LGS: A Lexical Analyzer Generator

J. Wick

Research Report #44

JeWick IR o :aumay~7a'

A Lexical Analyzer Genepaton

{: Introduction

LGS is a program that generates lexical analyzers for
languages defined by regulap grammars, It takes as input
a BNF description of the language and produces an IMP1Q
program wnich will parse an input stping into the tokens
of the language, Sample input and output files may be
found in appendix i and 2e

2, Input

Input to the program is a single file containing
gtatements in an augmented BNF lanouage, Each allowable
statement is described below; for those who desire a more
formal specification, appendix | contains the syntax for

Ymbols¢ and appendix 3 contains the syntax for syntax,

2.! Lexical Conventiohs

" The lexical conventions ysed by this program are
exactly those defined in appendix 1 (and appenaix 2),
This ueriniviun wii] become ciear as the fnput is
described} briefly, tokens and. their values are}

1) An operator (opr) fs any special character}
fts value is jts ASCII equivalent, right juse
~tified (for examples, "?" has the value 63 in
decimal), Ceprtain special operators (}like "s",
M=%, and "s") are reserved for defining syntax
and hence have no valuyesy §f you wish to input
one of these operatorg as a. charaeter value,
use a str(ng,' :

" 2) A name (nam) is a letter fotlowed by any
- numbep of letters or digits, The value of a

rame, when it stands for itself and not some

~terminal or non=terminal symbol, is its righte=
Justified ASCII string equivalent, Fop example,
the name "A" has value 1018, and "AB" §s 203228,
If the string is longer than five characters,

- the righte=most five characters are used,

'3) A number (num) is a dijgit followed by any
number of letters onr digits, Decimal valyes
are represented by a string of digits, Octal
numbers are foliowed by the letter B or b (12b,
for exampley is an ASCII line feed), Numbhers
in other bases end in Bn (or bn), where n is a
decimal number (these are called flexadecimal),
The letters and digits to the left of the last

B op b are interpreted as a constant in ,
base n (for example, 2ABbl6 is the base 16 conw
stant 24B (683% decimal) and {9108@B2 is the binary
constant {0122, or 20 decimal), The base may be
arbjtrarily large, but only dvgits and the letters
AeZ (op a=z) may be used (A=Z represent the digits
10=35), Note that a constant starting with a
lettep is not legali ABbl2 is a mamej the desﬁned
constant must be wrytten lABblE.

4) A string’ (stg) {s any sequence oi chapacters
. enclosed in (gsingle) quote marks, ** is the
null string and * within a string is represented
by **, An end=of=file also terminates a string
(but is not a part of 1t), Control characters \
(ASCII codes)ess than 4@b) may appear within
strings but ape ignored; a number should be used
to represcent a contprol charactep, The value of
a8 string (like a name) {s {ts prightwjustified
ASCII equivalent, ignoring the delimiting quotes,

5) A comment begins with a left curly bracket ("{(")
and ends with a right curly bracket (""), An end=
of*f{le also terminates a comment but {s not a part

of {t, Comments are {gnored and have no value,

Note: the maximum length of any token except comments {8
@ejghty chapacters, excluding delimiters Yike quote and blank}
characters past the eightieth are ignored,

2 2 Parameten Def{nitions

Parameters are’ variables which define compi!e time
constants {n the generated program (such as input chare
acter size, word length, or number base), The format of
~a parametepr definiticn statement is : ’ ‘

stasnumg

 whepe "stg" is the mame of the parameter enclosed in quotes
and "num" {s its value, Currently, the following parameters
are PecogniZed' S A

CHARSIZE=7} The character size in bits (see"sectioﬁ 2.3
o on handling character sets other than ASCII),

fTOKSIZE’=8@; ~The maximum‘numben of characters in a token
. (this should be an {nteger multiple of the
number of chapracters per 36 bit word),

The values given above are the defaults, A parameter may be
defined at most once in the input files definitions other
than the first are {anopred, If no definition appears, the
default value is used,

