Abstract. We consider the stability of difference schemes for the solution of the initial boundary
value problem for the equation

up = (A(z, t)ug)z + Bz, t)ugy + C(z, t)u + f(x,1),

where u, A, B, C and f are complex valued functions. Using energy methods, we establish the
stability of a general two level scheme which includes Euler’s method, Crank-Nicolson’s method
and the backward Euler method. If the coefficient A(z,t) is purely imaginary, the explicit Euler’s
method is unconditionally unstable. For this case, we propose a new scheme with appropriately
chosen artificial dissipation, which we prove to be conditionally stable.
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1. Introduction

Finite difference methods for the solution of equations of Schrédinger type have been studied by
many authors, and extensively applied to solve practical problems in many disciplines [1, 5, 6, 7, 8,
9, 10, 11]. Since conventional explicit schemes are unstable [2, 4], implicit schemes are usually used,
especially the Crank—Nicolson scheme. In [7], D.F. Griffiths et al discussed a predictor—corrector
scheme. In [8, 12] the existence and convergence of solution for this difference equation have been
studied. Since the solution of Schrédinger equation possesses conservation laws, the schemes which

satisfy discrete conservation laws have also been investigated extensively [6, 7].

We consider the equation
ug = (A, t)ug)z + Bz, t)ugs + C(z, t)u + f(2,1), (1.1)

in the domain Q7(0 < z < I, 0 <t < T), where u(z,t), A(z,t), B(z,t), C(z,t) and f(z,?)
are complex functions, and Re A(z,t) >0 and |A(z,t)] # 0. This kind of equation arises in
plasma physics and acoustics [1, 11]. Clearly, (1.1) involves both equations of Schrédinger type and
parabolic equations. In this paper, we consider the initial-boundary value problem for (1.1), with

the conditions :

Um0 = () (12)
Ujg=0 = Ug=l = 0, (13)
where u%(z) is a complex function.

In Section 2, we analyse the stability of a general two level difference scheme for (1.1), (1.2)
and (1.3), which is a direct generalization of a well-known scheme for parabolic equations, and
includes the explicit Euler scheme and the implicit Crank-Nicolson scheme as special members.
Some new results are obtained from which we can see the relationship between the Schrodinger

equation and the parabolic equation.

If Re A(z,t) = 0, the above mentioned explicit Euler scheme is unstable. Several interesting
stable explicit schemes have been presented in [3] for the case of the simplified equation u; = tUzq,
and applied to some underwater acoustics problem in [2]. In these schemes, Euler’s method is
stabilized by appropriately chosen artificial dissipation. In Section 4, we extend these results to

equation (1.1).

We let & denote the spatial mesh size and divide the finite interval [0,!] into the mesh intervals

by the points z; = jh (j = 0,1,...,J), where Jh = l. We let ky denote the size of the time
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step at the n—th step. For convenience, we shall denote u(zj,tn) by u;‘ We also use the following

difference operators :

n+l _  n
W =g = Y Y
i bi kn
u- — u. u- — u.
_ %+ J _ Y J—1
Duj===— D-uj ===,
u. — U;_ ~ . —_ . 1
_ Ui+1/2 j—1/2 _Uj41 — Uj—1

Hence, we have
1
77 (%1 = 20+ wj1) = Dy D_uj = D%u;.

1 |
77 [Air172(8i41 = 4) = Ajo1pa(j — wj1)] = D(ADw;).

Finally, for any function ¢, we use ¢"* to denote a¢™*! + (1 — a)¢", for 0 < a < 1.

Next, we give our definition of stability. First we define the inner product for w and v :
J-1
(u,v) = Z UjT)jh
i=1

where 7 denotes the complex conjugate of v and the norm for u :

[[ull = v (u,w)

Definition 1.1. We call a scheme stable if the solution u;‘ satisfies :

J-1

lu”|| < Calle®ll + C2 Y N1/ 1k
=0

where C; and Cy are constants which are independent of n and h.

