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ABSTRACT

The stable roommates problem is a well known problem of matching 2n people into disjoint
pairs to achieve a certain type of stability. The problem strictly generalizes the better known
stable marriage problem. It has been previously shown [IL] that the set of stable marriages, for a
given instance, can be compactly represented and this representation has been exploited to yield a
pumber of very efficient algorithms concerned with stable marriage [ILG], [G], [GILS]. In this
paper we generalize the structure of the stable marriages to obtain two efficiently computed,
small, implicit representations of the set of all stable roommate assignments, for any given
instance. One representation is a partial order IT on O(n”) elements such that the stable
assignments are in one-one correspondence with certain easily recognized subsets of I1. Partial
order IT is a strict generalization of the stable marriage representation. The second
representation is an efficiently constructed, undirected graph G with O(n?) nodes, such that there
exists a one-one correspondance between the mazimal (not maximum) independent sets of G and
the stable roommate assignments. In either representation, G or II, given a set representing a
stable assignment, the assignment itself can be constructed in O(n?) time. We also give an
algorithm to generate each stable assignment for any given instance in O(n2) time per
assignment. The efficiency of this method depends heavily on special properties of the stable
assignment problem developed in this paper. Finaly, we give a succinct characterization of the
set of all “stable pairs”, those pairs of people who are roommates in at least one stable
assignment, and we give an O(n3logn) time algorithm to find them all.

Note: This report supersedes and replaces Yale Computer Science technical report TR-435
dated November 1985, entitled “Roommate Stability Leads to Marriage: The Structure of the
Stable Roommate Problem”. The present report shares a large amount of technical material with
the earlier report, but has a very different focus, that of representing and enumerating the stable
assignments. The focus of the first report was an efficient reduction from the stable roommate
problem to the stable marriage problem. However, the proof is in error, and the main
consequence of the claimed reduction, the claimed partition theorem, is not true. I thank Sally
Floyd for first catching this error, and Robert Irving for also finding the error.
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The Structure of the Stable Roommate Problem: Efficient
Representation and Enumeration of all Stable Assignments

Dan Gusfield
Yale University, Department of Computer Science

1. Introduction

The stable roommates problem is a well known problem of matching 2n people into disjoint
pairs to achieve a certain type of stability. The input to the problem is a set of 2n preference
lists, one for each person i, where person i's list is a rank ordering (most preferred first) of the
2n-1 people other than i. A roommate assignment A is a pairing of the 2n people into n disjoint
pairs. Assignment A is said to be unstable if there are two people who are not paired together in
A, but who each prefer the other to their respective mates in A; such a pair is said to block
assignment A. An assignment which is not unstable is called stable. An instance of the stable
roommates problem is called solvable if there is at least one stable assignment. It is known [GS,
L, K, PTW] that there are unsolvable instances of the stable roommate problem; the problem of
finding an efficient algorithm to determine if an instance is solvable was proposed by Knuth [K]

and only recently solved by R. Irving [I].

The stable roommates problem is closely related to, and is a strict generalization of, another
well-known problem, the stable marriage problem. In the stable marriage problem, the 2n people
consist of n men and n women, and each pair is constrained to consist of a man and a women.
Each man ranks only the women and each woman ranks only the men, and an assignment in this
problem is called a marriage (from here on, the word “assignment” will be used only for
roommate assignment). A marriage M is unstable if there is a man and a woman who are not
married to each other in M, but who mutually prefer each other to their respective mates in M.
It is easy to reduce an instance of the stable marriage problem to an instance of the stable
roommates problem. However, in contrast to the stable roommates problem, it is well known
[GS] that every instance of the stable marriage problem is solvable, i.e. has at least one stable

marriage, and for any instance, one stable marriage is easy to find.

For a given instance of the stable marriage problem, there may be many distinct stable
marriages, and as a function of n, the number of stable marriages can grow exponentially [K].
Despite this exponential growth, for any given problem instance, there exists an extremely small,

efficiently computed, implicit representation of the set of all stable marriages for the instance,




where any particular stable marriage can be extracted from the representation very quickly. The
structure of the stable marriages which gives rise to this implicit representation was first made
explicit by Irving and Leather [IL], and, as pointed out in [GILS], can also be seen via a more
algebraic approach based on the theory of distributive lattices. This efficiently constructed
representation of the set of all stable marriages was exploited in [IL], [ILG], [G], [GILS] to solve a
number of problems related to stable marriage. For example, for any given instance of the stable
marriage problem, the implicit representation of all the stable marriages can be constructed in
O(nz) time, and thereafter, each stable marriage can be generated from the representation in O(n)
time per marriage [G], which is time optimal.