2¢3 Type Definitions

Normally in regular grammaps each character {s a

‘ terminal symbol standing for itse\f: howeven. in ordep to
“gpeed up the analyzer and save writing, each character i{s
‘assigned a type standing fop one or more chapacters (such as
letters op digits), Th{s is accomplished by productions of
the formi -

tepm{nal L char | char l ens ! char)

whepre "tepminal” is a name of your c¢hoosing standing for
- the type, and each "char” is a namers a number or a stpring
which has ‘a value in the range zero to (2"CHARSIZE)={ ‘
(evaluates to a single character), For example, the
productions

mpk 333 f<f | E»f | f3f | €2f | 128
dig 3= f@f | f1f | 20 | .0 | 9%
let g3= FA® | fBF | fD° | 440 | 2%

define the types "mpk" (markst values 74B, 768, 72B, 758,
and 12B), "dig" (digitst values 60B through 72B)s and ‘
"Jet" (lettersy values 121B through 132B), Note} the ",,,"
operator is used hepre for abbreviation but {s not allowed
in the input, ,

It i{s possible, though not especially easy, to process
character sets othep than ASCII by specifying each "chapr"
as a number, rather than a name or a string, For example,
{f the character set wepe EBCDIC, the following statements
- might be applicables . .

¢CHARSIZE*=z8}

mrk 31z 4Cb16 (<} | 6Eb16 (>} | 440 | 25b16 {LF)l
dig 3= 242 | 241 | 242 | 243 | 4.4 | 249y
let 1= 8Cibl6 | @C2b16 10C3b16 | 4y0 | BE9bY6S

: Initiallv all characters are of type "{gn® (vatue 2)s.
therefore all characters which do not appear {n type ,

~definitions are assymed to be of type "ign", This type

ysually includes blanks, most of ;he‘contro! characters,

and any special chapacters hot used in the language,

~ See section 5,1 for more information about "ian", =

'2}4>Tokeh,0efinft§ons"

_ The remaining productions in the input file are used
to define the transitions of a finite state machine which
_recognizes tokens of the reqular grammar, Each nonw
terminal symbol of the langyage represents a state of
the machine, and each production represents a transition,
A set of states and transitions defines a token, In
‘addition, a special state (called the initial state) {s
pre=defined as state zepo, Productions are interpreted
as followest '

1) <nonmterminal> :$= terminalj}
The terminal must be a type name (see 2,3), A
transition is constructed from the {nitjal state
to state <non=aterminal> under {nput characters

of type terminal, The interpretation is that
when in the initial state (no token {s being
constucted), we can begin to build up a token
of type <non=terminal> when a chapacter of type
terminal {s reade

" 2) <non=terminal=i> :1:3 <nonmterminal=2> terminal}

. The terminal must be a type name (see 2,3), A
transjtion is constructed from state <nonmterminalw2>
tao state <nonmterminal=i> under {nput characters
of type terminal, The interpretation s that
when in state <non=terminal=2>, we can constpuct
a token of type <non=terminal=1> by adding a
character of type terminai to what has a)readv
been built up, :

3) <nonwterminal> $1= alt | alt | ... | alty
Each alt must be of the same form as the right part
of 1) or 2), This is abbreviation only) each alt is
handled separately as above,

For example, given the types "mrk", "dig", and "let" defined
fn the example in 2,3, the following productions define tokens
of type operator, nymber and name (simi{lapr to spprendix 1)1%

<oppr> 1t= mrk}
<£num> t:= dig | <num> digy
<nam> 3iz let | <nam> let | «<nam> dig)
These productions; ysing the rules defined aboves result in
the following finite state machine (given in tabvlar form)i
‘Char;ctef Type

1o den 4 mrk | dig I tet I

~§\nit> 1 .} PR <oper> | PR <num> | PR <nam> |
<opr> | P | o I
<num> : ' V S | PR <€num> | ' 1

® W

<nam> | o . - | PR <nam> | PR . <mam> |

The capital letteps in the state diagram represent actions that
are performed before the transition is made to a new statej they
are included so that the finite state machine will constuct
‘tokens, rather than just recognize them, Tokens are buillt up

in a buffer one character at 3 time, The possible actjons are

" Read (read the next input chapracter), Pack (add a character to
the buffer), refTurn (return the buffer as a token), and Clear
(clear the buffer), The action sequence "PacksRead" {s
appropriate for the above transitions because of the {nter=
pretation placed on each of the productions,