2. A General Two Level Scheme.

We are going to consider the following scheme for (1.1), (1.2) and (1.3) :

uttl — yn 1
J J + + + + ta _ gynta
- A ) — AR )
+ + (2.1)
_ pnta UiYT — “y—la _ ortagnte — gt i =1.2 J—-1
j 2h ] 'j - J ] S R R
W=a;, j=1,2,...,0 - L (2.2)

ug = uly =0, n=0,1,... (2.3)



Page 3

We can also write (2.1) in this form :

nt+l _ n+ta nta _ pntapn, nte _ onta, nta _ enta
ug; DA™ Du] B7* Du Gl %] e (2.4)

Clearly, (2.1) or (2.4) is explicit, implicit and the Crank-Nicolson scheme when oo =0, o # 0 and

a= %, respectively.

We will see that this scheme is unstable if Re A(z,t) = 0 and o = 0. In this case, we will give

another conditionally stable explicit scheme in Section 3.

To facilitate the analysis, we first transform (2.1) by a change of variable to eliminate the first

order term.

Lemma 2.1. Suppose A € C3, Be€ C?,C € C! and ReA > 0, |A| > ap > 0, then we can choose
a function ¢, such that 0 < My < |¢;| < My, j=0,1,---,J where Mo and M, are constants

and under the transformation
uite = gitayite (2.5)

(2.1) becomes :

ot — g

ntoy — _J J _ = ﬁ+a nto __ ntay _ gnta nto _ ,nta
L™ = S [Aj+1/2 v 0 = AT Yi-1 ] (2.6)
_ onto, nta _ gntae, nta _ pntae,nta _ Agnto ntl-a _ pnto
GITvIy — Hi ) Kihvis — Qv F;

where G;, H;, K;, Q;, F; are bounded in Qr.

Proof. See Appendix A.

We now state our main stability result for (2.6).

Theorem 2.1. Suppose the conditions in Lemma 2.1 are satisfied. If% < a <1, then scheme (2.1)

is stable.

Proof. In order to establish the stability of (2.6), we are going to estimate [[v"*!||. We multiply
(2.6) by 17;-""0‘ to obtain :

(L(v™*®), o) = (Frte pnte) | | (2.7)
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Then we estimate every term in (2.7). For the first term, we have :
Re (v+1,0™9) = aRe (u*1, 0™1) + (1 — a)Re (o1, 0")
'—‘-%ZI”?HP“( )Zl-nz

_ ____Re n,vn+1 (1 a)R Z n+1 n

kn Uil (2.8)
(Z lvn+1|2 ZI ;u|2) 2k2a) Z lv;z+1 _ v;_z 2
2,1 (o112 = 107)?) - L2 e,
For the second term, we have
Re (DA™ Dy ,v™+) = —Re (A" D_y™+, D_yn+e) 29

= —||VRe Arta D_p"t*||2,

For the rest of the terms on the left hand side of (2.7), we have

ety
G| < =D (P + o)
l ’~‘+°'l
nta, ntae-n+ +a|2 | |pnta)2
|HF T o T opTe| < 5 (177" + [977(%)
| I ]
lK;z:-fz ;u_;l_-la ;‘t+al < .7 (I ;z:—la 2+ |v'.'+a|2)
|Qn+a ntl—oz n+a| < |Qn+a| [(1 n+l| _I_alv}ll] [alv;'H-II + (1 _ a)lv;zl]
Q7+

J +12 2
< L (jort P+ o).

