant velocity components:
U 1
( 1 ) =J : 9)
w w

J' denotes the 3 x 4 matrix which is obtained by deleting the
first row of J. In the flux vector expressions, p denotes the
pressure, which is related to the total energy according to

p= (1= = 5 +0" +u?)), (10)

where « is the ratio of the specific heats ¢, /co. We assume
that v is a constant having the value 1.4.

In [7] the in- and outflow boundary conditions are consid-
ered in detail. At each point on the in/outflow boundaries,
¢ = 0 and ¢ = Ng¢, the values of p, w and p are determined
by solving a 3 by 3 system of equations

aj 0 -1 p @3
( 0 pPolo 1 ) ( w ) = ( ¢4 ) . (11)
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The variables ¢3, ¢4 and ¢s, defined by (11), are the charac-
teristic variables. Hence, the above formula is always used
to compute the linearized characteristic variables. To have
a well posed problem input data must be properly treated.
The following procedure leads to a well posed problem [7].

¢ Subsonic inflow: Compute @3 and ¢4 from the reference
level po,wo and po at the inflow. The variable ¢5 is
computed using the flow variables p, w and p.

e Subsonic outflow: Compute ¢5 from the reference level
po,wo and po at the outflow. The variables ¢; and ¢4
are computed using the flow variables p, w and p.

¢ Supersonic inflow: Compute ¢s3,¢s and ¢ from the
reference level po,wo and po at the inflow.

¢ Supersonic outflow: Compute ¢3,ds and ¢s from the
flow variables p, w and p.

The characteristic thus computed, equation (11) is solved
for p,w and p. It should be noted that there is no need
for solving (11) in case of supersonic in/outflow. Finally,
u = v = 0 at the inflow for both subsonic and supersonic
flow.

2.1 Symmetry Properties

We assume a time independent geometry. Since the channel
is a twisted parallelepiped, it is natural to assume that the
solution possesses some kind of symmetry properties. The
coordinate transformation

z(€,m,¢) = £cos(w()— nsin(wl)
{ y(¢,n,¢) = ¢&sin(wl) + ncos(wl) (12)
z(6n,¢) = ¢
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Figure 1: Computational and Physical Domain

describes a twisted parallelepiped with a twisting factor of
w. This gives the flux vectors

pU
pul + pcos(w()
pvU + psin(w¢) (13)
pwU + pwn
(e+p)U
pV
puV — psin(w()
pvV + p cos(w() (14)
pwV — pw¢
(e+p)V
oW
puW
H = - pvW . (15)
pwW +p
(e+p)W

Replacing ¢ and 5 by —¢ and —7 in equation (1) yields
aq JF 0G JH
i G S AR 16
ar = 9 on T o’ (16)

where the flux vectors are defined by (13), (14) and (15). All
variables are evaluated at the point (—¢, —7, (). Define

ﬁ‘(s:ﬂ) C) = _u(_ga_ﬂv C)
{ (& m¢) = —v(=&-n¢) . mn
a](éa n, C) = W(—'f, b/ C)

Using this definition and equations (9) and (12) it follows

that _
U(-¢,—n, ¢) = —q(ﬁ,ﬂ: ¢)
V(_f) -1, C) = _Y(£$ n, C) . (18)
W(—£) /h C) = W(f’ m ()
Finally, we define
ﬁ(f)ﬂ; C) P(—f,—ﬂ, C)
p&m¢) = p(=§-n0C) . (19)
é(&) uB C) = e("f, =, c)

Using definitions (17), (19) and equation (18) in equation
(16) yields the original Euler equations, in which each vari-
able has been replaced by its barred counterpart. The
boundary conditions also remain unchanged, and (2) is a
solution of (1), if and only if

S: A

a=J (20)

U
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also satisfies (1). A necessary condition for uniqueness is
that the solution of (1) satisfies the symmetry conditions

p(&m¢) = p(=€-n,0)
‘U-(f, 7, C) = _u(_£7_"; C)
’U(E, n, C) = “”(—5, - C) . (21)
w(&’ﬂ’ C) = w("’ﬁ) -7, C)
e¢,m¢) = e(=§-n0)

The following proposition has been proved:

Proposition 2.1 Suppose data satisfies (21). Then, if
there is a solution to (1) for which the symmetry condition
(21) does not hold, this solution cannot be unique.