In this paper we generalize the structure of the stable marriages to obtain two efficiently
computed, small, implicit representations of the set of all stable roommate assignments, for any
given instance. One representation is a partial order IT on O(n?) elements such that the stable
assignments are in one-one correspondence with certain easily recognized subsets of /1. Partial
order IT is a strict generalization of the stable marriage representation given in [IL] and [GILS].
The second representation is an efficiently constructed, undirected graph G with O(n?) nodes,
such that there exists a one-one correspondance between the mazimal (not maximum)
independent sets of G and the stable roommate assignments. In either representation, G or I,
given a set representing a stable assignment, the assignment itself can be constructed in O(n?)
time. We then give an algorithm to generate each stable assignment for any given instance in
O(n?®) time per assignment. This compares favorabley to the O(n®) time, per marriage, method
given by Knuth [K] to generate all stable marriages. The faster method given in this paper
doesn’t follow immediately from the representations above, since the fastest known time to
generate maximal independent sets in a general graph on O(n?) nodes runs in O(n%) time per
independent set, and methods based on general partial orders appear even less efficient. Finaly.
we give a succinct characterization of the set of all “stable pairs”, those pairs of people who are
roommates in at least one stable assignment, and we give an O(nslogn) time algorithm to find all

the stable pairs.

The results and algorithms in this paper are obtained by close examination of Irving's
algorithm [I] which finds one stable assignment if there is one, and else reports that no stable

assignment exists. Hence we will begin by describing algorithm I.

2. Algorithm I and its execution tree D




2.1. Algorithm I

Algorithm 1 successively deletes entries from preference lists until either each person has only
one entry on its list, or until someone has no entries. In the first case, the entries specify a stable
roommate assignment, and in the second case, there are no stable assignments; the algorithm
runs in time O(n?). The algorithm is divided into two phases. In phase one, entries are removed
from lists, but no stable assignments are affected, i.e. if j is removed from i's list, then (i,j) is a
pair in no stable assignment. In phase 2, the removed entries may affect stable assignments, but
the invariant is maintained at each iteration, that if there is a stable assignment in the lists
before the current iteration of removals, then there is a stable assignment in the lists resulting
from the iteration of removals. Hence if any list becomes empty in either phase, there can be no
stable assignment. Before describing the algorithm, we need the following definitions.

Definition: The current set of lists at any point in the algorithm is called a table.

Definition: Let ¢, denote a person. At any point in the algorithm, hi will denote the current

head of person e,'s list, and s, will denote the current second entry on e;'s list.

Definition: At any point in algorithm I, a person e, is said to be semi-engaged to b, if and only
if e, is the bottom entry in h's list. A person who is not semi-engaged is called free. A person

may alternate between being free and semi-engaged.-

Note that semi-engagement is not a symmetric relation. However, if everyone is semi-engaged,

then the set of list heads is a permutation of the 2n people. We now describe algorithm I.

Phase 1 of algorithm I iterates the following:

If there is an empty list, then terminate algorithm I; there is no
stable assignment.

Else, if everyone is semi-engaged, then go to phase 2.

Eise, pick an arbitrary free person e , and execute the following
operations for each person k who is ranked below e, on h,’s
list in T: remove k from h,’'s list, and remove h, from k's list.

Note that throughout phase 1, person i is on j's list if and only if j is on i’s list. Hence in a
step where e, becomes semi-engaged to h,, if there is a person p who is semi-engaged to h, just
before that step, then p is (automatically) not semi-engaged to h, after that step; This follows
since at the start of the step, p must be below e, on h's list, so during that step, p is removed
from b's list, and h; is removed from p's list. After the step, p might be free, or it might have

become (automatically) semi-engaged to the new head of its list.

The set of lists at the end of phase 1 is called the phase I tabie. It is proved in [I] that if j is




missing from i's list in the phase 1 table, then there are no stable assignments which pair i to
j. Hence if some list in the phase 1 table is empty, there are no stable assignments. Otherwise,
when phase 1 terminates with everyone semi-engaged, j is the head of i’s list if and only if i is the
bottom of j's list, and so the set of head entries of the phase 1 table are a permutation of the 2n

people.

Figure la gives an instance of the stable roommate problem, and 1b shows the three stable

assignments for the table. Figure 2a shows the phase 1 table for the example.

Phase 2

Throughout phase 2 all the people remain semi-engaged, although who they are semi-engaged
to may change. Hence at any point in phase 2, j is the head of i’s list if and only if i is the
bottom of j's list. It will also be true that i is on j's list if and only if j is on i's list. Phase 2
starts with the phase 1 table and removes entries from lists in a way similar to phase 1, but the
selection of lists is more constrained. We first need some definitions.