Severa)l possible transitions have been left unspecified)
for example, {f the current state is <nam> and the input
character {s type "mrk", what is to happen? The problem
arises because the BNF specification {s non=deterministiey
the generator contains an ajgorithm fop converting this
to a detepministic machine, a2s follows}

1) The initia! state is fil!ed in first, If no.
transition out of the initial state is specified
for a character type (for examples type "ign"
above), then no token may begin with that type
of charactepr, The character is ignored by filling
‘in action "Read" and a transition back into the
fnitial state, »

2) A1) other unspecified transitions mean that
the new input character cannot be added to the
current token, In fact; the current token has
been completed, so actions "reTurn,Clear® are
filled iny, We could now go to the initial
state to find out what to do With the new input,
but ft is more efficient to go directly to the
state which starts the next token, This is
accomplished by copying the entry which
appears in the initial state for the new:
chapacter type, For example, if in state
<nam> with {nput "mpek", actions "peTupn,Cleap®
are filled in to return the name constructed,
‘and the initial state entry for type "mrk™ jis
added, giving the resylt TCPR <opr>,

The completed state diagram {s as foi\owst

Character;Yype

- | fan I mrk | dig | let
L Sinttx R <injt> | PR <opr> | PR <num® j Fr <nam>»
a <opr> | TCR <injt> | TCPR <opr> | TCPR <num> | TCPR <nar>
t <num> | TCR <init> | TCPR <opr> | PR <rum>» | TCPR <nar>
@ ! PR <namr>

<nam> | TCR <init> | TCPR <opr> | PR <nam>

" This machine will now constpuct all seduences of tokens in
this simple language, To add flexibility, there are excepe

tions to all of the rules given above for determining actions

~and filling in unspec\fved transitions) these are discussed
“in sectson 4, , ,

A few more usefyl detailst the generated program also
returns the type and character length of each token, Types
are determined by the numbep of the current state when the
token is stored, State numpers are assigned te nonwterrinals
{n the order they ape defined (not referenced) starting at
-one (zero {s reserved as the . initial state number), In the:
above example, orperators will be returned as type oney
_nhumbeprs as type two, and names as type three,

3, Output

LGS produces an IMP19 program which parses the tokens
of the language; after initjalizationy, it returns one
token each time {t is called, Several compilewtime
variables are defined in the program to add flexibilityy
they include the wopdstze (WORD), charactersize (CHAR), and

— . —— o

maximum number of chapacters in a token (TOKSIZE), The f91§"
3owing global symbo]s are also defined or referenced}

t) ILEX()t A fupction with no parameters which must
be called to initialize the analyzer, It may not be
called aftepr a physical end=wof=file has been read
unless the file has been closed and a new (possibly
‘the same) file has been opened (see 5,2 for further
detai\s on hand1ing end!of-fiIe conditions). _

2) GET(CHR)s A function provided by the user “which

: returns the next character of the {npyt file {n CHR
(pight«}ustifyed and zeromfjlled)s its value is ‘
nons=zepro 1f physical end=of=file was read (CHR is
fgnored) and zepo otherwise, :

3) LEX()t A function with no parameters and zero value
which is called each time a token is desiredy it as=
sfgns a meaningful value to TOK, destroying the old
valye, _

4) TOKs A global vector defined by LEX of word length
3+4TOKSIZE/(WORD/CHAR), The first word contains the
token type (a state nuymber), the second word contains
the length of the token (in characters)y subseauent

" words contain the token, terminated by enough zero
chapacters (at least onhe) to comp1ete the last word
of the token,

4, Semantics

As stated in section 2,4, there are exceptions to all of
the rules for assigning actions and filling in unsecified
transitionsy special semantic actions may be associated with
token definitions to add flexibility to the output of the
lexical analyzer, They are enclosed in square brackets
~and may appear in productions as any combination of the
followings ' » :

1) <non~terminal={> 1:= <non=tepminai=2> terminal . {S];
where S is one of NOP, OMIT or SAME, Normally,
‘actions "Pack,Read" ape associated with the
“transition from state <non=terminale2> to state
<non=terminalw=l>, SAME turns off the read actionc
OMIT turns off the pack action, and NOP tyrns

"off both, OMIT is especially useful for omitting .
the delimiters of a token fpom the symbol returnmed,
sych as quotes surrounding strings (see the defe
inition of <str> and <stg> {n appendix 1),

