We introduce and analyze a collection of difference schemes for the numerical solution of a model
multi-dimensional equation of Schrédinger type with applications to the three dimensional parabolic
wave equation arising from the sound propagation in the ocean. This collection of methods includes
explicit and implicit schemes, 2-level and 3-level schemes and real and complex schemes. Many
of these are analogous to classical schemes for the heat equation and the wave equation but some
schemes are unique to the Schrodinger equation. Von Neumann type stability results are given for
all the schemes. Numerical results arising from the application to an ocean acoustic problem are
presented.
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1. Introduction

The parabolic wave equation (PWE) [18] is an equation that has been used frequently in the
modelling of acoustic wave propagation in the ocean. This paper is concerned with numerical
methods for solving it.

Many methods have been proposed for the solution of the PWE. Among these are the Fourier
split-step [7], implicit finite difference (Crank Nicolson) [10], and method of lines based on the
Adam-Bashforth formula [11]. In this paper, we present a collection of finite difference schemes for
the solution of the PWE. Compared to Fourier type schemes, finite difference schemes are more
generally applicable to variable coefficient problems, such as those that arise in the wide angle
case [16, 17] and the variable density case [8]. Moreover, the treatment of solid bottom boundary
conditions is considerably easier for finite difference schemes.

Traditionally, only smplicit finite difference schemes have been used. As we shall show later,
this is not too surprising because some of the more natural ezplicit schemes are unstable. In
this paper, we shall show how to construct new and stable explicit schemes. We are particularily
interested in explicit schemes because they are simple to implement, require less storage and are
easier to vectorize on many pipeline computers. These advantages are especially pronounced for
multi-dimensional problems.

For each of the proposed schemes, we present its stability and accuracy properties. All the
stability results are given for the general multi-dimensional case. Only an outline is given here -
the derivations and more general results can be found in [2, 3, 4].

In Section 2 we derive the parabolic equation and its model Schrodinger type equation. In
Section 3 we discuss the definition of stability that we use for analyzing the schemes. The various
schemes and their properties are presented in Sections 4 - 9. Some of the schemes are applied to
an ocean acoustic problem, and the numerical results are presented in Section 10.

2. The Paraoblic Wave Equation and Its Model Equation

The propagation of acoustic waves in a stratified three-dimensional ocean can be described by
the following wave equation in cylindrical coordinates:

1 1
¢rr + 7.¢r + 7-_2¢00 + ¢zz + kgn2(1‘,l9,2)¢ = 0’

where ¢(r,0,z) denotes the acoustic pressure field, z the depth variable, r the range variable, 6
the azimuthal angular variable, ko the reference wave number, n(r,0,z2) = 5(7%—; the index of

refraction with C(r,0,2) being the sound speed and Cj a reference sound speed.
Following Tappert[lS], we let ¢(r,0,2) = u(r,0,2)v(r), where u(r,8,2) depends only weakly
on 7. Then in the far-field with kgr >> 1, one can derive that v and v satisfy the equations:

v(r) = Mﬂkor "“0('——)

. 1
Upp + 2tkou, + r—2—u00 + uyy + .’cg(n2 - 1u=0

and

Since u is assumed to be a slowly varying function of r, if we drop the u,, term in the above
equation, we arrive at the so called three-dimensional parabolic wave equation:

i
Up = 5 Uzz +

2ko 2k Thor? 0 T 3 ko (n® = 1) .
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To facilitate the analysis of difference schemes for the parabolic wave equation, we consider
the following constant coefficient model Schrodinger equation in m dimensions:

m

U = E 1hiUg, s, + tau,
=1

where a and b; > 0 are real. Consider the one dimensional case (m = 1):
up = thuzy + tau.
A Fourier mode 2™ will be propagated by this equation according to:
u(a,t) = em(s=2mabt) giat (2.1)
Thus, although the equation “appears” parabolic, it exhibits a dispersive wave behaviour.

3. Stability
The usual definition of stability is the so-called Von Neumann stability condition:

|[R|<14+0(k) ask,h—0,

where R is any root of the characteristic polynomial of the numerical scheme and k and h are the
temporal and spatial mesh sizes. While this definition is sufficient to guarantee convergence of the
numerical solution as k and h tend to O for any consistent scheme [14], for fized k and h, it does
allow numerical solutions that can grow with each time step. On the other hand, it follows from
(2.1) that the exact solution of the PWE has the property that ||u(z,t)||, is conserved at all time.
It thus seems natural to require that the numerical solution also satisfy a similar property. Since it
is more difficult to construct schemes that have exact conservation properties, we shall require only
that the numerical solution does not grow with the time step. This is equivalent to the condition
that ‘
|[R| <1 foranyk,h.

