A stable second kind integral equation formulation has been developed for the Dirichlet
problem for the Laplace equation in two dimensions, with the boundary conditions specified
on a collection of open curves. The performance of the obtained apparatus is illustrated
with several numerical examples.
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1 Introduction

Integral equations have been one of principal tools for the numerical solution of scattering prob-
lems for more than 30 years, both in the Helmholtz and Maxwell environments. Historically,
most of the equations used have been of the first kind, since numerical instabilities associated
with such equations have not been critically important for the relatively small-scale problems
that could be handled at the time.

The combination of improved hardware with the recent progress in the design of “fast”
algorithms has changed the situation dramatically. Condition numbers of systems of linear
algebraic equations resulting from the discretization of integral equations of potential theory
have become critical, and the simplest way to limit such condition numbers is by starting with
second kind integral equations. Hence, the interest in reducing scattering problems to systems
of second kind integral equations on the boundaries of the scatterers has been rapidly growing.

During the last several years, satisfactory integral equation formulations have been con-
structed in both acoustic (Helmholtz equation) and electromagnetic (Maxwell’s equations) en-
vironments, whenever all of the scattering surfaces are “closed” (i.e. scatterers have well-defined
interiors, and have no infinitely thin parts). Boundary value problems for the biharmonic equa-
tion with boundary data specified on a collection of open curves have been investigated in some
detail in [7], [8], [9]. However, a stable second kind integral equation formulation for scattering
problems involving ”open” surfaces does not appear to be present in the literature.

In this paper, we describe a stable second kind integral equation formulation for the Dirich-
let problem for the Laplace equation in R?, with the boundary conditions specified on an
“open” curve. We start with a detailed investigation of the case when the curve in question
is the interval [—1, 1] on the real axis; then we generalize the obtained results for the case of
(reasonably) general open curves.

The layout of the paper is as follows. In Section 2, the necessary mathematical and nu-
merical preliminaries are introduced. Section 3 contains the exact statement of the problem.
Section 4 contains an informal description of the procedure. In Sections 5, 6, we investigate the

cases of the straight line segment and of the general sufficiently smooth curve, respectively. In




Section 7, we describe a stable numerical implimentation of the scheme described in Section 6.
The performance of the algorithm is illustrated in Section 8 with several numerical examples.

Finally, in Section 9 we discuss several generalizations of the approach.

2 Analytical Preliminaries

In this section, we summarize several results from classical and numerical analysis to be used

in the remainder of the paper. Detailed references are given in the text.

2.1 Notation

Suppose that a,b are two real numbers with a < b, and f,g : [a,b] = C is a pair of smooth
functions, and that on the interval [a, b], the function g has a single simple root s. Throughout
this paper, we will be repeatedly encountering expressions of the form
lim( IO gy [ i(-t—)dt), 1)
=0 \Js g(t) ste 9(t)
normally referred to as principal value integrals. In a mild abuse of notation, we will refer to
expressions of the form (1) simply as integrals. We will also be fairly cavalier about the spaces on
which operators of the type (1) operate; whenever the properties (smoothness, boundedness,
etc.) required from a function are obvious from the context, their exact specifications are

omitted.
2.2 Chebyshev Polynomials and Chebyshev Approximation

Chebyshev polynomials are frequently encountered in numerical analysis. As is well known,

Chebyshev polynomials of the first kind T}, : [-1,1] = R (n > 0) are defined by the formula
Tn(z) = cos(n arccos(z)), (2)

and are orthogonal with respect to the inner product

! 1
(19)= [ 1@ 9(e)- ==z ©




The Chebyshev nodes x; of degree N are the zeros of Ty defined by the formula

2%+ 1

| = ., N-1 4
s i=01.. N1 )

Z; =

Chebyshev polynomials of the second kind U, : [-1,1] = R (n > 0) are defined by the formula

_ sin((n + 1) arccos(z)) (5)

Un(z) sin(arccos(z))

and are orthogonal with respect to the inner product

1
(f,9) = /_ @) 9(e)- V1= o (6)

The Chebyshev nodes of the second kind ¢; of degree N are the zeros of Uy defined by the
formula

N—-j)-m

i §=0L..,N-1 (7)

t; = cos

For a sufficiently smooth function f : [-1,1] — R, its Chebyshev expansion is defined by the
formula
oo
fl@) = Cy Ta(x), (8)
k=0

with the coefficients C}, given by the formulae
1 1 2\~—1
S R C R ORCEE R ©9)
and
2 1 2 1
Ci = ;/ f(@) - Tu(@) - (1 — o¥) b da, (10)
-1

for all £k > 1. We will also denote by P}V the order N — 1 Chebyshev approximation to
the function f on the interval [—1,1], i.e., the (unique) polynomial of order N — 1 such that
P{(z;) = f(x;) for all i =0,1,..., N — 1, with z; the Chebyshev nodes defined by (4).

The following lemma provides an error estimate for the Chebyshev approximation (see, for

example, [3]).




Lemma 2.1 If f € C¥[—1,1] (i.e., f has k continuous derivatives on the interval [—1,1]),

then for any x € [-1,1],
|P(z) - f(z)| =0 (]—Vl—,;> . (11)

In particular, if f is infinitely differentiable, then the Chebyshev approzimation converges su-

peralgebraically (i.e., faster than any finite power of 1/N as N — o0).
2.3 The Finite Hilbert Transform

We will define the finite Hilbert transform H by the formula

1
~ t
@ = [ 2 a (12)
-1 t—x
We then define the operator K : C?[-1,1] = L?(—00,00) by the formula
T—€ 1
> . (1) / (1) 2¢()
K =1 -
=t ([ 2 [ gEma-22). (13
and observe that the limit (13) is often referred to as the finite part integral
1
o(t)
f.p.
P ,/_1 (t - :6)2 dt (14)

(see, for example, Hadamard [6]).
The following theorem can be found (in a somewhat different form) in [6]; it provides
sufficient conditions for the existence of the finite Hilbert transform (12) and the finite part

integral (14), and establishes a connection between them.

Theorem 2.2 For any ¢ € C?[-1,1], the limit (13) is a square-integrable function of =, and
for any ¢ € C?[—1,1] the limit (14) is a square-integrable function of z. Furthermore,

K=HoD=DoH, . (15)

with D = ad; the differentiation operator. In other words, H commutes with D, and the product

of H with D is equal to K.




The following theorem (see, for example, [17]) describes the inverse of the operator H, to

the extent that such an inverse exists.

Theorem 2.3 The null space of the operator H is spanned by the function ﬁ-ll? Further-
more, for any function f € LP[-1,1] with p > 1, all solutions of the equation

H(p)=f (16)

are given by the formula

C
V1=z2’

with C an arbitrary constant, and the operator T : LP[—1,1] — LP[-1,1] defined by the formula

T(f)(x) = V1-a?- f(z). ‘ (18)

(17)

0@) = ~T o H o T(f)(z) +

Applying Theorem 2.3 twice, we immediately obtain the following corollary.
Corollary 2.4 For any f € C*[—1,1], all solutions of the equation
HoH(p) = Hp) = f (19)

are given by the formula
Co C 1+

+ -lo , 20
Vi Vi-a2 l-z (20)

1, =
¢(2) = 5T~ o H o T(f)(x) +
with Cp, C1 two arbitrary constants.

2.4 Several Elementary Identities

In this section, we collect several identities from classical analysis to be used in the remainder
of the paper. Lemma 2.5 states a well-known fact about the two dimensional Poisson kernel
y/(z® + y?); it can be found in (for example) [16]. Lemma 2.6 provides explicit expressions
for the finite Hilbert transform operating on Chebyshev polynomials, where (22) is a direct
consequence of Lemma 2.3, and (23), (24) can be found in [1]. Lemma 2.7 lists several standard
definite integrals; all can be found (in a somewhat different form) in [4]. Finally, Lemma 2.8
states a standard fact from elementary differential geometry of curves; it can be found, for

example, in [2].