2) <non=mterminalel> 3:1= <nonwterminale2> [S] terminaly

- wWhepe S is one of TOKEN, RETURN or CLEAR, Normally,
no actions ape performed on the token buyilt up so
far when the transition is made from state <nonw
terminal=2> to state <non=terminal=i>, CLEAR adds
the clear actiony RETURN adds the return action, and
TOKEN adds both, Note that peturn and clear actions
are always pepformed before pack or read,

3) <nonmterminal> [S]. 212 ,e0e0¢) where S s one
of HOLD, IGNORE or KEEP, These semantics apply
when fi1ling {n unspecified transitions out cf
state <non=tepminal>, Normally actions "reTurn,
Cleap" are supplied; KEEP turns off cleapr, IGNORE
turns off returns, and HOLD turns off both, The
fnitial state "init" {s predefined with semantics
IGNORE, Fopr an example; see the definijtion of
<cmt> {n appendix 1, : : ~

5, Special Considerations
5.1 Ignoring Gharacters

As previously mentioneds, a special charactepr type "{gn"
(ignore) has been ppredefinede on the assumption that at
least one character will be ignored by any lexical amalyzer,
It is possible, however, to define all characteprs with some
other type, making the type "{gn" superfluous} storage {s
allocated for this type anyway, so this.is not recomended,
Use the predefined tvype whenever possible,

‘The predefined type "ign" may be used anywhere a tepe
minal symbol is reaquired in a productiony it is automatiw
cally ignored only in the inftial state (unless a produc=
tion indicates otheprwise), Use the OMIT or IGNCRE
gemantics to achieve the effect you want (see the define
ition of <stpr> and <cmt> in appendix | for an example),

S.d Lha-utwf1|e nanql\ng

One special type, deslqnated by the term(na‘ symbol _
Yeof", must be defined somewhere in the input filey ft is
predefined with semantics SAME (no read action), This
is to insyre that the lexical analyzer produced will never
"attempt to read past a (physical) end~ofefile, If you
wish to recognize only physical end=of=file as terminating
the input, choose a single character not ysed elsewhere

(null, rubouts, “Z op some other control chapacter are tho
’ atural choices), For example, the productions

eof 1= 1778t ;
SSoper> §313 4.¢ | €of | 44 ¢

mean that when physijcal endmof=file is peached, a token of
type "opr" with valye 1778 will be returned, On the other
" handy, if some special characters also indicate (logical)
end=of=fije, they should be listed first in the type
definftion of "eof" (the rule is that the last alternate
of the production is used to represent physical end=ofe
file)s, The productions A

eof 11z *'%%
<opr> 313 4.4 | €0f | Lo}

mean that when physical end=ofesf{le is preached, opr & perw
cent=sign §s read, a token of type "opr" with value 4SB
will be returned (the two cases are {ndistinguishable), But,

eof 11= 'z' 1 1778y

<opr> 3% guy | €0f | gae 1
means that when physical end=ofefile is preached, type "opr"
value 1778 wil) bte peturned, but when a logical endwof=file (a
percent=sign) i{s read, type "opr" value 45B will be returred,
The {important point {s that in the second case, more tokens
may be read from the same file, provided ILEX() (the initialm
~ Jzation function) 1s called to clear ghe endsnf-iv\e condiu

tion, A :

5,3 The Initial State

The pwendefxned state "init" may be used with caution
wherever a non=terminal sympbol {s required in a production,
It is especially useful in defining bracketed tokensy
such as strings (bracketed by quotes) or commenta (bracketed
by left and right bpaces), For example,

exc 11 14 , : .
<id> 11z exc [QMIT) | <id> mpk | <id> let | <{d>» digy
<inft> 3:i= <{a> [TOKEN] exc [OMIT])

These productions allow an <{d> to contain special characters
(except "I") §f it §s surrounded by exclamatfon points, The
danger hepre 18 that no path into the initial state (even by

a roundwabout route) may hayve a "pack" action after the last
~ "clear" actfon in the path, This would leave junk in the
buffep which erroneously would become part of the mext token,

B AT o camantine fﬁvl’.k amaA AMYT ana ..-.-&.g...-‘! [Py

..... SHS vuhar wi'e TS L iUy

45 4 Re*typwng Tokens and "null“ Tbansitepns.

o As mentioned above, ;he type returned with a token is
detepmined by the cyrrent state when the token is stored,

This may not always be convenient for the module which

"{s processing the tokens (usually a parser), For example,

suppose we want the lexical analyzer to precognize "/%". :
as the divisicn operator and "//" as the remainder operp®.