So we have
n+a n+a n+a n+aoa n+a n+ao n+a, n+a n+a n+o n+1 o n+a
|Re[ZG1 1Y%-1Y% +ZH vj +ZKJ+1 Yi+1 Y +ZQ ”

. 1 1
< 0 [P o o gl

y y (2.10)
12 2
= 3MpJo"+||? + 7””"“”2 + —2—||U"H2,

where M is a constant which is an upper bound of |G|, |H|, |K| and |Q|.
For the right hand side of (2.7), we get

1 1
[Be (F, 0| < Sl + S Fme? (2.11)
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Now we substitute expressions (2.8), (2.9), (2.10) and (2.11) into (2.7) and obtain

1 1-2«a n
g (12 = 1971 = (2522 bl P + IV Re Ao D_ane?

2
M,
2
1
< Ma(|lo™H1? + |lv")|?) + EHF"MIP,

M, 1 1
< SM[[o"™ " o o2 "+ Sl + R

(2.12)
where
]\13=6]\f[2+%—%+1
When 1 < o < 1, from expression (2.12) we have
1 1
m(llv"“ll2 = [1o711%) < Ma(llo™ |12 + [[o"]|%) + SIIF™*2.
It is easy to see that when &, < 4—1\14—3 we have
1+ 2k, M3
n+112 < n ny|2 nj|2
o7 < T2 o+ 2k |27
< (1+ 8k Ms)[|0"||* + 2k || F"1%.
According to Lemma 4.1 in Appendix B, we obtain
) n
[+ 2 < 263M58™ g1 + 3 || Y[t | (2.13)
‘ =0
From (2.5) and 0 < My < |¢;| < M; we obtain
n+1)2 ]\/-’12 8Matnt1 2 - 12
7 < 237 ol 4+ 3 17k | (2.14)
0 1=0
|
Now we turn to discuss the case 0 < a < %
Theorem 2.2. If0 < a < 1 and
1
kn, < (2.15)

1 max Anta|2

2(1 - 2a) [Tﬁ z ReAwts T ?11‘]

where 7 is an arbitrary positive constant then the scheme (2.1) is stable.
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Proof. First let

1
. — | pgnta nt+a _ nta
Pj= h2|Af+1/2| v = vl

Poj = plATH | ot — o3t
Pyj = |GEEY| [oj )
Pyj = |H]*| o7+
Psj = | K21
Pej = |Q7F|vjTe|
2

From (2.6) we obtain immediately

7 2 .
oyt ? < <Z-Plj) : (2.16)
=1

Next we construct a quadratic formin Pj; (I=1,---,7) by:

h2Re AT h2Re AT 7 7 2
+1/2 ~1/2
P; = |An+aj |2/ Plzf + |An+aj I2/ P22]' + 57 ZPI% — (1 —2a)kn (Z P”) (2‘17)
j+1/2 j—1/2! 1=3 =1

where 7 is an arbitrary positive constant. According to Lemma 4.2 (in Appendix C), P; is nonneg-

ative if
1
kn < e 2 VETNE ) (2.18)
(1-20) |mitiel | Al s
h2RcA;.‘_tl°'/2 h2ReA;.'_+f'/2 n

which is true because of (2.15). Making this assumption, we have from (2.16) :

h2Re A"} h?Re Ao 7
+1/2 _1/2
(1= 20)kafo ™" < <_|ZE4‘—EL|T/') Pf; + (WMJ—P/ P} +57) Pl
j+1/2 j—1/2 1=3

Summing up these expressions from j =1 to j=J — 1, we obtain

(1 = 20)knl|op 2 |1* < 2/[VRe APFD_ o™ 2|2 4 5y M(3][o™ |2 + o™= |?) + 5| 42,

< 2|V Re Ao D_v"*e|[2 4 40n MG (||v™* || + [|o"[|*) + 5n | F™+|® (2-19)

Substituting (2.19) into (2.12), we have

1
U™ = Joml1?) < Ma(llo™ 12 + 10"11%) + Ms | P17,
n
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where My = 2M3 + 40n M7 and Ms = 1+ 5. It is easy to see that when k,, < ﬁ, then

1 -+ knA’IzI ni2 MSkn
ka5 T
< (1 + 4k My)|[0"||? + 2Msky, || F72||?

lo™ | < [l

According to Lemma 4.1, we obtain

n
o 12 < MM (] + 205 | FH k) (220)
=0

and from (2.5) and 0 < My < |¢| < M, we obtain

M2 4arum -
2 < Tt (P 2245 3 P4k (221)
=0

which implies that the scheme (2.1) is stable.