Lemma 2.5 Suppose that o € LP[-1,1] (p > 1). Then

tim [ 1y .o (t)dt = o(z)
v=0J_; m((z — )% +y?) ’

for almost all z € [—1,1].

Lemma 2.6 For anyz € (—1,1),

/1 1 —1-—dt—0
_lt—.’lI \/1—t2 -

and
Lvi-¢
/ Un_1(t)dt = —7 - To(2),
-1 t—=zx
Pl = To(t)dt = w - Up—1(z)
iz Vi g n =m-Un-1\T),
for any n > 1.

Lemma 2.7 (a) For any z,t € (—1,1) and z # t,

/1 1 B logll—:-j——loglfﬁ

GG z—1

(b) For any (z,y) € R?\[-1,1] and t € (-1, 1),

Jul - (arctan(15E) + arctan(42) )

/1 (s—2) ds =
-1((s -2 +9%)(s - 1) (z —t)2+9?)
N (z~1)- (logﬁl(:ﬁ%?i —logﬂz%égﬁ)

2((z -1 +1?)

(c) For any z € (—-1,1),

1
1
log |z — t| - ————dt = —7 - log 2,
/_1 g | | = g

! t
/ log |z —¢| - dt = -7z,
-1

V1-—1¢2
1
1 1 T - arccos T
. clog(l + t)dt = ——
f_lt_z — g(1+1) —

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)




'l 1 _ m - (arccos(z) — )
/lt_x'm-log(l——t)dt— m , (30)
/ tl__ £ -log(1 +t)dt = m - (arccos(z) - V1 — 2% +10g(2) -z — 1), (31)
/1 1 g(1—t)dt = m-((arccos(z)—m)-v/1 — 22 +log(2)-z+1). (32)

Lemma 2.8 Suppose that v : [0, L] = R? is a sufficiently smooth curve parametrized by its
arc length with the unit normal and the unit tangent vectors at y(t) denoted by N(t) and T'(t),
respectively. Suppose further that the function u : R2 — R is twice continuously differentiable.

Then at the point y(t), the Laplacian of u is given by the formula
0%u Ou 0%u

Au=anar O ane tara (33)
with c(t) the curvature of v at 7(t).
2.5 The Poincare-Bertrand Formula
For a fixed point z € (—1, 1), we will consider two repeated integrals

p1(t) / ' pa(s)
A= _/lt—a: ( 1s_tds dt, (34)
B = / wa2(s) - / e1(t) ————dt | ds (35)
(t—z)(s—1) ’

differing from each other only in the order of integration. Both integrals exist almost everywhere
for a fairly broad class of functions. However, they are not, in general, equal to one another.
The following lemma establishes the connection between them (see, for example, [17]); its result

is usually referred to as the Poincare-Bertrand formula.
Lemma 2.9 Suppose that @1 € LP[-1,1], 2 € LI[-1,1]. Then if
1 1

-+-<1, 36
Pl (36)

/_11 2991_(_2 ' (/_11 ?T(st)ds) dt = -7 p1() - ¢2(a)

Lo ([ a=5e=)*

then

(37)

for almost all z € (—1,1).




2.6 Potential Theory

In this section, we introduce some terminology standard in potential theory and state several
technical lemmas to be used subsequently. We will define the potential G, : R®\{zo} — R of
a unit charge located at the point o € R? by the formula

Gao(z) = log(||lz — o). (38)

Suppose that + : [0, L] — R? is a sufficiently smooth curve parametrized by its arc length,
and that v is an open curve (i.e., 7(0) # (L)). The image of v will be denoted by T, and the
unit normal and the unit tangent vectors to < at the point y(¢) will be denoted by N(t) and
T'(t), respectively. Given an integrable function o : [0, L] — R, we will refer to the functions

Syo:R2 = R and Dy g, Q.0 : R2\I' = R, defined by the formulae

L
Srole) = [ Grio(@) - o(t) (39)
_ L oG (t)(m)
Drole) = [ GHAE otyar (40)
L 32
@ol@)= [ 0D oty (1)

as the single, double, and quadruple layer potentials, respectively.

2
The functions ac;}’\(,t()t()z), afﬁfgﬁ””) : R?\y(t) — R are often referred to as the dipole and

quadrupole potentials respectively. Obviously,

0G () _ _ (N(),z - ()
NG = o0 (42)
BCon(@) _ _2AN(),z — (1)) 1 (43)
N (2)? o=@ e —®F

In particular, if v is a straight line segment I, = [0, L] on the real axis, then
0G1(s+4)(I(s) —h-N(s))  h

ON(s +1) TRt )
?Gr(e4t)(I(s) =h-N(s))  *—h2 45
BN(s + t)2 - (h2 + t2)2’ ( )

The following two lemmas can be found in [11]. Lemma 2.10 states a standard fact from
elementary differential geometry of curves; Lemma 2.11 describes the local behavior on a curve

of the potential of a quadrupole located on that curve and oriented normally to it.

8




Lemma 2.10 Suppose that v : [0, L] — R? is a sufficiently smooth curve parametrized by its
arc length with the unit normal and the unit tangent vectors at (t) denoted by N(t) and T'(t),
respectively. Then, there ezist a positive real number B (dependent on v), and two continuously
differentiable functions f,g: (—f,8) — R (dependent on ), such that for any t € [0, L],

t)?2-s* 4
vt +s) =) = (s — L2 45t f(s) ) - T()

t) - s2
+ (=4 g00)) ),
for all s € (—p, ), where c(t) in (46) is the curvature of y at the point y(t).

Lemma 2.11 Suppose that v : [0, L] — R? is a sufficiently smooth curve parametrized by its

arc length. Then, there exist real positive numbers A, B, hy such that for any s € [0, L],

PCrorn(1(6) ~h-N(@) 2K _ch R+,

for allt € (—B,B), 0 < h < hg, where the coefficient ¢ in (47) is the positive curvature of v at

the point ~y(s).

Similarly, the following lemma describes the local behavior on a curve of the potential of a
dipole located on that curve and oriented normally to it; it also describes the local behavior
on a curve of the tangential derivative of the potential of a charge located on that curve. Its

proof is virtually identical to that of Lemma 2.11.

Lemma 2.12 Under the conditions of Lemma 2.11, there exist real positive numbers A, 3, hg

such that for any s € [0, L],

0G,ys1(7(s) —h-N(s))  h
, 7 +6N(s+t) — | S 4 (48)
9G(s41)(7(8) —h - N(s)) t
’ = 8T (s +t) “mre| A “

forallt € (—B,B), 0 < h < hy.




We will define the function M, , : RZ\I' — R by the formula
My (%) = Qy,0(z) — Dry,co(2)

L (892G (z oG (50)
- /0 (—-6]\‘;&))(2 ) _ o). 6}\?()5) )) -o(t)dt,

for all z € R2\T" and observe that M, . is the difference of a quadruple layer potential and a
weighted double layer potential with the weight equal to the curvature c(¢) . The following
theorem is a direct consequence of Lemmas 2.11, 2.12; it states that under certain conditions

the function M, , defined by (50) can be continuously extended to the whole plane R?.

Theorem 2.13 Suppose that v : [0, L] — R2 is a sufficiently smooth open curve parametrized
by its arc length, and that o : [0,L] — R is a function continuous on [0,L], whose second
derivative is continuous on (0,L). Then the function M, can be continuously ertended to

R?\{7(0), v(L)} with the limiting value on ¥(0,L) defined by the formula

L »2 T
Mot =tp. [ =ZOTD ooy

(51)
9G41)(v()
- [ et 20D ooy
for all z € (0,L). Furthermore, if o satisfies the additional condition that
lo(z)| <C-(z- (L - =), (52)

with some C > 0, a > 1 for all z € [0, L], then M, , can be further continuously extended to
R? with the limiting values on v(0), v(L) given by the improper integrals

L 62 o

o 00) = | (——i’;&f’é}’i e 0))) o(t)dt (53)
L 2

My = [ <——a S0 ), ———agg‘;i,‘(”t§L))) o, (54)

respectively.