This is sometimes known as the practical stability condition [1, 14] and is the one that we shall
adopt in this paper.
For simplicity, we shall present only schemes for the simplified model equation:

m

U = Eiblu;;lzl. (3.1)

=1

Under the Von Neumann stability definition, the addition of lower order terms, like the zau term
in the PWE, does not affect the stability of a numerical scheme for (3.1). This is not so for the
practical stability definition. In practice, the lower order term ¢au is multiplied by some positive
powers of h in a numerical scheme and if & is small enough, its effect is usually negligible on the
stabililty. In any case, since the practical stability condition obviously implies the Von Neumann
condition, the stability conditions given here are sufficient to guarantee the convergence of the
numerical solution as k¥ and h tend to zero, even in the presence of lower order terms.

4. Simple Explicit Schemes in One Dimension

The instability of some standard explicit schemes can be illustrated in one dimension. Consider
the Taylor series expansion:
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k‘2
u(z,t + k) = u(z,t) + kus + ?u“ R
k2
= u(z,t) + k(tugg) + —2—(i2umm) +.-

A family of explicit difference schemes can be derived by replacing the spatial derivatives by their
difference approximations:

n+l _ n -1
b Y E—k (zD”) U
k - Al J ’
=1
where
n n n
D™y Ui — 2uf g,
= =

The truncation error is O(k?, h?). The amplification factor is given by :

2 S
. t
R=1—2’7——; +——z +--

where

. 90 . k
'7=4rsm2—2-, with 0 < 6 < 2, r=gg-

Stability requires
|[R| <1 for 0<6< 2.

For p =1 (the Euler Scheme), |R|?> = 1+ ~4% > 1, and thus this scheme is unstable.

For p = 2 (a Lax Wendroff type scheme), |R|? = 1+ 1—: > 1, and thus this is also unstable.
The next two members of this family are stable, however, with the stability conditions:
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5. Stable Explicit Schemes with Artificial Dissipation
The Euler scheme can be made stable by adding the appropriate amount of artificial dissipation.
Consider the multi-dimension equation:

m

U = E Zblu.’s[:wa

=1
and the Euler scheme with artificial dissipation :

utl —yn m 2
L =N b (6D} + (a+iB)RF (DY) w),

k =1
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where a, 8 are arbitrary real constants, h; denotes the spatial mesh size in the z; direction and D7,
denotes the D} operator in the z; direction. The dissipative term corresponds to adding terms of

the form (o + zﬂ)h Uzzzz t0 the model equation. It is proven in [4] that the stability condition is :

2
a<0 and k< min| — ol ,— o

Sh [+ e-bIs

The scheme with the least restrictive stability condition is :

with the stability condition:

[\
NE
eSS

6. General Two-Level Scheme

Consider the general two level scheme :

un+1 n

m
= uZzsz;-"}Hu + (1 - p) ZibgD}",u,
1=1

with 0 < u < 1. With u = 0, we have the Euler scheme, while p = % corresponds to the Crank-
Nicolson scheme and u = 1, the backward Euler scheme.

The truncation error is :
O(k, h2) if u#
O(k2, h2) if U=

DO =D =
.

The scheme is stable if % < p < 1, and unstable otherwise.

7. Leap-Frog
Consider the Leap-Frog scheme:

un+2 —un m

J J _ ; +1
= ;zb, D}tlu.

The truncation error is O(k2, h%). The stability condition is :

1

kS

a;J« .

Thus this scheme is explicit and conditionally stable. However, three time levels must be used.
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8. Du-Fort Frankel
The Du-Fort Frankel scheme is a well-known explicit, unconditionally stable scheme for the
heat equation. For our model equation, it is given by :

uf_l+2 _ m

J J _ ; n+1
S = ;zbl DF}f'u,

where {
n+l,  __ n _ ,n-1__ n+l n
DF*u= o (uhy - -t )

This scheme is also unconditionally stable. The truncation error is O (k2, h2, (%)2> and thus unless

% — 0, this scheme is inconsistent.

9. Real System

The previous schemes are all derived directly from the original complex model equation (3.1).
If we let u = v+ iw, wherev,w are the real and imaginary parts of u, then v and w satisfy the
following equations :

m
Vg = — Z bl’wx,zn
=1

m
’U)t - E blvxlxlo
=1

Unlike the previous schemes, these two equations can be treated differently. For example, consider
the following two-level ezplicit scheme :

AR R

R
=1

n+1 n m

w., — w;

J J _ n+1

A A
=1

The truncation error is O(k,h?). Note that it has the same stencil as the Euler scheme. However,
it is conditionally stable, with the stability condition :

AP S
2(&1)
I=1"

Other time differencing can be applied to the real system. For example, a scheme similar to
the above one but based on the Leap Frog differencing has been recently proposed by Peggion and
O’Brien [13]. The stability property is similar to that of the Leap Frog scheme presented in Section
7.

10. Numerical Examples

This section is divided into two parts. Part 1 presents the computations performed on two-
dimensional problems and Part 2 presents the computations performed on a three-dimensional



Page 6

problem. All numerical results were required to satisfy an acceptable accuracy with a relative error
less than 1 percent. These results were compared with known reference solutions for accuracy and
speed. All computations were made on the VAX 11/780 computer with complex, single-precision
arithmetic.