3 Artificial viscosity

We have chosen a finite difference method with explicit time-
stepping. Centered spatial difference operators are used in
the interior and one-sided operators at the boundaries. Non-
linear phenomena, such as shocks and aliasing, cause numer-
ical instabilities. To remedy this situation numerical dissi-
pation is introduced. It is created through a fourth-order
difference term (in q), which is turned off near shocks so
as not to cause any spurious effects. At shocks we use a
second-order difference to filter the solution. In this section
we consider three different dissipation operators at and near
the boundary: a positive definite operator [8], a semidefinite
operator [3], and an indefinite operator. The operators only
differ in the treatment of the boundary, and can be repre-
sented by matrices of a bandwidth determined by the dif-
ference operator in the interior of the domain. We consider
three different factorizations of the semidefinite operator, in
addition to the unfactored operator. The different factor-
izations yield dissipation operators with different stability
properties.

3.1 Interior Points

The semidiscrete Euler equations for a time independent ge-
ometry, including artificial viscosity, are

a" .
gjrkl = |3;1|[D§Fjk+DY G+ D§Hjri—D avjn], (22)

where

Gjki G(ajm) -

{ijt = F(ajr)
Hj H(qjm)




The discrete difference operators D§, AS_ and A are defined
by

Disrt = ($i+1.0 — $j—1,:)/(2A€)
Afdin = i1k — $int . (23)
Aldim = bint— bjm1m

The remaining operators are defined analogously. Further-
more, we assume a time independent geometry for which

A =Anp=AC=1.

The complete coordinate transformation will be discussed in
detail in section 3.3. The following formulations of D av {;xi
have been proposed [4, 3, 8]:

Dav@jm = |Jim| " ojuet[AL AL P m (24)
+ Tkl o [A:'.A’l]zqfkl
+ Iijll_IUjklec[AiAi]z%kl
Davajm = Ai[Iijll—1Ujkl€§AiA€_Ai(1jkl] (25)
+ AT ml T e AT AT AT @]
+ ATkl ke AL AL A Gjm]
Davijm = AiAi[IijzI_lajkzefAé_Ai(kaz] (26)
+ AZAZ,'_[Iijzlnldjsz"A’iAz(']sz]
+ AiAi[lekll—lajklacAc_Aifhkt],
where
Akt = |Tjr|Qym (27)
oipe = Uil + [Vimt| + [Winil (28)
+  4Gr(VEril2 + [Vaklz + |V Ckl2)
f=eT=cl =, (29)

with no smoothing at shocks. The constant ¥4 has a value
of approximately 0.01. For a better treatment of shocks we
add one of the following quantities to Dav{;ri:

Dsudin = —|Jm|” GJMGJMA+A e (30)
=Tkl T o€l AL AT &
— Tkl T ol AL AL
or the conservative variant

Dspdju = —AL[Tml " omed Alam]  (31)
—AT[| 3] 7 osmi €l AL Qjra
—AC_[Iijzl—lajkzéfk,Ai(']J‘kz]-

The coefficient in front of the difference operator in the ¢-
direction is given by

fsz =2 max(T§+l,kl1 Tﬁkl’ T?—l,kl) (32)
with | ) |
Pj41,kl — 2D5kl + Pj—1,ki

§kl = 2 . (33)

pst1,k0 + 2500 + pj—,]”
A typical value of the constant ¥, is 1/4. The other coef-
ficients are defined analogously. The max-function is used

to increase the second-order dissipation coefficients near the
shock. The fourth-order coefficients

can no longer be treated as constants. Instead we set

e = ¢f

= €} = max(0,9s—¢ k,)
e’ = el = max(0,9s— ]k,) (34)
& = €5y = max(0,9s — ejk,)

Near shocks the pressure gradients are very strong, causing
the max-function to switch off the fourth-order dissipation.