Definition 2.1 We will denote by E the linear subspace of C[0, L], consisting of functions o

satisfying the following two conditions:

10




(a) o is twice continuously differentiable on (0, L);

(b) o satisfies the condition (52).
We then define the integral operator M, : E — C|[0, L] via the formula
M,(0)(z) = Myo(7(z))- (55)

The following lemma states that the operator M., on a sufficiently smooth open curve v is a

compact perturbation of the same operator M, on the line segment Iy, = [0, L].

Lemma 2.14 Suppose that v : [0,L] — R? is a sufficiently smooth open curve parametrized
by its arc length. Suppose further that the operator R, : C[0,L] — C[0, L] is defined by the

formula

L
R (0)() = /0 r(z,t) - o(t)dt (56)

with the function r : [0, L] x [0, L] — R defined by the formula

%G 0G . (v(z G (z

7‘(:1:, t) = apgi])((t’;ﬁx)) - c(t) : ‘g]\)f((Z)( )) - 3;/.((35 )’ (57)

for all x # t, and by the formula
2

r(t,t) = 9(1% (58)

for all x = t, with c(t) denoting the curvature of v at the point ~(t).
Then
o 2AN@,(a) — (0) 1
e e L SO RETOl 59
ve. WOA@ —0@) 1

@) Y& @-9?
for allz #t. Furthermore, r is continuous on [0, L] x [0, L], so that the operator R, is compact.
Finally, if o € E (see Definition 2.1 above), then

M,(o)(z) = My, (o)(z) + Ry(0)(z). (60)

11




Proof. (60) follows directly from the combination of (51), (56), (57) and the fact that the
curvature is zero everywhere on the line segment Iy. (59) is a direct consequence of (42), (43),
(45), (57). In order to prove that r is continuous on [0, L] x [0, L], we start with observing that
since v € C?[0, L], it is sufficient to demonstrate that
o(t)?

limr(t+s,t) = <o- (61)
Replacing z in (59) with ¢ + s, we obtain
e 2N+ 5) (1) 1
el == e 2@ et 9 107 )
+ C(t) . (N(t)"Y(t + S) - 'Y(t» _ _:_l_
[y(E+s) =@l s*
Substituting (46) into (62), we have
5)? s -
r(t+s,t) =~ 2dp((s))2 +e(t) - ng; + i? : Z((:; (63)
where the functions p,d: (=3, 8) — R are given be the formulae
p(s) =B 15 g0s), (64)
c(t)? - s? 2 .5 2
d(s) = (1 - —(Qﬁ——f—- + 5% f(s)) + (c(t; + & -g(s)) ) (65)

with B a positive real number, and the functions f, g provided by Lemma 2.10. Since f, g are

continuously differentiable on (—/3, 8) (see Lemma 2.10), we have

im 208) _ <)

sl—!>1(l) d(s) - 2 ’ (66)

. 1—d(s) c(t)?

s 12 (67)
Now, we obtain (61) by substituting (66), (67) into (63). O

Remark 2.1 A somewhat involved analysis shows that for any £ > 1 and v € C**+2[0, L],
the function r (see (57) above) is k times continuously differentiable. The proof of this fact
is technical, and the fact itself is peripheral to the purpose of this paper; thus, the proof is

omitted.

12




3 The Exact Statement of the Problem

Suppose that v is a sufficiently smooth open curve, and that the image of + is denoted by I'.
We will denote by S, the set of continuous functions on R? with continuous second derivatives

in the complement of T, i.e.,
S, = C?(R?\I') N C(R?). (68)

We will consider the Dirichlet problem for the Laplace equation in R?, with the boundary
conditions specified on ~:

Given a function f :T" — R, find a bounded solution u € S, to the Laplace equation

Au=0 in R\T ' (69)
satisfying the Dirichlet boundary condition

u=f on TI. (70)
The following theorem can be found in [12].

Theorem 3.1 If f € C%(T'), then there ezists a unique bounded solution in Sy to the problem
(69) - (70).

Remark 3.1 Certain physical problems lead to modifications of the problem (69) — (70). For
example, the boundedness of the solution at infinity might be replaced with logarithmic growth,
the boundary might consist of several disjoint components, etc. Extensions of Theorem 3.1 to

these cases are straightforward, and can be found, for example, in [14].

4 Analytical Apparatus I: Informal Description

In this section, we will present an informal description of the procedure. We assume that + :

[~1,1] = R? is a sufficiently smooth “open” (i.e., ¥(—1) # (1)) curve with the parametrization
~ (L
10 =7 (5 ¢+1). (1)

13




where L is the total arc length of the curve, and 7 : [0, L] — R? is the same curve parametrized
by its arc length. The image of v will be denoted by I'. We start with observing that the
solution u of the Dirichlet problem (69) — (70) must satisfy the following four conditions:

(a) w is harmonic in R%\T}

(b) u is bounded at infinity;

(c) u is continuous across I';

(d) wu is equal to the prescribed data f on I'.

Our goal is to construct a second kind integral formulation for the Dirichlet problem (69) —
(70). Standard approaches in classical potential theory call for representing  in R2\T via single
or double layer potentials so that conditions (a), (b) are automatically satified, and conditions
(c), (d) lead to a boundary integral equation via the so-called jump relations of single and
double layer potentials (see, for example, [13]). However, in the case of an open curve, if u is
represented via a double layer potential, the condition (c) can not be satified since any nonzero
double layer potential has a jump across the boundary; and if u is represented via a single layer
potential, while the single layer potential can be continuously extended across the boundary,
the condition (d) will lead to an integral equation of the first kind. Hence, classical tools of
potential theory turn out to be insufficient for dealing with open surface problems.

It is shown in [11] that the quadruple layer potential has a jump across the boundary which
is proportional to the curvature of the curve. Combining this observation with the well-known
fact that the double layer potential has a jump across the boundary which is independent of
the curvature, we observe that the sum of a quadruple layer potential and a weighted double

layer potential with the weight equal to the curvature given by the formula
1 (8%Gy)(2) 0G, ) ()
/;1 (W - C(t) . W . O'(t)dt (72)

can be continuously extended across the boundary. However, if u is represented via (72), then

the condition (d) will lead to a hypersingular integral equation. It is also shown in [11] that

14




the product of the hypersingular integral operator with the single layer potential operator is a
second kind integral operator in the case of a closed boundary. Thus, one is naturally lead to

consider the operator P, defined by the formula
b 9Cyp(@) 9Gyy(@)
fﬁwﬂﬂ‘ﬂ[4< ON(t)? —c(t) - AN

- ( /_ 11 log |t — s - a(s)ds) dt.

Obviously, P,(c) is not defined when z € ', and we will define the operator B, by the formula

(73)

= lim P .
By(0)(®) = lim, Py(0)(e) (74)
In the special case when + is the interval I = [—1,1] on the real axis, (73) assumes the form

1 52 1
Pio)ew) =5 [ syloele—9?+)- ([ 1osls—tl-oat) ds, ()
2/ 10y -1
and the operator By is defined by the formula
B1(0)(@) = lim Pr(0)(@,) (76)

The operator B; turns out to have a remarkably simple analytical structure (see Section 5.4

below); its natural domain consists of functions of the form

1+z

1 1
'“———,-1—:—?“P(x)+\/l—_—w—2'logl_m‘¢(w)’

with ¢, 1 smooth functions, and when restricted to functions of the form (77), it has a null-space

(77)

of dimension 2, spanned by the functions

1
V1—2z2’

1 o 1+z
\/1—;1;2 gl—.’l:.