10.1. Two-Dimensional Problems

Two sets of numerical results are presented in this section. The first set shows the application
of an explicit scheme to a real ocean acoustic problem; the accuracy of the results were then
determined by comparing with results from other known reference solutions. The second set uses
an exact reference solution to examine a set of explicit schemes; the accuracy of these results and
the speed of the computation were then compared with those from the Crank-Nicolson solution.
Both sets are shown in graphical and tabular form in this section.

10.1.1. An Application

Solutions to a real ocean acoustic problem such as arises in the Mediterranean Sea, were
produced by a number of methods [2, 9, 10]. The real ocean scenario consists of a point source
at a depth of 50 m and a frequency of 500Hz. The region of propagation is regular with an ocean
depth of 100 m and a water column density of 1.0g Jem?. The receiver is also placed at 50 m.
The sound travels at a constant speed of 1500 m/s. Starting at the origin, propagation is to be
predicted up to 40 km. Below the bottom, a slight density change is anticipated (1.2g/ cm?) with
an attenuation of 1db/wavelength. The existing Crank-Nicolson [10] solution partitions the depth
direction interval into 200 points (i.e., the depth increment of 0.5 m). The Crank-Nicolson method
marches with a range increment of 0.5 m. We selected Scheme 5 for the same application. Results
for both solutions agree surprisingly well, as shown in Figure 1.
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Figure 1: Propagation loss versus range

10.1.2. An Examination of Computational Speed

It was expected that for the same range step size, the explicit schemes would perform at a
faster speed and with the same accuracy as did Crank- Nicolson scheme. The three explicit schemes
selected (Schemes 5, 8, and 9) were used to solve a simple model equation with a known solution.
This test required the same accuracy as did the test in the previous section (within 1 percent). The
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simple model equation is ‘
)

Up = —Zkouzz (10.1)
whose exact solution is ) .
ko (2—50)

u(r,z) = —=e~ 2 (10.2)

\/;

Most of the input parameters were chosen arbitrarily for the test. Specially chosen parameters
included the depth increment (1 m) and the maximum range (200 m). Table 1 shows the accuracy
requirement for the computations; it also shows the CPU time, using the same time step of 0.001
m.

RANGE ERROR ERROR CPU
METHOD STEP SIZE Real Imaginary Hr—min-sec
(m)
Crank—Nicolson 0.001 —0.77E - 02 —0.024E - 02 02-07-38.11
5—point 0.001 —0.83E — 02 —0.025FE — 02 00-48-39.78
DuFord-Frankel 0.001 —0.74E — 02 —0.025FE — 02 01-21-30.81
Real-Imaginary 0.001 —0.76E — 02 —0.024E — 02 00-53-14.00

Table 1: Two—Dimensional Results

Remarks: For two-dimensional problems, the Crank-Nicolson scheme is only required to solve a
special tridiagonal system of equations and can thus take advantage of an efficient tridiagonal solver.
For the same step size, the explicit schemes are faster than the Crank-Nicolson scheme. However,
the Crank-Nicolson scheme can use a larger range step size than the other explicit scheme because
of its unconditional stability. The real advantage of the explicit schemes in computational speed can
only be appreciated in the next section where they are used to solve a three-dimensional problem.

10.2. Three-Dimensional Problem

In studying the three-dimensional ocean environmental effects, Lee and Siegmann [12] devel-
oped a three-dimensional wide angle wave equation in which the narrow angle wave equation is
a special case, which is a parabolic equation of the Schrodinger type. To test the validity of this
development, Lee and Siegmann constructed an exact solution of the form

2
u(r,8,2) = sin(Qz)e™ ¢ 2k (10.3)

This solution was designed to satisfy the three-dimensional narrow angle wave equation, a parabolic
equation of the Schrodinger type, i.e.,
1

Up = -;—ko(n2(r,0,z) - Du+ —u,, +

1
e __2k01'2 Ugg (10.4)

Schultz-Lee-Jackson [15] applied the Crank-Nicolson scheme and the Yale Sparse Matrix Package
[5, 6] to solve Eq. (10.4). The main advantage of the explicit schemes is the saving in speed and
memory storages - there is no need to solve a large sparse system. Because Scheme 5 produced
satisfactory results for two-dimensional computations, we extended the scheme to solve Eq. (10.4)
using the exact solution in Eq. (10.3) as a comparison; the Crank-Nicolson solution [15] was
also compared. Most input parameters were the same as those for the two-dimensional problem.
However, some additional information was needed for the three dimensional problem,including the
azimuthal angular increment Af = 0.2 ; the modal index m = 3; the angular sector 0 < § < 360°;




Page 8

METHOD ERROR ERROR CPU
Real Imaginary Hr—min-sec
Crank—Nicolson 0.18E - 01 —0.12E - 01 03-47-09.63
5—point 0.10E - 01 —0.11E - 01 00-21-35.48

Table 2: Three-Dimensional Results

and 1 = 7/100. To ensure the same accuracy, the range increment was determined to be 0.001
m for both the Crank-Nicolson method and Scheme 5. Computations were made up to 500 range
steps so that visible CPU time could be recorded for comparison. Table 2 displays the results at a
receiver depth of 100m.
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