3.2 Boundary Points

In this section we define and determine the conservation
properties and null spaces of the dissipation operator pro-
posed by Eriksson [3], a positive definite operator [8] and
an unsymmetric operator. The only difference between the
three dissipation operators is in the handling of the bound-
aries. Furthermore, we also derive three different factoriza-
tions of the operator due to Eriksson.

A simple analysis of the discrete fourth-order dissipation

can be based on the equation

9¢
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where Dy is the matrix representation of the dissipation op-
erator. To see if Dy is moment preserving in time, we study
the equation

Jj=
99 _$ 00 Zf'Dm,, (36)

J=0

where Dy is a fourth-order scalar operator, and @, is the
p-th order moment defined by [3]

j=N
Q=) i, p20. (37)

We use the notation D4 for fourth-order operators at inte-
rior points as well as boundary points. The last equality in
equation (36) follows from (35). We will determine the null
space of the dissipation operators, and whether or not the
dissipation operators are definite.

3.2.1 A positive semidefinite fourth-order dis-
sipation operator.

Denote by [A4+A_]? the fourth-order operator in any direc-
tion. Applying this operator to an interior point yields

[A+ D185 = ¢j-2 — 461 + 65 — 441 + dj42.  (38)

Eriksson [3] has shown that for periodic boundary conditions
this operator is positive semidefinite, preserves zeroth, first,
second and third order moments, i.e., that equation (36)
vanishes identically for p = 0,1, 2, 3, and that the null space
consists of all polynomials of degree less or equal to three.




With the boundary conditions we consider, the fourth-order
dissipation operators cannot be used as presented in section
3.1. Eriksson has suggested a procedure for specifying the
boundary operators such that the total operator (including
the boundary modifications) inherits as many of the proper-
ties as possible of the operator in the interior with periodic
boundary conditions.

With respect to uniformity of the computations and com-
munications in a data parallel implementation, it is desirable
that the dissipation operators in matrix form have constant
bandwidth. We adopt the convention that 0° = 1. Thus, we
need not treat the zeroth moment separately. The most gen-
eral form of the fourth-order dissipation operator, subject to
the constant bandwidth constraint, is

Qo [+%] a2

Bo B P Bs
1 -4 6 —4 1

1 —4 6 —4 1

YN-3 YN-2 YN-1 IN

bn—2 On-1 6N

(39)

since we want to recover the operator given by (38) for a

grid function with compact support. Carrying out the sum-

mation over j in equation (36) and rearranging the terms
yields

N

9Q

3—7_19 = z;)\j@, (40)
i=

where Aj = [AyA_T?5P for j = 4... N — 4. The coefficients
in front of ¢2, ¢s3, ¢n—3 and dn—2 become fourth-order dif-
ferences if

az =03 =yN_a=6ny_2=1
P2 =vN-2 = —4.

Clearly, this choice is optimal for moment preservation, since
#;[A+ A_)?4P vanishes at all interior points whenever p<3.
As for the boundaries, moments of order exceeding one can-
not be preserved, since there are only two unknowns in each
stencil, with the stencils containing three and four points,
respectively. Preserving the zeroth and first order moments
yields
ap=6n=1
a1 =8N-1=vv=fo=-2
B1=vN-1=35,
or

1 =2 1

The null space of the interior operator is obviously a polyno-
mial of degree less or equal to three. To show this property
the recurrence relation (38) is solved for a homogeneous right
hand side. For the solution to belong to the null space of the

boundary operators, the third and second order terms must
vanish identically. Hence the null space of D4 consists of
polynomials of degree less or equal to one, the best possible
with three point boundary stencils. Finally [3]

N-1

$"Dug = [ArA_g,T > 0.

j=1

This inequality holds for the operator defined by (38) as
well. Hence, the boundary operator is also semidefinite. We
have shown that moments of order p < 1 are preserved.
Increasing p implies the introduction of zeros in the first and
last column, making the operator indefinite (in any energy
norm). Similarly, increasing the null space dimension of (39)
implies a loss of semidefiniteness. With respect to moments,
null space dimension, and definiteness the operator (41) is
optimum.