In Section 5.4, we construct a generalized (in the appropriate sense) inverse of By; in a mild

(78)

(79)

abuse of notation, we will refer to it as BI"I.

15




Now, if we represent the solution of the Problem (69) — (70) in the form
u(z) = Py(0)(), (80)
then the conditions (c), (d) will lead to the equation

By(0)(t) = f(b), (81)

with o the unknown density. It turns out that (81) behaves almost like an integral equation
of the second kind; the only problem is that the kernel of B, is strongly singular at the ends.

Fortunately, the operator
B, =B, oBj}, : (82)

restricted to smooth functions, is a sum of the identity and a compact operator. In other
words, E’y is a second kind integral operator. Therefore, our representation for the solution of

the Problem (69) — (70) takes the form

u(z) = Py(n)() = Py o By} (n) (), (83)

with 7 the solution of the integral equation

B,(n)(®) = £(2). (84)
Finally, we remark that minor complications arise from the non-uniqueness of BI“1 (see (78),

(79) above); they are resolved in Section 6.3.

5 Analytical Apparatus II: Open Surface Problem for the Line
Segment I = [—1,1]

5.1 The Integral Operator P;

Definition 5.1 We will denote by Fy the set of functions o : (—1,1) — R of the form

o(0) = <y - 9le) + Sy Lo Ty - (), (85)

16




with @, : [-1,1] — R twice continuously differentiable, and satisfying the conditions

1
/ log |1 +t|-o(t)dt =0, (86)
-1

1
/ log |1 —t|-o(t)dt = 0. (87)
-1

We will consider the integral operator Pj : Ff — C?(R?\I) defined by the formula

1
Pi(o)(z,y) = /_1 Ki(z,y,t) - o(t)dt

1 1 2 (88)

1
= (,;92 log((z — )% +¢?) - ([_1 log|s —t| - a(t)dt) ds.

Obviously, Pr converts a function o € Fy into a quadruple layer potential whose density D(o)

is in turn represented by a single layer potential

1
D(o)(z) = / log | — ¢ - o(£)dt. (89)
-1
The following lemma provides an explicit expression for the kernel K; of P.

Lemma 5.1 For any o € Fj,
|yl - (arctan(1=2) + arctan( 1""’)
e
Kl(ma Y, t) = 2 2
@07+ )
1-z)%4 14z)2+
(£ =1)- (1o U" — log O )
2((z —t)2+9?)
for any (z,y) € R2\I and any t € (-1,1).

Proof. Since log((z — s)? + y?) satisfies the Laplace equation for any (z,y) # (s,0), we have
o2 02
77 o8((@ - 5)° + %) = — 55 log((z — 5)* +4°); (91)
substituting (91) into (88) and integrating by parts once, we obtain

1 1
PO@n =3 [ alog(@=sf+47)- ( [ Ziogls -1 -o(t)dt) ds

_ (T(—l—iPT)y? . [110g|1 —t| - o(t)dt (92)
(1+=z)

1
_—— log |1 + t| - o(t)dt.
T /_1 og|1+1| - o(t)
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Combining (92) with (86), (87) and changing the order of integration, we have

1 1
Pr(o)(z,y) = /;1 (% /_1 % log((s — )2+ 4?) - % log|s — tlds) -o(t)dt. (93)

Hence,

1o 9 o, O
Ki(e,3,1) =3 / 55 log((s = +47) - 5_logls — tds

1 —
= / (28 332) ds.
~1((s=2)2 +9?)(s - 1)
Now, (90) follows immediately from the combination of (26), (94).

5.2 The Boundary Integral Operator B;
We will define the integral operator By : Ff — L'[-1,1] (see (85)) by the formula
1
Bi(0)(w) = lim Pi(o) (@) = im [ Ki(z0,)- (0t
The following lemma provides an explicit expression for Bj.

Lemma 5.2 For any z € (—1,1),

1 Jog =2 _ ]og 1Lz
Bi(o)(@) = 2 - o(z) + / B BT (5t
Proof. Substituting (90) into (95), we obtain
ooyl (arctan(lﬁf) + arctan(l'ﬁﬁ))
Br(o)(a) = limy /_ 1 et o (t)dt
—m)2 2 z)2 2
i [P ETE (1°ggl(_f$y_‘l°gg%1)t_)ty_) t)dt
+ y=0 -1 2((x—t)2+y?) o(t)de.

Combining (21) with the trivial identity

1—
lim arctan (—ﬁ) + arctan (1_|-|?—J:|E) =m, zé€(-1,1),

y—0

we have
ooyl (arctan(lﬁ—’) + arctan(llﬁ“-’)) \
Y i U e)
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Now, applying Lebesgue’s dominated convergence theorem (see, for example, [15]) to the second
part of the right hand side of (97), we have
—m)2 2 2 2
. 1 (a:—t)~(log£1—(1£_%”——log%)
30 2z — 12 + 12
y=0J 3 ((z—-1)*+v?)

_/1 (z—1¢)- (loggl—(—lﬁ_%';i——loggl—(?%gﬁy—z)

-o(t)dt

(100)

- (R

[ okt s

-o(t)dt

-o(t)dt.

-1 z—t

Finally, combining (99), (100) with (97), we obtain (96). O

Remark 5.1 Elementary analysis shows that

i losTE—loeslt 1 1 2
t—z z—t l-z 14z 1—z2

(101)

That is, the only singularities of the integral kernel in (96) are at the end points +1.
5.3 Connection Between the Operator B; and the Finite Hilbert Transform

Lemma 5.3 For any o € Fr (see Definition 5.1),
Bi(0)(z) = ~H*(0)(x), (102)
for all z € (—-1,1).

Proof. Due to (12),

72(0)(a) = /_ 11 - . - ( /_ 11 t—_l-; -ar(t)dt) ds. (103)

Combining (37) with (103), we have

~ 1 1
H%(0)(z) = - (7r2 -o(z) + /_1 (/_1 mds) -a(t)dt) . (104)
Now, (102) follows immediately from the combination of (25), (96), (104). O
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5.4 The Inverse of H? for Chebyshev Polynomials

In Section 5.5, we will need the ability to solve equations of the form (19). However, due to

Corollary 2.4, the solution to (19) is not unique. The purpose of this section is Theorem 5.8,

stating that the solution to (19) is unique if restricted to the function space Fy (see Definition

5.1), and constructing such a solution.

The following lemma is a direct consequence of Corollary 2.4 and Lemma 2.6.
Lemma 5.4 For any integer n > 0 and z € (—1,1), all solutions of the equation
H? (on) =T,

are given by the formula

Co C1 1+z

+ -lo ,
V1i—22  1-2z2 E1-%

with Co, C1 arbitrary constants, and the functions o, defined by the formulae:

on(z) = on(z) +

_ 1 T 1+z

a'()(.’l?):';g' ],—-:1:2.10g1—$’
and

ook(z) = Vi-a? / Uzk l(t) ~—g

- 1 = ! Una(t) 2 <

= —— —x2 M - )

O2k—1() 73 l-z 4 t—=zx dt 2k —1)m® /1—2z2’

for all k> 1.

We will define the operators J, L : C1[-1,1] — C[-1, 1] via the formulae:

J(p)(z) = /_lllog|a: —t- \/1_1__7 . ([1 ;p%s-).;ds) dt,
L(e)(z) = / log|z—t- VI—2- ( / %) 4 )dt.