- atop, The natura1 defin;tion is

M IRE LN IRELY

mpk - 1t=

sla t:= /%
<div> 1312 slag _
<opr> $13= mrk | <dfv> slal

"This has almost the desired effect, except that "/" s
returned as type <djv>; whepeas all othepr operatops
‘are returnped as type <opr>, This might be annoying
to the paprsery, 80 a special production of the form

<opr> $8= <div>j

may be added to the set above, It causes a "null"
tpransition to be constructed from state <div> to
state <opr> with no actions whatsoever for every
chapacter type not defined by a production (in this

case every charactep type except "sla"), Another
example may be found in appendix 1§ there a <stp> -
followed by an "eof" is defined to be the same as
8 <stg> ("eof" {is the only character type not
{ncluded in a production), This is not equivalent
to the production =

<gtg> ::= <str> eof:

which would make an "eof“ pavt of the strlng,'

6, Running the Genepatop

LGS is started by the standard RUN monitopr commandj it
pesponds with an astepisk, Type a command of the form

*qutputsdevifil,ext{prj,prg)

where "output" has the same format as the input filenanme,
A left arrow (,) may be used in place of the equal sign,
If no devijce is specified, DSK s assumed, If "outputs"
{fs omitted, the inpyt filename {s ysed with extensjon TMP,

7. Errors

"Each eprror message ¢ontains a statement number (if
applicable), an alternate number within tha statement
(if applicable), text indicating the nature of the error,
and possibly a symhol from the input string (recresented.
by 77" below), There are very few fatal errors (if a fatal
erronr is detected, the generator cannot continuels an
attempt is made to produce some semblance of a lexical
analyzer for almost every syntactically correct input;
However, 1f any messages appear, check the output very
‘carefu11v (or corprect the error and rerun),

%OPEN FAILURE - L '
Usually file not found. ‘Rementer the command, -

© 20UT OF CORE v »
This error is fatal, Go buy some more memory,

SYNTAX ERRQR AT "2w Cn . o
This errop is fatal._ Check section 2 and appendix 3,

CHAR NOT A DIGIT IN "%
A chavacter in a numben is not a digit or a leteen.

DIGIT > BASFE IN na
The value of a digi: in the number exceedea the base,

WZ" IS NOT A PARAMETER
See section 2,2 for a 1ist of legal parameters|,

HPN WAS PREVIOUSLY DEFINED
The value of a parameter may be defined at most once,

7" IS NOT A CHAR

The value of the character in a type definitjon is not
‘between zero-and (2°CHARSIZE) =~} inc1u51ve. :

nen. NAS PREVIOQUSLY TYPED ‘
The character in a type definition has already been
gfven a type by a previous pnoduction, The fipst
~ definition wins. :

ngn ISANOT A TERMINAL . C
The tepminal referenced is undefined; see section 24 3

"% IS NOT A NGN!TFRMINAL
The nonnterminal referenced is undefined: see sect!on 2 &,

we# IS NOT SEMANTICS ‘
Sece section 4 fop a list of available semantics,

" SEMANTICS NDT APPLICABLE)
See section 4 for the use of available semantics,

RIGHT PART ALREADY DEFINED
This state transition was defined by ‘a previous pro=.
duction, The firpst defwnit{on winsa,

NULL TO SELF ‘
This production gefines a null transition from a state
to {tself, which may result in an infinite loop,

RETURN FROM <init>
A "retyurn" action eccurs on a transvtaon oyt of the
~inftial state (this is a warning onle.

NULL FROM <{nijt> '
‘A null transition has been spec(fied cut of the
injtial state (this is a warning only),

NO CLEAR INTO <init> ‘
A "clear" action is missing on a trans!t\on into the
in!tial state (this is a warning on\v).

PACK INTO <init> o '
' A Ypack" action occurs on a transitfon inta the in¥t
gtate. (this is a warning on\y). -

" EOF NOT DEFINED
A definiticn of charactep type "eof" cannot be fcund.