Proposition 3.1 With respect to moments, null space di-
mension and definiteness the optimal restriction of (88) to
a finite grid with non-periodic boundary conditions is given

by (41).

3.2.2 A positive definite fourth-order dissipa-
tion operator.

To see how a positive definite dissipation operator affects the
rate of convergence we introduce the following operator (see

also [8]):

D4= ‘.‘ '.' ‘.' '.. . (42)
1 —4 6 —4 1
1 —4 6 —4
1 —4 5

This operator is obtained by deleting the first and last rows
and columns of (41). This is equivalent to prescribing Dirich-
let boundary conditions.

Proposition 3.2 The symmetric operator D, defined by
equation (42) is positive definite, i.e., it preserves no mo-
ments and its null space consists of only the null vector.

Proof

By straightforward arithmetic
N-1

$"Did = 200~ 611"+ Y [A+A_¢iT +[26n —dn—i]* 2 0.
I=1

Hence, the operator is positive semi-definite. If $7Dy¢ = 0,
then each term must equal zero, and

Bi+2 — 20541 + ¢; =0,

which has the solution ¢; = « + B4, where o and 8 are
determined by the boundary conditions such that

&1 = 2¢o
¢N-1 = 2¢n




are satisfied, or

-1 1 a) _[o
(3 =) (5)-(5)
Since N must be a positive integer, « = # = 0. Thus ¢, =
0,7 =0,..N &> ¢ = 0. Hence, D, is positive definite.
Since the column sum of the first column is different from
zero, the operator cannot preserve any moment. As ]~34 is
positive definite, it follows that zero cannot be an eigenvalue

of (42); thus the only member of the null space is the null
vector. o

3.2.3 An indefinite, unsymmetric, fourth-order
dissipation operator.

We also consider the non-symmetric fourth-order dissipation
operator

D, = S . (43)

Polynomials of degree less or equal to two constitute the null
space of (43). Only zeroth order moments are preserved ([3]
or use equation (40)). Since the first diagonal entry is zero,
(43) is indefinite.

3.2.4 Conservative and non-conservative dissi-
pation operators.

The conservation property of the analytic Euler equations
should be inherited by the numerical scheme, especially for
shock computations. Clearly, the operators (41) and (43) are
conservative (each row can be thought of as a first difference
of something else). The operator (42) is not conservative
at the boundary point and at the first interior point. All
the operators are preceded by adaptive scaling factors (see
(25)). Since the scaling factors depend upon the mesh size
as well as the solution itself, the conservation property of the
operators (41), (42) and (43) may be lost at every point. Fur-
thermore, the definiteness property may also be lost. But,
as will be shown in the next section, the adaptive scaling can
be incorporated such that the dissipation operator is both
conservative and positive semidefinite.

3.2.5 Factorization of the symmetric, positive
semidefinite dissipation operator.

The dissipation operator D4 can be factored as

D, = D; D,

where
1
-1 1
-1 1
DT = (44)
-1 1
-1 1
- 1
1 -2 1
-1 3 -3 1
-1 3 -3 1
Df = (45)
-1 3 -3 1
-1 2 -1
0 0

The total artificial viscosity operator (in one space dimen-
sion) is
DT EDf, (46)

where

T = diag(eooo|Jo| ™. .. ,enon|In|™Y).

Here 0, €; and |J;|~! are the one-dimensional equivalents
of (29), (34) and (4), respectively. Obviously, the operator
is conservative.