-8

(105)

(106)

(107)

(108)

(109)

(110)

(111)

The following lemma provides explicit expressions for the derivatives of J(¢), L(y), and for

the values of J(¢), L(¢) at the points —1, 1.
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Lemma 5.5 For any ¢ € C'[—1,1],

U ____7{2. (p(:l:)
J(e)(z) = Wit (112)
’ 1
L(¢)(@) = - - p(a)- VI +7- / o(s)ds, (113)
-1

for any z € (—1,1), and

1 arccos(s)

J)(-1)=m- i p(s)ds, (114)
1 - T
spw=r- [ -"ir————i—\/_(_;—_’—r - p(s)ds, (115)

L(p)(-1)=m- /11 ¢(z) - (arccos(z) - V1 — 22 + log(2) - z — 1)dz. (116)

L)1) ==- /_11 o(z) - ((arccos(z) — ) - /1 —x2 4+ log(2) -z + 1)dz.  (117)

Proof. The identities (114) — (117) are a direct consequence of (29) — (32) in Lemma 2.7,
respectively. In order to prove (112), substituting (110) into J'(¢) and interchanging the order

of the differentiation and integration, we obtain

J(0)(@) = /- 11 . L . \/11——t2 - ( /_ 11 i‘e_(_ilds) dt. (118)

Applying (37) to the right hand side of (118), we have

o) — ¢(z) el (ML 1
roe ==t Z 8 [ 25 (L)

1 1
_/ i(i)_(/ L 1 dt)ds_
_1T—S8 qt—z 1—12

Now, (112) follows immediately from the combination of (22), (119). The proof of (113) is

(119)

virtually identical to that of (112). O

The following lemma provides explicit expressions for J(T,), with n =0,1,2,....
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Lemma 5.6 For any z € [-1,1],

3
J(To)(z) = —% + w2 - arccos(z), (120)
and
2
J(Tan)(z) = ;—n ‘V1—22 Uspi1(z), (121)
2 w2
(@) = — V1= 22 Ugp_s(2), 122
J(Ton-1)(z) n— 172 t5. 1 z? - Uzn—2(2) (122)
foralln > 1.
Proof. Substituting Tp into the equations (112) and (114), we obtain
2
-7
J(To)()dt = ——, 123
J(To)(-1)=m- ' Mds—w-/wmdx—ﬂ—a (124)
° -1 V1—s? 0 2
Now, (120) follows immediately from the combination of (123), (124), and the trivial identity
II)@) = I@N-D+ [ T @) (125)
The proofs of (121), (122) are virtually identical to the proof of (120). O
The following lemma provides explicit expressions for L(U,), with n = 0,1,2,.... It is a di-

rect analogue of Lemma 5.6, replacing the mapping J with the mapping L, and the polynomials

T, with the polynomials U,. Its proof is virtually identical to that of Lemma 5.6.

Lemma 5.7 For any z € [-1,1], .

2 3
L(Uo)(z) = Z;— - (arccosz —z - V1 —22) 4+ 27 -2 — %,

and
st = 5/ (B B
1m0 = A= (G2 Tl
+ 27 - (Z:;O_gi - (4n241j 1)2) )
for alln > 1.
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We are now in a position to combine the identities (27), (28), Lemmas 5.4, 5.6, and 5.7 to
obtain a refined version of Lemma 5.4. The following theorem is one of principal analytical

tools of this paper.

Theorem 5.8 Suppose that for eachn =0,1,2,..., the function o, € F (see Definition 5.1)

is the solution of the equation

H%(0y) = Ty (129)
Then
1 z 1+ 2(log2+1) 1
= —. . - . 1
a0(z) = = — log T— T log 2 — (130)
1 L Uo(t) 2 T
= — — 2 . ————— —_—— .
e =m VIt | et E Aa (131)
+ 1 1 o 14z
o iz tl-z
and
1 ! Usn—1(t)
= = 1~ 2. Zen—\7J
om(@) =3 Vi-e PRrEra (132)
_ 2 2nlog2 B 4an 1
mdlog2 \4n2-1 (4n2-1)2) /1—g2’
1 ! Uan(t) 2 T
- — 2. n - .
Oon+1(T) =3 Vvi—=z e dt It D8 i (133)
foralln > 1.

Finally, we will need the following technical lemma.

Lemma 5.9 Suppose that the functions Dy, : [—-1,1] = R with n = 0,1,2,... are defined by

the formula
1
Da(z) = / log |z — | - om(£)dt, (134)
-1
with oy, defined by (130) - (133) above.
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Then

Do(z) = % Vi-2, (135)
Dy(z) = —2—11-; cz-yV1—22 (136)
and
1 Un(z) Up—2(z)
Dn(:z:)——2—7;-\/1——x2-(n+1— 1 ), (137)
for alln > 2.

Furthermore, for any integer n > 2, there exists a polynomial p,—2(z) of degree n — 2 such

that

Dy(z) = (1 —2%)%2 - pp_s(a). (138)
Proof. The identities (135)—(137) are a direct consequence of the identities (27), (28), and
Lemmas 5.6, 5.7. To prove (138), we first observe that (see, for example, [1]) for all n =
0,1,2,...,

Un(1) =n+1, (139)

Un(-1) = (-1)"(n+1). (140)

It immediately follows from (139), (140) that
Un(=1)  Un-2(-1) _

n+1 n—1 0, _ (141)
Un(l) Un—2(1) _
n+l n-—1 =0, (142)

for any n > 2.

Now, we observe that the function
Un(z)  Un-o(z)
n+1 n—1
is a polynomial of degree n, and that the points = =*1 are the roots of W (see (141), (142)).

W(z) = (143)

Therefore, there exists such a polynomial p,_o of degree n — 2 that

- = 0= ) a0

Finally, we obtain (138) by substituting (144) into (137). O
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5.5 The Integral Equation Formulation for the Case of a Line Segment

In this section, we will combine the results in previous four sections to solve the Dirichlet
problem for the line segment I = [—1,1] on the real axis. The following lemma, is a direct

consequence of Theorems 2.13, 5.8, and Lemmas 5.3, 5.9.

Lemma 5.10 For any function f € C%[—1,1], there exists a unique solution o € Fy (see
Definition 5.1) to the equation

1 Jog 1=2 _ jop Ltz
BTt~ R T 5 (t)dt = f(a); (145)

Bi(o)(x) = 7% - o(x) +/

-1 T—1
in other words, the operator BI'1 is well defined if the range is restricted to the function space
Fr. Furthermore, if f is orthogonal to To, Ty with respect to the inner product (3), then the

function Pi(o) can be continuously extended to R?.
For the cases f = Ty, f = T1, we have the following lemma, easily verified by direct calculation.

Lemma 5.11 (a) The only bounded continuous solution to the problem

Au=0 in R2\I
(146)
u=1 on I
18
u)(z,y) = 1. (147)
(b) The only bounded continuous solution to the problem
Au=0 in RA\I
(148)
u=z on I
is
N(z,y)
uj(z,y) = ===, 149
Heww) = B (149)
with the functions N,D : R? — R defined by the formulae
N(z,y)=(z+1)2+12 - /(a2 - 1) + ¢, (150)
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D(z,y) =+ (x+1)2 + 12+ /(z — 1) + 32

+ \/(\/(z+ 1) +y*+V(z - 1) +y2)2 -4,

(151)

respectively.
Combining Lemmas 5.10, 5.11, we immediately obtain the following theorem.

Theorem 5.12 Suppose that the function f : [-1,1] = R is twice continuously differentiable.
Suppose further that the function o € Fr (see Definition 5.1), and the coefficients Ay, A; satisfy

the following equations:

1o log 1tz
Bi(0)(z) = 72 - o(z) + / 1 g1 a,_tg”t o (t)dt

(152)
= f(z) — Ao — Ay - z,
1 1
—Ag— A -z) —=dz =0, 153
1
z)—Ap— A1 2) —=dr = 154
»/—l(f( ) 0 1° ) \/-——(L' ( )
Then the function u : R2 — R defined by the formula
u(z,y) = Pr(0)(z,y) + 4o - u)(,y) + 41 - uj(,y) (155)
is the solution of the problem
Au=0 in R2\I
(156)
u=f on I

Applying Theorem 5.8, we can now solve the Dirichlet problem (156) via the representation

(155).