'NO TYPES |
' No characten type. def!nit%ons could be tound,

“NO STATES '
ho state definit:ons could be found.

EOF IS JGNORED
Endwof=file has not been used in defining any token,

8, References

1

24

-3

JohnSOna et al, Automatic generation of efficient
lexical processors using finite state technidUes,

Conway; Ma
compiler,

Griess, D,
Wileyy New

Hennie, F.
Wileys New

Meehan; J.

Comm, ACM 11,12 (December 1968)9 865!813.

E. Design of a separable transitionad§aqram
Commg ACM 697 (July 1963), 396m4@8,.

Compiler Construction for Digita? Computers.
York, 1971, 49=83,

C. Finfte=state Models for Loéical Machines,
York' 1068' l¢223.

Private communication, December, 1973,

Hoey, D, Private commynication, April, 1974,

{PGSLEX,SYN . 3PsApre74)
o ~ (Parger Generating System} |
- {Syntax for Symbols} ,
fCHARSIZE*=7; ¢TOKSIZE*f=80)
mrk $3z fLe | ftue q oege | ege | exe | oege | e(f e)e
: Ext | F4f | £,¢ | taf | £ € | € 0 | Fy¢ rye
Fel | eze | e>e | eRf | tef | e[r | e\ ey
e#c 1»(‘1 | exe | oejr | eme
let 3i= FA* | fBT | eC* | ‘D* | *E® | °F* | fG*
FHE | Y | £Je | #K® | "L | *M* | N’ eQ*
£PF | FQF | FRT | €Se | cTe | syf | ey rWe
5 &4 | fyfs | ez |
: faf | tb* | €ct | fd* | fef | f4¢° tg*
Fhe | #4¢ | fJ*f | ek* | 1 | *m* | *n* fol?
pf | faf | frf | est | ftf | fut] e | W
L fxt | tyt | e o
dig g8= 1@¢ | 10 | r2e | €30 | cur | 50 | rpr | 070
: - rgt ‘,gqa ' o : : —_— - E
L?;fii-’f;’p Cwou oag= TTEE : o
lcb 11= *{*; ~eof =

 <opr> 11 mek |

<nam>

- &num>

- <stg>

. <str>

<emt>

€init> 11= <cmt> [CLEAR] rcb

 Appendix 1,

~Sample Syntax for a Lexical Analyzer

112 Yet |

R]

i3

<stp>

dig |

eof)

rcb 133)%

177by

<nam> let | <nam> dig j

qot [OMIT] | <stp> 1

. qot [OMIT] | <str> jan [OMITT
. £stp> mpk | <str> let

| <stp>

<stg> qot | <str> lcb | <str>

[IGNORE] t3= tcb [OMIT] | <cmt> ign [OMIT) |

<num> let | <num> dig §

| ?str?_b¥k |

dig

rchb

~<cmt> blk [OMIT] | <cmt> merk [OMIT]
<cmt> let [OMIT] | <cmt> dig [OMIT])

<cmt> got [OMIT] |

[OMIT]

<cmt> lcb [OMIT)

‘Appendix 2,
" Program Produced fpom Sample Syntai‘

H LGS 2,3 - S ATeMayeT4 #

LEXICAL ANALYZER
CALL ME PGSLEXj

PGSLEX,11z(22.sai=PGSLExgst:22,541 " {TeMaye74 19154

LET CHAR=7,WCRD=36,TOKSIZ=82,EQFCHR=1778} _
LET NT=9,MASK=4,RETURN=10B,CLEAR=4B,PACK=2B,READS{B}

LET LTYP=TOK,LLENSTOK({1],LVAL=TOK[2]
TOK IS 3+TOKSIZ/WORD/CHAR LONG,COMMON)

<ST> t1= ENTER 3:= "GO TO ([RT]j; GO3d"j
«ST> 3¢= LEAVE <EXP,A>
t:= LOCAL L IN "RT_LOC(L)) RETURN A; Lia";

SUBR ILEX() IS |
(STATE.@3 LEN,.O; ARCLREADj
BP,BYTEP LVAL<CHAR,WORD>j
LYYP,2; LLEN.Zp LVALL @;
RT*LUC(GD); BJ; ’ '