3. A stable explicit scheme for the case Re 4 = 0.

In this section, we assume Re A = 0 and let a(x,t) denote the imaginary part of A. We see
from the previous section that the scheme (2.1) with o = 0 is unstable. This is unfortunate because
in many applications an explicit scheme is desirable because they tend to be easier to implement,
especially in a vector or parallel computing environment. In [2], we construct a stable explicit
scheme for the simple equation u; = ¢u,,; by adding appropriately chosen artificial dissipative
terms to (2.1). Here we consider an extension of this scheme for the more general equation (1.1).

We construct the following scheme :

) .
A N Oy L S U i '“?D(v'-' C 2wt o))
. Sk (3.1)
? * 4 , )

_B?'”—lzh = —Chul=fi, j=1,...,J—1,

where
1 .

v? = h_2-(u.7+1 - 2“,7 + u’?—l), J=1...,J-1, (3'2)

with

vo = vy =0. (3.3)
We will prove that this scheme is conditionally stable. For convenience, we assume

1.
a;j>0, j=0,1,...,J. (3.4)
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5'2
82

(9a

max <|a|

We shall need the following lemmas :

,|B l,ig—f’ ,ICI) <M. (3.5)

Lemma 3.1. (Discrete Sobolev inequality)

Given € > 0, there exists a constant ¢ dependent on € and n such that
| D'ullz., < el D" ullL, + ellullz, I <m, (3.6)

ID"llz, < €llD™ullL, + cllullz, 1< . (3.7)

Lemma 3.2. (Estimate ||u}||).

For any € > O there exists a constant K dependent on ¢, such that the solution u} of (3.1)

satisfies : Iy
g% < Y (@) ?I PP P + el D> |1* + K (e) [Ilu™11 + 1/711%] (3-8)
j=1

Proof. From (3.1), we have

J-1 1 1
lupt|? = Z { [ia;?D%}' + Z(z — 1)a} D%} + G;’] . [——ia;’DQTL}' + Z(—z — 1)a? D%} + G';’]}

j=1

where

Gj=BjDUj+CjUj+fj. (3.9)

Expanding the above expression, we have

1
I = S @D+ R (1= ) @)D - D) + D)
]_
J-1 1
+ 2Re Z[ia;-'D2u;-’ + Z(z — 1)a?h?*D*v}|G}
i=1
Using (3.3), we obtain
J-1
h? Z(a}')2D2u;‘D2T)}‘
j=1

J-1
= o [(a741) (1 — 9F) = (a)? (@] = 9y) = ((a342)” = (6§)*) (41 — 7]

j=1
J-1 J-1 J-1
= o aaf (0 = 0fy) = D o (@)P(e) — oy) = D 0f ((67)” - (a)) (@ = 77)
J J-1
==Y (@) — v P = D ((fn)® = (@) 0 (740 — 75)-
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Hence
111 1 I=
2 Re[(1 - z)(a;-‘)?h?Dzu;-‘ . D217;-'] + 3 Z ")2h4 D%y ”|2
J:l =
1 J J-1
<-3 D @)} = of P+ 1Y ((a541)% = ()2l (W7, — 7))
j=1 Jj=1
.
+ 1 (a n) (v} — ”n|2+ o} — '—1'2]
j=1
J-1 1 J
2
< IZ(( ;'l+1) (a ) ) i (7] Vit1 — ‘)| - ZZ((“?V - a}‘-l)h’? - ”;1-1 2
J=1 J=1
J-1
<2 |(‘1g+1)2 ") HUnH 41— Yy il
j=1
So