This factorization corresponds to splitting the fourth-
order operator [A_A4]? into A_ and AyA_A,. Since
Ay and A_ commute, an alternative splitting is A4+ and
A_A4LA_. To facilitate the formal manipulation of the ma-
trix representation we use the equivalent splitting —A4 and
—A_A;A4. In matrix notation

D, = D{Dj,
where
1 -1
1 -1
1 -1
D} = (47)
1 -1
1 -1
1
0 0
-1 2 -1
1 -3 3 -1
D; = (48)
1 -3 3 -1
1 -3 3 -1

Note that D;"T = Di. TUsing the factorization Dy =
D} Dj, the dissipation operator is defined as

D ZD; (49)
which also is conservative. Moreover,

D, = D;D{D, = D} D] Ds, (50)




where

-1 2 -1
D, = SR . (51)
-1 2 -1
0 0

This factorization yields the following fourth-order dissipa-
tion operator

D; D ZD; (52)
which satisfies [3]
N—l‘
¢"DIDIED ¢ = > ojei |35 7 A A1
j=1

Hence, this operator is positive semidefinite. It preserves
the zeroth and first order moments, and its null space is
all polynomials of degree less or equal to one. The analy-
sis of D7 EDF and Df ZD; is more involved and will not
be carried out here. The operators have different stability
properties. Consider

¢" D7 EDF ¢
¢"D}TD; ¢

(DT EDT¢) D¢
(Df D7 ¢)"D,¢,

where
DiEDf¢ # D{IDi

The first choice yields a stable scheme, whereas the second
choice is unstable. The factorization in (52) is the preferred
choice. Table 1 summarizes the properties of the dissipation
operators.

Dissipation | Definiteness | Preservation | Dimension of
Operator of Moments Null Space
positive < first 2
D, semidefinite order
positive none 0
D, definite
~ indefinite zeroth 3
D, order
2
Dr=D?
2
Df=D;
positive < first 2
D7D ED; | semidefinite order

Table 1: Properties of the Dissipation Operators

3.3 Spatial Discretization

We have chosen a transformation between the physical and
computational grids such that Aé = Ap = A = 1, the
origin of the physical coordinates coincides with the center
of the channel cross-section at the inflow boundary, and the
range of the computational coordinates is 0 < & < N,
0 < £ Nyand 0 < ¢ < N¢. Denote the cross-sectional
physical side lengths by L, and Ly, and the physical channel

length by L.. The complete transformation between the
computational and the physical grids (§,79,¢) — (z,y, #) is

¢ = ¢cos(w(C)/Ne) — u'sin(w(C)/N¢)
{y = &sin(w(C)/N¢) + n'cos(w(C)/Ne) , (58)
z = (L./N¢
where
¢ = (26/N¢—1)Ls/2
{n' = (@n/Ny—1)Ly/2 59
and

0 Ce [O)CO)
w(¢) = { () Cello, ) - (55)
w (E [ClyN(]

where w'(¢) = @(3¢1—o—2¢)(¢—¢0)*(¢1—C¢o) 2. Hence, w(¢)
is a C'-spline on the interval [0, N¢]. Introducing this spline
function enables a C*-grid transformation, which is such that
the homogeneous inflow condition » = 0, v = 0, w = wo,
where u, v and w denote the Cartesian velocity compo-
nents, yields continuous velocity gradients even at the in-
flow boundary. The function w(¢) describes how the twisting
factor (angular frequency) increases from 0 to @ along the
¢-axis, which coincides with the physical z-axis. We use

@ =2x/N¢.