Corollary 5.13 Under the conditions of Theorem 5.12, the solutions to the equations (152) -
(154) are

L Uit B B -z
o(z) = = V1-22- go k- 1()dt+¢1—()m2+\/1l_x2’ (157)
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Ag = Co, (158)
Ay =Ch, (159)

where the coefficients By, By are defined by the formulae

2 > 2k log 2 4k
-2 . _ 1
Bo= 57082 ;Cz’k (4k2—1 (4k2—1)2>’ (160)
Cok+1
1
7r3 Z2k+1 (161)

respectively, and C, (k =0,1,2,...) are the Chebyshev coefficients of f 'gz"ven by (9), (10).

Remark 5.2 It immediately follows from Lemma 5.9 that the function Pr(c) with o given by

(157) has an explicit expression

1 —38 2 _,2
Pio)aw) = [ S D)6, (162)

for any (z,y) € R?\I, with the function D(¢) : [~1,1] — R defined by the formula

D(o)(@) = 5--V1-a?- Zc (U’“ _2(“’) Uk("”)). | (163)

= k+1

Finally, we will need the following lemma.

Lemma 5.14 Suppose that the operator S is defined by the formula
S(n)(z) = D(B;*(n))(=)

- /_11 log |z — ¢| - By ! (n)(t)dt, (164)

with the operator By defined in (96). Then S is a bounded linear operator from C[-1,1] to
Cl-1,1].
Proof. By Lemma 5.9, we have

S(To)(@) =~ V1-a, (165)

S(Ty)(z) = —% z-VI-2, (166)




and

S(To)(z) = _% Vit (Zﬂf"l) _ U;—j(f)) , (167)

for all n > 2. Substituting (5) into (167), we obtain

S(T)(z) = _% . (sin((n +n11-a;‘ccos(m)) __sin((n —nl)—a;‘ccos(a:))) ’ (168)

for all n > 2. Utilizing the trivial fact that |sin(u)| < 1 for any real number u, we have

2 1
L - —_—
15(Tn)lloo < 7 nrl (169)

for all n = 0,1,2,.... Now, any function ¢ € C?[—1,1] can be expanded into a Chebyshev

series
oo
o(z) = Z Cr - Tn(z), (170)
n=0
and by Parseval’s identity,
o 1 2
o T ILAC) R NP 171
2 G= [ sl (171)

Applying Schwarz’s inequality, we have

1S(P)lloo < Y 1Cnl - 1(Tn) lloo

n=0
o]
<2y ——jc
Tt (172)
2 [ 1 P :
< (S ——) (S
< (Serm) (£9)
< 2[¢lloo
Since C%[—1,1] is dense in C[~1,1], S is bounded from C[-1,1] to C[-1,1]. m]

28




6 Analytical Apparatus III: Open Surface Problem on a Gen-
eral Curve

6.1 The Integral Operator P,

In this section, we consider the case of a general curve. We assume that v : [-1,1] = R? is a
sufficiently smooth “open” curve with the parametrization (71). The image of y is denoted by

I'. We will consider the operator P, : F; — c*(R?\I') defined by the formula

1
P,(0)(x) = /_ K(at)- olt)dt

L2 1 [8%G, ) (2) 0G4 (s)(z) !
-7/ (W ~e) gy ) ([ st totoae) s
(173)

with L the arc length of . The following lemma provides an explicit expression for the kernel

K. Its proof is virtually identical to that of Lemma 5.1.

Lemma 6.1 For any o € Fy (see Definition 5.1),

1 oG,
(=) =/_1 ags(l()w) ' s—l-tds’ (174)

for any z € R2\T and t € (~1,1), with the integral in (174) intepreted in the principal value

sense.

6.2 The Boundary Integral Operator B,

We will then define the integral operator B, : F — L[-1,1] by the formula

By(0)(t) = lim Py (0)(v(t) + h- N(2))
1 (175)
= lim /_ Ky (1(t) + - N(2) ) o(5)ds.

The following lemma is a direct consequence of Lemmas 2.12, 5.2; it provides an explicit

expression for B,.
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Lemma 6.2 For anyt € (—1,1),
1
B.(o)(t) = n - o(t) + / K(t,5) - o(s)ds, (176)
-1
with the kernel Kg : (-1,1) x (—1,1) = R given by the formula

1

with the integral in (177) intepreted in the principal value sense.

6.3 The Integral Equation Formulation for the Case of a General Curve

Similarly to the operator B; defined in (96), the kernel K$ of B, is strongly singular at the
end-points. Therefore, if the solution of the Dirichlet problem (69) — (70) is represented by the
function P,(c) on R?\T, then (70) will lead to a boundary integral equation

By(o)(t) = f(t), (178)

which is not of the second kind. Because of the obvious similarity of the operators By, B,, it

is natural to consider the operator 57 : C[~1,1] = C%(R?\I") defined by the formula

P,(n)(z) = Py o B (n)(2)- (179)
Obviously, ﬁ’y(n) is not defined when = € I', and we will define the operator 1§7 : Cl-1,1] —»
C[-1,1] by the formula

B, = lim P\(m(@) = By o B7'(n)(®). (180)

The following theorem is one of principal results of the paper; it states that §7 is a second
kind integral operator when restricted to continuous functions, and is an immediate consequence

of Lemmas 2.14, 5.14.

Theorem 6.3 Suppose that v : [-1,1] — R? is a sufficiently smooth “open” curve with the
parametrization (71). Suppose further that the operator Ry : C[-1,1] = C[-1,1] is defined by
the formula

~

1
B0 = [ 7@ o, (181)
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with the function 7 : [-1,1] X [-1,1] = R defined by the formula

o I (2@, 1(@) — 1) 1
=5 ( @ =@ @) - v(t)IP) (182)
LDt (N —v®) 1
T Th@-0F "~ e-t
for all x # t, and by the formula
2. o(t)2
7(t,t) = L—48ﬂ, (183)

for all z = t, with L the arc length of v, and c(t) the curvature of v at the point v(t). Then,

By(m)(t) = (I + M)(n)(2), (184)

with I : C[—-1,1] — C[-1,1] the identity operator, and M : C[-1,1] = C[-1,1] a compact
operator defined by the formula

~

M(n)(t) = (By = Br) o By (n)(t) = Ryo S(n)(t), (185)
with the operators E,S : C[-1,1] = C[-1,1] defined by (181), (164) — (167), respectively.

Observation 6.1 It immediately follows from the combination of (59), (182) that the operator
Rv is related to R, defined in Lemma 2.14 by the formula

B@)@) = 3 Refo) 3+ 1)), (186)

with 5(t) = o(£(t + 1)), and the function 7 is related to the function r defined in (59) by the
formula
~ L? L L
() = — r(5(@+1),5(¢+1)). (187)
4 2 2
The function ﬁ.,(n) can not, in general, be continuously extended to the whole plane R?,
unless the density 7 satisfies certain additional conditions. The following lemma is a direct

consequence of Theorems 2.13, 5.8, and Lemmas 5.3, 5.9.
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Lemma 6.4 Suppose that the function n € C[—1,1] is orthogonal to Ty and T1 with respect to
the inner product (3). Then ﬁy(n) can be continuously extended to R?.

Lemma 6.4 above shows that the solution of the problem (69) — (70) can not be represented
by the function 137(77) alone. Indeed, ﬁ,(n)(x) decays at infinity like 1/|z|, whereas Theorem
3.1 only requires that the solution of the problem (69) — (70) be bounded at infinity. Suppose
now that we can find two functions u, u}, in S, (see (68)) such that the following condition

holds:

() ) o ase)
with np, 71 the solutions to the equations

B, (n)(t) = uY(x(¥)), (189)

By (n)(t) = ui(2(t)), (190)

respectively, and the inner product in (188) defined by (3). Then the solution of the problem
(69) — (70) can be represented by the formula

u(z) = Py(n)(z) + Ao - u() + A1 - v} (), (191)
so that the density n, while satisfying the boundary integral equation
By(n)(t) = f(t) — Ao - u3(v(t)) — A1 - ub(7(D)), | (192)

is also orthogonal to Ty and T;. The following lemma provides such two functions indirectly;

it describes a single-layer-potential representation for the functions ﬁy(Tn) (n=2,3,...).