SUBR LEX() IS
(ENTER;
WHILE { DO
(ARC AND READ =>
(GET(CHR) => CHR,EQFCHR}. TYPE*TYPES[CHR]);
ARC*STATES[TYPE#STATh*NT]}
ARC AND RETURN => .
(TP IS REGISTERyp VP BPp
<¢TP>,2 UNTIL (TP RS 38)<CHARjy
' TP IS RELFASED; LEAVE 0
" ARC AND CLEAR =>
- (BPLBYTEP LVAL<CHAR, NORD>, LLEN&LEN g),
LTYP STATELARC RS MASKj
ARC AND PACK => :
(LENSTOKSIZ => (<+BP>,CHR} LLEN*LENLLEN41)))
: #ARC AND READ =»> LIST(CHR)# @iy :
23 ”

LET init*@,oph lynam Z,num 3.stg-a,str—5p0mt 6] ¥

STATES'
DATA(2B1B,2238,0438,0638,0018,1218,1418,0¢18, azae),
DATA(2158B,037B,02578,877B,015B, 1358, 155B,0158,236B) ¢
nArAtexse.a37a,wasa,@asa,a1sa,1358,sssa.zxse,ezba);
DATA(Q15B,8378,1638,20638,0158,1358,155R,315B,A36B)}
DATA(@15B,037B,8578,2778,015B,1238,155B,08158,236B)
DATA(1218B,1238,1238,1238,1238,1@1B,1238,123B,1228)§
DATAC1448B,141B,141B,141B,141B,141B,141B,8058,0826B)

LET ign:@,mrk=11let:Z{diQ:S,b]k:&,qbt:S;!cbab,rcb=7;eo?;8)

TYPES: - ' o o
DATACignsiansign,igneign,iansianrigneignsiansignsigneion)y
PATAC(ign,iagnsign,igneian,ignsigneignsignmsiagn,ignsigneiagn)d;
DATACign,ignsign,ignsign,igneblkemrkempkymperkymprkemprkomrk)}
DATA(qotymrkempk,mrkemrk,mrkympkomrkemprkydigedigsdigedig) s
‘DATA(digrdiardig,digedig,digemerkemrkymprkymrkympkemrkymrk) s
DATA(letsletylet,let,let,let;letsletylet,let,letsletriet)y
DATA(!et:letpietglet,let.!et;1ettietpietulet;\etqlegclet))_
DATA(mekympkympk, mprk,mrk,mrkyletslet,let,let,letyletsjet)
DATA(let,letrlet,letslet,let,letrlet,letslet,letsletslet)y
DATA(let,let,let,let,let,let,1chymrkyrcbymrkseof) X%%

 Appendix 3,
(Lssst SYN o C 1TeMayeT4)

{Lexical Analyzer Genepating System)
(Syntax for Syntax)

PHASHSIZE®=13; num = ,opr) stg 3 coPPj

copr = 13 Jnam = 2; num = 33 Cestg = 4)
<prg> 1= <stl1> 177p [LEXEND] 3}

<stl> $:= <stm> 3¢ [LEXTAX] | <sti1> <stm> *3¢ [LEXTAX]
<stm> $131= ,stg [LEXPRM] *=* ,num [LEXSET]) |

enam [LEXTYP] *¢*% #1?% f=2f <typ> |

<t ,nam [LEXDEF) *>° ¢3¢ *1? 2’ <def> |

f<*f ,nam [LEXDEF] > *[(* _.nam [LEXDSM] *)°¢
£y tt fz? <daf> } . .

<typ> 11z <1it> | <typ> “1* <1it> g

<1it> t3= ,opr [LEXVAL) | ¢nam [LEXVAL) ‘|
enum {LEXVAL] § ostg lLLAVALJ '

<def> 13= <alt> [LEXALT] | <det> BN <a\t> [LEXALT]!
<alt> 11z <trm> | <ntm> | <ntm> <trm>
= <’ .nam [LEXNTM] *>¢ |

sntm> 34 .
g £<* ,nam [LEXNTM] “>f f[f .nam [LEXNSM] ¢] ¢

&trm> $:= ,nam [LEXTRM] | . E
: enam [LEXTRM) ¢[f ,nam [LEXTSM] f)°*%;