All the metric coefficients are derived from (53), (54), (55)

and
" & &y &2 Te Tn ¢ -
IJ'=1{m n m | =|9e wn wc . (56)
¢z Cy ¢z zZ¢ Zn  Z¢

3.4 Time Discretization

A three stage Runge-Kutta method is used to integrate the
semidiscrete Euler equations in time. It belongs to a class of
integration methods that can be written

0] ~ 7
q{'kz = (lskz o
WG = Qi+ a1 ATR(d;k)
: (57)
Qﬁzl = &u+ amATR(flﬂfl
ait = ak

The vector R is the right member of equation (22). For a
three stage Runge-Kutta method m = 3. The steady so-
lution is independent of the coefficients a; and Ar. This
property also holds if A7 is replaced by a local time step
A1y The coefficients o; can be looked upon as accelera-
tion parameters [2]. We have used a1 = a2 = a3 = 1. The
local time step is computed as [7]

,e CFL _ CFL
UL+ VI W]+ a(IVEL + [Valz + [VC2) — ? ’)
58
where the definition of ¢ in (58) is the same as in (29). The
Courant-Friedrichs-Lewy number, or CFL number, equals

1.27.

A




3.5 Numerical Methods, Summary

In summary, the Euler flow equations are based on the
twisted grid as defined by equations (53), (54) and (55), and
the semidiscrete equations

%@- = |3;1l[D§F s + DY Gijm + D§Hji)
— oue AL ALY n
—  oime[ATAT P m (59)
- ajkzefk,[AiA‘i]thkt
+ O'jklfﬁklAiAg_qjkl
+  oin€ AL A G
+ O'jklfﬁklAiAc_(ijkl

in non-conservative form and

'(z'g‘l;‘.i = |ijl|{D§ijl + DGk + Dgijt
- Ai[leklI'lajkzefk,Ai INFNE Y
- ATkl oime] ATAT AT G 1] (60)
— ATkl T ol AL AL AL k]
+ Ai[|ijz|_16jszfklAi('1jkz]
+ ATkl T oel, AT d k)
+ AL 0 T o AL A}

or
Q% = |3ul{D§F i + DYGijr + DH

- ALAY[I gl T ol AL AL g k]

- ATALI k| T ose] AT AT G 1] (61)
— ALALIT k| T oimes AL AL ]

+ AL jul T kel A din

+ ATkl okl AT ]

+ ATkl T ogrey AL e}

in conservative form. Equation (61) has not yet been imple-
mented. The reciprocal cell volume at point jk! is computed
from equation (3), Fjx, Gjm and H,y; are given by equa-
tions (6), (7) and (8). The vector q;x: is given by equation
(27), ojrt by equation (29), e by equation (34), €;x by
equation (32), and the difference operators for interior and
boundary points are given by equation (23). For boundary
points higher order difference operators are modified as de-
fined by one of equations (41), (42) or (43) and by (51).
For the conservative form the fourth-order operator is mod-
ified according to equations (44) and (45). The in/outflow
boundary conditions are stated at the end of section 2. At
the solid boundaries the normal component of the velocity
field is zero.

4 Simulation results

The effects on the entropy distribution, the flow, and the
convergence rate of the different dissipation operators for

Dy

Figure 3: Entropy Distribution at Outflow Boundary, Operator
D;=DF

the Euler equations were studied for a twisted channel of
rectangular cross section. The channel dimensions were
0.035 x 0.0175 x 0.140 m®. The grid sizes ranged from
32 X 32 % 32 to 32 X 32 x 64, with the total number of grid
points ranging from 32,768 to 65,536 points. The demon-
strated performance for a fully configured Connection Ma-
chine system model CM-2 is 1.1 Gflops/s in single-precision.

Since no shocks are present, the flow must be isentropic
throughout the channel, provided that inflow data is isen-
tropic. We compute the entropy as

(v=1)p7

which is valid for a polytropic gas [1]. Hence, prescribing
constant pressure and density at the inflow boundary ensures
that the inflow data is isentropic.

S =cylog [———I—)—] , (62)

Figure 2 and Table 2 show how the entropy piles up at the
solid walls for the operator Ds. The entropy distribution for
the operator DT DY is shown in Figure 3. The scale is the
same in both figures. Table 2 also shows that Dy and D,
are entropy preserving.