Lemma 6.5 Suppose that v : [-1,1] = R? is a sufficiently smooth “open” curve with the
parametrization (71). Then for anyn =2,3,...,

~ n 1
L)@ = -2 [ Gylo): 2t

n ! Tn(t)
=——- [ logl|z—~(t)]: dt,
2 [ ogle -l 2

(193)

foranyz ¢T.
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Proof. Combining (179), (173), (164), we have the identity
L2 1 (982G () 0G,(1)(z)
—_— — . t 194
@ =75 [ ( S — ) I | - st (194
for an arbitrary n € C[—1, 1]. In particular,

2 1 (32G. . (x G, (x
BEe =2 [ (%—e(t)%%—))-sm)(t)dt. (195)

Since the function G,(;)(x) satisfies the Laplace equation for all z # ~(t), applying (33) to

G.(t) and carrying out elementary analytic manipulations, we obtain the identity

r (a?a,,(t) (@) G (w)) _ PG

7 \Taver OB P (196)

and substitution of (196), (167) into (195) yields the identity

pin- & [ 25 (M-S

Now, we obtain (193) by integrating by parts twice the right-hand side of (197). o

The following lemma is an immediate consequence of Lemma 6.5 and the well-known fact

that the functions u : R? = R (n =10,1,2,...) defined by the formulae

ug (z)=1, (198)

! Ta(t)
™z —/ 1 —y(t)| —====dt, n=1,2,... 199
uy@) = | logle— () == (199)

form a complete basis for the space S, (see, for example, [12]).

Lemma 6.6 Suppose that v : [-1,1] — R? is a sufficiently smooth “open” curve with the
parametrization (71). Then the functions ul, ul defined by (198), (199) satisfy the condition
(188) - (190).

Finally, we summarize our analysis for the case of a general curve by the following theorem.
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Theorem 6.7 Suppose that v : [—1,1] — R? is a sufficiently smooth “open” curve with the
parametrization (71), and that the function f : [-1,1] — R is twice continuously differentiable.
Suppose further that the function n : [-1,1] — R, and the coefficients Ag, A1 satisfy the

equations

By(n)(t) = (I + Ry 0 S)(n)(t) = £() — Ao - w9 (v(t)) — A1 - w3 (7(2)), (200)

1

/_ (0)- ﬁdt —0, (201)
1

/_ (o) \/—l—t:——_t_fdt —0, (202)

with I the identity operator, and the operators R«,,S : C[-1,1] = C[-1,1] defined by (181),
(164), respectively. Then the function u: R? — R defined by the formula

u(@) = Py(n)(z) + Ao - ud(z) + 41 - ul(z) (203)

is the solution of the problem
Au=0 in R\T
u=f on T,

(204)

in (203), the operator 137 : C[-1,1] — C(R?) is defined by (179), (173), (145), and the functions

u3, uy are defined by (198), (199) respectively.

7 Numerical Algorithm

In this section, we construct a rudimentary numerical algorithm for the solution of the Dirichlet
problem (69) — (70) via the equations (200) — (202). Since the construction of the matrix and
the solver of the resulting linear system are direct, the algorithm requires O(N?3) work and
O(N?) storage, with N the number of nodes on the boundary. While standard acceleration
techniques (such as the Fast Multipole Method, etc.) could be used to improve these estimates,
no such acceleration was performed, since the purpose of this section (as well as the following
one) is to demonstrate the stability of the integral formulation and the convergence rate of a

very simple discretization scheme.
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By Theorem 6.7, the equations to be solved are (200) — (202), where the unknowns are the
function 7, and two real numbers Ag, A;. To solve (200) — (202) numerically, we discretize
the boundary into N Chebyshev nodes and approximate the unknown density n by a finite
Chebyshev series of the first kind,

N-1
n(t) = Y Cx- Ta(t), (205)
k=0

with the coefficients Cy, (k = 0,..., N — 1) to be determined. In order to discretize (200), we
start with observing that by (165) — (167), the action of the operator S on the function 7 is

described via the formula

N-1 [N-1 9
Stm(@ =3 | > B Ci| = Urlz) V1-2 (206)

k=0 \ j=0
where the matrix B = (By;) (k,j=0,...,N — 1) is given by the formulae

( 1
Boo = —=
00 21

1
Bu=—-— l<k<N-—1,
BT Tk (207)

1
Bk,k+2=;@ 0<k<N-3,

L Byj =0 otherwise.
In other words, given a function 7 expressed as a Chebyshev series of the first kind, (206)
expresses S(7) as a Chebyshev series of the second kind. Now, it is natural to approximate the
operator fi., by an expression converting functions of the form
N-1
3 o Uelt) (208)
k=0
into functions of the form
N-1
Y Be- Tu(a), } (209)
=0
with the product ﬁ., o S converting expressions of the form (209) into expressions of the same

form. Thus, we approximate the kernel 7(z, t) (see (182)) of the operator ﬁ,, with an expression
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of the form
N-1N-1

o)~ 3 3 Kij - Tila) - Uj(e). (210)

i=0 j=0
Clearly, the coeflicients K;; have to be determined numerically, since the curve I' is user-
specified, and is unlikely to have a convenient analytical expression. Thus, we obtain the
coefficients Kj; by first constructing the N x N matrix R = (7(z;,t;)) (4,5 =0,1,...,N — 1)
with z; (¢ = 0,1,..., N — 1) the Chebyshev nodes defined by (4) and ¢; (j = 0,...,N — 1)
the Chebyshev nodes of the second kind defined by (7), then converting R into the matrix
K = (Kj;) (4, =0,1,...,N — 1) by the formula

K=U-R-V, (211)
with N x N matrices U = (U;;), V = (Vj;) defined by the formulae

1 .
Uoj = = -To(z;), 7=0,1,...,N—-1,

"5’ (212)
Uﬁ:N.Ti(zj), i=1,....N—-1, j=0,1,...,N—1,
g (N =)\ o B

VzJ—N_H sin ( N+1 ) U(t:;), 4,7=0,1,...,N—-1, (213)

respectively. We then approximate the prescribed Dirichlet data f by its Chebyshev approxi-

mation of order N —1

N-1

=3 f-Thit), (214)

k=0
where the coeflicients fk can be obtained by first evaluating f at Chebyshev nodes z;, then

applying to it the matrix U defined by (212), i.e.,

. N-1
fr= Z Ui - f(zi). (215)

i=0
Similarly, we approximate the function u} (see (199)) with an expression of the form

N-1

dy®) = ¥ - Th(e), (216)

k=0
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with the coefficients 4y, defined by the formula
N-1
=Y Uri - ui(v(i)), (217)
=0
with z; the Chebyshev nodes defined by (4). Combining (206), (210), (215), (216), we discretize
(200) into the equation

Co 1 g f:o
A 6:1 + Ao ? + 4 - ul = le , (218)
CJ\.I—l 0 ’&1\;—1 fn-1

with N x N matrix A defined by the formula

A=Iy+K-B, (219)
with Iy the N x N identity matrix. Furthermore, (201), (202) lead to the equations

Co =0, (220)

C1=0. (221)

Finally, combining (218), (220), (221), we obtain the following linear system of dimension N +2

to be solved

100 0 0 0 Co 0
010 0 0 0 o) 0
;o 5 % 222
Z 0 ’U:I CN-1 fl ( )
. . Ao :
0 dn-y A Frvaa

Remark 7.1 Having solved (222) with any standard solver (we used DGECO from LIN-
PACK), we can compute the solution of the Problem (69) — (70) at any point in R? via
(203).