lug*H1? < Z (a})?|D?uf[* + 22 (af41)? = (a})?[ 197 ] v}y — o}
J-1
+ 2Re E [za”D2u” + (z - 1)a}h*D%}| G7.
=1
For G, using Lemma 3.1, we have
IG™]17 < 3M2(|Du|? + [lu)1?) + 3]1/"I?
< 6M%e1|| D*u™||? + (6M2 K (e1) + 3M7)|[u”||* + 3]/ /7|7,
where €; > 0. It follows that if we define
J-1
Q =2Re E [za"DQU" + - (z - 1)a}h?D? ”] G7,
Jj=1
we have
Q < 6M||D*u||||G"
1
< 9t D+ L]
€2

[3M62 + 18M €1
€2

1 oM
[ipnn + 2 s (e + o o2+ 2,

where €9 is any positive constant. If we define €; by

€2

1= S6ant
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and €2 by
€

T 12M

€2

then we have

Q< -;-||D2u"|l2 + Ky (o) [l + 1177117] -

where K (e) is a constant dependent on €. On the other hand using Lemma 3.1,

J-1
2 1(af41)® = (@) 0] |01 — v} | < 8M2R[|0"|?
j=1
< 8M?h [es]| D?u”||? + Ko (es)|[u”|?]
= 8M?hes|| D%u™||? + 8M2hK2(63)||u”||2 ,
where €3 is an arbitrary positive constant. If we take

€
= 16M2h

then we have
J-1 ¢
2> 1(a7+1)® = @))?| o} [vfsy — w0} < S ID*u"|* + Ka(e)[lu|1®
j=1
where K3(€) is a constant dependent on €. Combining the above results, we finally have
J-1
laf 2 < Y (a)2ID*f1* + e D |1* + Ka(€)|[w|® + Ka ()l £,
Jj=1

where

.K4(6) = Kl(e) + K3(€) ,

which completes the proof.

|
Theorem 3.1. If (3.4) holds and
min |a(z)| > >0 (3.10)
then the scheme of (3.1) is stable if Lo
kn, < 5 max]a] (3.11)

Proof. Multiply (3.1) by @} and we obtain

(Lu®,u™) = (f°,u"). (3.12)
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Next we estimate each term in (3.12). For the first term we have
Re (u*,u") = i (w2 = [l?2) - a2
2k, 2"t ’

which is similar to (2.8). Applying Lemma 3.2, we obtain, for any € > 0,

Re (a1, 0") 2 g (I = ) - 22 Z(a D232 + | D2 o+ KalluP + all 72

(3.13)

The second term is given by

J-1 n n n .
I = nln T2 o,
2 = —zaj h2 . Uj .

i=1

We first employ the following expansion :

— 2u} + uj 1
i+l -1 _
i . h2 = R [ ;‘l+1/2(“;'1+1 —uj) - a;-'_1/2(“? - U;’—l)]

a
+ ';11_2 [(a}' - “;'l+1/2)(“;"+1 —uf) — (af — “7—1/2) (uf — U?—1)]-

Then, using the boundary conditions, we have :
J-1 —1_

n n n n =51
12 [ ;+1/2 U1 — uj) — aj—1/2(“j - “j—1)] Uy
=1

.,
<

-1

1 n =1
= h2 ajy1/9 (Wi = Z“;+1/2("1+1 L
j=1
Il
= n Py T
=Tz ai+1/2|“1+1 ]
Jj=0

and

J-1

1 _

| ) aj a?+1 2)(“?+1 - “7) - (a;‘l - a?—1/2) (“;l - "?—1) U?I
h /

=1

.,
p.a

1 (u} 1 aj — a7, 2) 13 (v} — u}_))
EZI Jj+ I2+ ZI J / ||.7|2+§Z| J hl |2
j=1

Jj=1
1 J-1 n 1/2)
J
+ §Z| 2l
j=1

< 2[el| D*u™||” + callu™ ] + M2 [lu|®
< 2¢[| D%u"||* + (2¢2 + M) w1,
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Hence we have

|Re I| < 2¢||D*u™||? + (2¢2 + M?)||u™||?.