An indication of the sensitivity of the dissipation oper-
ators to perturbations in the inflow data can be obtained
from observations of w at the outflow. We studied two cases:
completely irrotational inflow, and an inflow with a slight ro-
tation. For the irrotational flow the normalized inflow data
isu=0,v=0and w=1 In the second test case u # 0
and v # 0, but small, at the solid walls of the inlet. All
interior points at the inflow boundary are the same as for
the irrotational case. From the contour plots it is apparent
that the choice of dissipation operator does affect the flow,




even if the operator is entropy preserving. Comparing the
perturbed and the non-perturbed flows, we note that the
conservative operator D ED;’ appears to be more stable
than the non-conservative operators D4 and Dy. In fact,
Figures 6 and 9 indicate that D4 not is very robust. Notice
also that in Figures 8 and 11 the contour lines are unsym-
metric at the corners. The operator D7D} D, does not
have this behavior.

The convergence rate of the operator DT ED} is the high-
est, Figures 4 and 5. Note the significant change of the con-
vergence rate for the operator Dy for the irrotational flow,
and for the operators Dy and Dy for the perturbed flow.
The change in convergence rate occurs after about 3,000 it-
erations in the first case, and about 1,500 iterations in the
second case. There is also a decrease in the rate of conver-
gence of the operator DT X D7 for irrotational flows at about
1,500 iterations. The convergence rate decreases by almost
a factor of two. The convergence properties are summarized
in Table 3.

Dissipation Vorticity at Entropy | Entropy

operator inflow boundary Stin Smax
No 43.64 57.57

D, Yes 43.56 57.68

No 46.67 46.86

Dy Yes 46.62 46.74

No 46.68 46.78

Dy Yes 46.58 46.73

No 46.76 46.94

DIED} Yes 46.73 46.84

Table 2: Entropy at Outflow Boundary

Dissipation Vorticity at Number of | Residual

operator inflow boundary | iterations

No 3900 5.8E-6

D, Yes 3900 6.8E-6

No 5800 6.6E-6

D, Yes 5400 6.6E-6

No 3900 5.8E-6

D, Yes 5400 6.9E-6

No 3400 6.5E-6

DrEDS Yes 2800 6.7E-6

Table 3: Number of Iterations for the Dissipation Operators
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Figure 4: Rate of Convergence for the Different Dissipation Op-
erators, Irrotational Inflow
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Figure 5: Rate of Convergence for the Different Dissipation Op-
erators, Weakly Rotational Inflow
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Eigure 6: Contour Lines of w-component at Outflow, Operator J'j igure 9: Contour Lines of w-component at Outflow, Operator
Dy, Irrotational Inflow D4, Weakly Rotational Inflow

Figure 7: Contour Lines of w-component at Outflow, Operator Figure 10: Contour Lines of w-component at Outflow, Operator
Dy, Irrotational Inflow D4, Weakly Rotational Inflow
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F igure 8: Contour Lines of w-component at Outflow, Operator F igure 11: Contour Lines of w-component at Outflow, Operator
D ED;’, Irrotational Inflow DT ED; , Weakly Rotational Inflow
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5 Summary and Conclusions

We have shown that the non-conservative dissipation op-
erator defined by (42) gives rise to a significant growth in
entropy close to the solid walls of the channel, and that the
conservative operators do not have this behavior. We have
also shown that factorization of the dissipation operator pro-
posed by Eriksson [3] as DT ZD{ results in a higher rate of
convergence than the unfactored operator, both for irrota-
tional and perturbed inflows. The number of iterations for
this operator is approximately 90% of those for the dissipa-
tion operator defined by (42) in the irrotational case, and ap-
proximately 70% in the perturbed case. The stability of the
different operators is not the same. The operator D] ED;'
appears to be most stable, whereas the operator D4 does not
seem to be robust.

The finite difference, explicit time stepping algorithm,
parallelizes easily and perfectly. A performance of 135
Mflops/s was obtained on a 8,192 processor Connection Ma-
chine system model CM-2. The demonstrated performance

for a fully configured system of 65,536 processors is 1.1
Gflops/s.
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