Remark 7.2 The algorithm can be generalized to the case when the boundary consists of

several disjoint open curves, and the generalization is straightforward.
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8 Numerical Examples

A FORTRAN code has been written implementing the algorithm described in the preceding
section. In this section, we demonstrate the performance of the scheme with several numerical
examples. We consider the problem in electrostatics: the boundary is made of conductor and
grounded, the electric field incident on the boundary is generated by the sources outside the
boundary. For these examples, we plot the equipotential lines of the total field and present

tables showing the convergence rate of the algorithm.

Remark 8.1 In the examples below, the problems to be solved via the procedure of the preced-
ing section have no simple analytical solution. Thus, we tested the accuracy of our procedure
by evaluating our solution via the formula (203) at a large number M of nodes on the bound-
ary I' (in our experiments, we always used M = 4000), and comparing it with the analytically
evaluated right-hand side. We did not need to verify the fact that our solutions satisfy the

Laplace equation, since this follows directly from the representation (203).

In each of those tables, the first column contains the total number N of nodes in the
discretization of each curve. The second column contains the condition number of the linear
system. The third column contains the relative L? error of the numerical solution as compared
with the analytically evaluated Dirichlet data on the boundary. The fourth column contains
the maximum absolute error on the boundary. In the last two columns, we list the errors of the
numerical solution as compared with the numerical solution with twice the number of nodes,
where the solution is evaluated at 2000 equispaced points on a circle of radius 1.4 centered at
the origin; the fifth column contains the relative L? error, and the sixth column contains the
maximum absolute error.

Example 1: In this example, the boundary is the line segment parametrized by the formula

TR

The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown

in Table 1. The source, curve and equipotential lines are plotted in Figure 1.
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Figure 1: Source, curve, and equipotential lines for Example 1.

Table 1: Numerical results for Example 1.

K

E*(T)

£>(T)

E*(u)

E%(u)

N
4
8
16
32
64

128

0.524F + 01
0.450F + 01
0.388E + 01
0.344F +01
0.318E + 01
0.303F + 01

0.288FE + 00
0.703E — 01
0.759E — 02
0.165E — 03
0.147F — 06
0.252E — 12

0.607E + 00
0.178E + 00
0.212E - 01
0.486E — 03
0.446E — 06
0.839F — 12

0.513F - 01
0.613E — 02
0.133E - 03
0.115E — 06
0.146F — 12
0.250F — 13

0.590F — 01
0.686F — 02
0.146E — 03
0.126E — 06
0.164E — 12
0.265F — 13

Example 2: In this example, the boundary is an elliptic arc parametrized by the formula

{ z(t) = 0.8cos(t)
y(t) =0.5sin(t) +0.25

The Dirichlet data are generated by one positive charge of unit strength at (0,0) and another

—r<t<0. (224)

negative charge of unit strength at (0, —0.5). The numerical results are shown in Table 2. The
sources, curve and equipotential lines are plotted in Figure 2.

Example 3: In this example, the boundary is a spiral parametrized by the formula

02<t<L12

{ z(t) =tcos(3.3t) — 0.1 (225)

y(t) =tsin(3.3t)
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Figure 2:

-2.5

Table 2: Numerical results for Example 2.

Sources, curve, and equipotential lines for Example 2.

K

E*(T)

E>(I)

E%(u)

E%(u)

RE e w2

128

0.513E + 01
0.461F + 01
0.399E + 01
0.352F + 01
0.316F + 01
0.301F + 01

0.180F + 00
0.722E - 01
0.103E - 01
0.230F - 03
0.128E — 06
0.141E — 12

0.124E 4 00
0.554E — 01
0.833E — 02
0.187E — 03
0.105E — 06
0.134E — 12

0.343E - 01
0.668E — 02
0.155E — 03
0.855E — 07
0.475E — 13
0.272E - 13

0.166F — 01
0.333E — 02
0.773FE — 04
0.426F — 07
0.201E — 13
0.102F — 13

The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown

in Table 3. The source, curve and equipotential lines are plotted in Figure 3.

Example 4: In this example, we consider the case of several open curves. The boundary

consists of three elliptic arcs parametrized by the formulae

{ z1(t) =1l.lcos(t)—1

yi(t) =sin(t) +0.5
z2(t) = l.1cos(t)
{ y2(t) =sin(t) — 1.2
{ z3(t) =1l.1cos(t) +1
y3(t) =sin(t) +0.5

(226)

(227)

(228)
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Figure 3:

Table 3: Numerical results for Example 3.

Source, curve, and equipotential lines for Example 3.

N

K

E*(T)

E>(T)

E%(u)

E>(u)

8
16
32
64

128
256

0.325E + 02
0.579E + 01
0.478E + 01
0.424F + 01
0.392E + 01
0.374E + 01

0.215E - 01
0.549E — 03
0.211F - 05
0.987E — 11
0.861F — 13
0.138E — 12

0.323F - 01
0.986E — 03
0.317E — 05
0.122E - 10
0.520F — 12
0.139E - 11

0.478E + 00
0.658F — 01
0.149E — 02
0.350E — 06
0.127F — 12
0.139F — 12

0.426E + 00
0.820E - 01
0.194F - 02
0.453F — 06
0.119E — 12
0.123E — 12

The Dirichlet data are generated by a unit charges at (0,0). The numerical results are shown in
Table 4, where N is the number of nodes on each curve. The source, curves and equipotential

lines are plotted in Figure 4.

Remark 8.2 The above examples illustrate the superalgebraic convergence of the scheme for
smooth data and curves (see Remark 2.1 in Section 2.6). The number of nodes needed depends

on the complexity of the underlying geometry and the smoothness of the prescribed data. The

condition number of the resulting linear system is usually very low.
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Figure 4: The source, curves, and equipotential lines for Example /.

Table 4: Numerical results for Example 4.

N K EZ(T) E=(T) E2(u) E®(u)
4 0845E+01 0.113E—01 0.228E — 01 0493E — 03 0.117E — 02
8 0.754E+01 0.126E—03 0.269E —03 0.159E —05 0.108E — 04
16 0.689E+01 0.173E—07 0.390E —07 0.656E —10 0.452E — 09
32 0.649E+01 0443E—12 0.196E—11 0.950E —13 0.113E — 12
64 0.627E+01 0.658E —13 0.295E—12 0.492E —14 0.433E — 14
128 0.615E+01 0.880E —13 0.356E — 12 0.968E —14 0.971E — 14

9 Conclusions and Generalizations

42

We have presented a stable second kind integral equation formulation for the Dirichlet problem
for the Laplace equation in two dimensions, with the boundary condition specified on a curve
(consisting of one or more separate segments). The resulting numerical algorithm converges
superalgebraically if both the boundary data and the curves are smooth. Obviously, the com-
bination of the Fast Multipole Method (see, for example, [5]) and any standard iterative solver
yields an O(N) algorithm, with N the number of nodes on the boundary. Furthermore, the

scheme of this paper can be extended to other boundary conditions and other elliptic PDEs




(e.g., the Helmholtz equation), since the singularities at the endpoints are essentially the same
in all cases. All these extensions are straightforward and are currently under development.
Needless to say, three-dimensional versions of most problems of mathematical physics are of
more immediate applied interest than their two-dimensional versions. Thus, it is the view of the
authors that the results of this paper should be viewed as a model for the investigation of the
Dirichlet problem for the Laplace equation (or some other elliptic PDE) in three dimensions,
with the data specified on an open surface S. When the boundary S is smooth, the transition
is fairly straightforward; it becomes more involved when S itself has corners. Both cases are

presently under investigation.
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