The third term is given by

Using the expression :

(i} ~ |a3))

T (Wi = 20 i) - 77?) -

(1-9) (F =207 +vfy) (-1,
4 a‘.’; ! h2 L= 4 h2 [a +1 - Za;'lv?+a;}—lv?—1]
-1 1
4 -h—Q[(a’? aj41) Vi1 + (af — af_y)vi
we have -
(1=2) 1
K 77 [97n1 07 — 2070] + af_vf ] 7
i=1
J-1
2(1—1) 1
=h y W ajvi (afy, — af +aj_y)
J=1
1__
h2( ’ Eanlvnl2 ,
and
. J-1
(1-i) & 1 ]
l 1 h? h_2[(a‘ afi1)vipr + (af — af_q)v}- Sy aj|
J=1
J—-1 n J— n a®
h al —aj, h ~1
<l lijf—n+mm|5§:’ B oy g
j::l =

= heM||v"||? +

1
< Mh[ello"||* + —lu"|?]

Mh
=)

The rest of the terms are easily bounded :

|ZBn J+1

and

u.;l— —n n n
il < M| Da”|| [l

M
< 5 [lD*" P + Ka()Ju"IP]

|(cu, u)| < M]Jull®

(7l < 117 + el
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Summing all the above terms, we get

1
o U™ P = )

P M
Z ( (a7)? - _a > |D%u?|? + [?”G-I- 2¢ + heM + —26] D)2
k Mh Mk 1 kn
+ [—2"K4 +20+ M+ ——+ 2+ M+ 5] [lu™* + {—Kl + ] 171

Of course, when (3.11) holds, we have

k" n\2 hZ n :62A
PR
where
h2
= Tmax]a] —kn > 0.

As long as € is small enough, we can make
2
%6+26+k€M+7 < ﬂzA
For such an ¢, we have

1 ~ ~
%(HU”“II2 — [lw"[[?) < Muflu||* + Mal| £

Here the constants Ml, ﬂz depend on A and M. Using Lemma 2.1, we have the proof.

4. Concluding Remarks

Using energy methods, we have established the stability properties of the two schemes consid-
ered in this paper. Since equation (1.1) includes both parabolic and Schrodinger type equations as
special cases, our stability results provide a unified treatment for both types of equations. Finally,
the results here agree with the stability results obtained for the constant coefficient Cauchy problem

via Fourier analysis (3, 4].
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Appendix

Appendix A (Proof of Lemma 2.1)

We substitute (2.5) into (2.1) and get, for the first term :
uptt = (gt
1 n
= sl o+ e - gyt 8 - o]

1

— E [¢;}+a(v;l+1 _ v;z) + (¢;}+1 _ ¢;1)((1 + a)v}'“ + av;_z)]
— ¢;_l+a,uirr;+l + ,U;}+1—a¢?j+1.

In the following, for simplicity, we shall drop the index “n + o”. For the second term using

the expressions

$i+1 = ¢j + Dgjh + ‘;‘D+D—¢jh2
$i-1= 6 — Dé;h+ 3D, D_g;h?,
we obtain :
D(ADwuj) = D(AD(¢v);)
= % [AJ'+1/2(”J'+1 - ;) — Aj—l/z(vj - 'Uj—l)]
+ 2_ilz2 [Aj+1/2(¢’j+1 = ¢j-1)vj+1 — Aj—1/2(dj+1 — ¢j-1)’l)j_1]

+1 — 26 + ¢;-
+ (¢J+1 2h; J 1) (Aj+1/2Uj+1 + Aj—1/2vj—1)

= 2—; [Ajs1/2(vjs1 — vj) — Aj_1ya(vj — vj—1)] + @5,_442;_2_?3_,____12

+ ($j+1 — $j-1)

A;(vj4+1 = vj-1)

[(Aj+1/2 — Aj)vip + (45 — Aj—1/2)vi—1]

2h2?
o1 =20+ i
+ (¢J+1 ZZ; ¢J 1)(Aj+1/2vj+l +Aj—1/2vj—1)
~ o~ A; —A; A —A;_ ~
= ¢;DADvj + 2A;D¢;Dv; + ——]—ty—z——-—i’l)j.'.l + —L—-’—Ll—l—/-z—vj_l Dé¢;
+ (Aj+1/g’0j+1 + Aj-—l/Z'Uj—l)D2¢j'

2

For third term using the expressions
dj41 = & + Dy djh, ¢j—1=¢; — D_¢;h

we obtain
~ B;
B;Du; =’2_h'(¢j+1”j+1 — $j-1vj-1)

~ B;
=B;¢;Dv; + _21(D+¢j”f+1 + D-¢jv;-1)
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In the second and third term, the first order difference term for v is (2Aj5¢j + Bj¢j)5vj. We

can choose ¢; to make this term vanish by setting
24,D¢; + Bj; =0. (1)

Since |A| > ap > 0 and A, B are bounded, it is easy to see that we can choose ¢; such that

0 < My < |¢j| £ My, where My, M, are constants. Moreover, from (1) and |¢;| < M;, we have
|Dg;| < constant  in  Qr.
If we take the finite difference of (1), then because of the assumptions on A ,B, we can obtain
|D4+D_¢;| < constant in Qr.

After some manipulation, we obtain (2.6), where

[ nta _ 4nta +
Gnte — 1 5¢n+a (Ai Aj_1/2)+lD D ¢n+aAn+a + .7 a5¢n+a
j=1 7 gnta J A QT E=Y =12 2 J
J L i
Hte = onta
J J
i + _ gnta +
Knte — 1 5¢n+a( ;l"'fl/? Aj )-l-lD D ¢n+ozAn+a + ;l aﬁ¢n+a
JtL T gnte J A 9 = J+1/2 2 J
J L i
n+1
I
Q;H-a == nj-l-a
4
n+o
Fn+a — ff
J - ¢r}+a'
J

Because of the properties of A, B, C, F and ¢, the functions G, H, K, Q and F are all bounded.

Appendix B

Lemma 4.1. (Duhamel’s Principle).
Assume u™ >0, v" >0 forn=1,2,....
Ifu™ < (1+ Mky)u" + kpo™, n=0,1,...,
then

n
utl < eMtn+1 (u0+zvlkl) . (2)

=0

Here M is a positive constant and t"t1 = Y"1 [ k.

Proof.
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We have
u™ <(14+ Mkp)u™ + kpo™

<(1+ Mky)[(1+ Mkp—1)u™ ! + kp_1v™ 1] + kpo™

n n—-1 n
< H(l + Mk;)u® + Z H (1 + Mkg)kio' + kpo™
=0 =0 s=l+1
n n-1 n
< H(l + Mp)u® + Z H(l + Mky) ko' + ko™
1=0 1=0 s=0
n n
<exp [Z In(1+ Mkl):| |+ Zvlkl]
=0 =0
Since In(1 + Mk;) < Mk, we obtain (2).
|
Appendix C
Lemma 4.2. Assumem; >0 (¢=1,---,n) and k > 0. The necessary and sufficient condition for

the polynomial in p;
n n
> mip} = k() pi)? (3)

to be nonnegative definite, is

1
k=T - (4)

i=1 m;

Proof. Define p = (p1,---,pn)7, 1 = (1,1,---,1)T and D = diagonal(my, ma,---,my). Then the
polynomial in (3) can be rewritten as

p" Dp — k(pT1)? = pT(D — kliT)p

The condition for the matrix D — kliT to be nonnegative definite is 1 — kKIT D=1l > 0 which is (4).
I
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