Definition: In a table T, an ezposed rotation R is an ordered subset of people E = {el, €,y o

) er}', such that s, = h.l for all i from 1 to r, where i+1 is taken modulo r. Note that since the

+1'
order of E is cyclic, the actual selection of which element in E is named e, is arbitrary, but that

selection determines the rest of the ordering.
Figure 2b shows two rotations that are exposed in the phase 1 table of the running example.

We will often write “R = (E,H,S)”, where H is the set of head entries of E ordered to
correspond to the order of E, and S is the set of second entries of E, with corresponding order.
Note that, as sets, S = H, and that, as ordered sets, S is a (backwards) cyclic rotation of H:
when that point is central, we will write S = H. We will sometimes say that “e is in R” to
mean that e is the E set of R; we will also say that “(e,h) is a pair in R” to mean that e = ¢, and

h = hi for some € in E.

Definition: If R = (E,H,S) is an exposed rotation in table T, then the elimination of R from
T is the following operation: for every s, in S, remove every entry below e, in s.’s list in T, 1.e.
move the bottom of s's list up to ¢ (from ei+l)‘ Then remove s, from k's list, for each person k

who was just removed from s;'s list.

Notice that if all people are semi-engaged in a table T before a rotation elimination, then all
people are semi-engaged after that elimination; hence, one affect of the elimination is to move the
head of e's list down one place, for each e, in R, i.e. ¢; becomes semi-engaged to the s, of table
T. Figure 2c shows the table resulting from eliminating R, from the phase 1 table.

Phase 2 of the algorithm is simply:




While some person has more than one entry on his list, and no list is empty,
find and eliminate 8 rotation.

If every person has exactly one entry on his list, then pairing each
person with their head entry specifies a stable assignment.

If there is an empty list, then there are no stable assignments.

Figure 2d completes the execution of phase 2, eliminating rotations Ry and R,.

2.2. Correctness of algorithm I
The correctness of algorithm I is proved in [I], and will not be fully repeated here. However,
we need the statements of the central lemmas that prove correctness, and we need to extend

some of them; we will give proofs of the extended lemmas.

Definition: If T is a table, then roommate assignment A is said to be contained in, or in, T, if

and only if every pair in Aisin T, i.e. iis on j's list, and j is on i's list for each pair (i,j) in A.
The following lemmas imply the correctness of algorithm I.

Lemma 2.1 [I): If T is a table (in phase 2) where no list is empty, and at least one person has
more than one entry, then there is a rotation exposed in T.

Lemma 2.1 will be proved and extended in the next section.

Lemma 2.2 [I: Let R = (E,H,S) be an exposed rotation in T, and let A be any stable
assignment contained in T. If e; € E and (e, h,) is a pair in 4, then (e;, h,) must also be a pair

in A, for every e, in E.
Lemma 2.2 will be proved and extended in the next section.

Lemma 2.3 [I]: If rotation R = (E,H,S) is exposed in T, and there exists a stable assignment in
T where e, € E pairs with h , then there also exists a stable assignment in T where e, does not

pair with h,, and by lemma 2.2, no ¢, pairs with b, for any e; in E.

Lemma 2.4 [I]: If the algorithm ends with a single entry on each list, then pairing each person

to that entry gives a stable assignment.

2.3. Extensions of the central lemmas
We will prove lemmas 2.1 and 2.2 in order to extend them.

Proof of lemma 2.1: Let e, be a person who has at least two entries, h, and s;, on its list in
T. Since the head entries are a permutation of the people, and s, # b, there must be a person e
such that s, = hj. We claim that ; must have two or more entries on its list. If not, then !1:| is




its only entry, and so e; is the only entry on hj's list; To see this, note that hi is both the head
and bottom entry on ej’s list, so e; must also be both the head and bottom of hj’s list. But, hj =
s, which is on e’s list, so ¢ (which can’t be ej) must also be on hj’s list, and so both hi and ¢
must have at least two entries on their lists. Repeating this argument, we must eventually cycle,

_in which case a rotation has been found. O

Definition: The proof above gives an (implicit) algorithm for finding a rotation R, starting
from any person e who has at least two entries on its list in T. Let e, denote the person who is
visited twice by the algorithm (i.e. where the cycle is detected). Every person who is visited
before the first visit to e, is said to be on a tasl of R, and the other people are in the body of R.

Note that in a given table, an exposed rotation may have many tails, and in a different table,
the same exposed rotation may have different tails. This is illustrated in the example of figure 2.

We will need the following extension of lemma 2.1.

Corollary 2.1: If e is a person with two or more entries on its list in table T, then e is either in

a tail or in the body of a rotation exposed in T.
The following lemma extends lemma 2.2.

Lemma 2.5: Let R be a rotation exposed in table T, and (e, b;) a pairin R. If Ais a stable
assignment contained in T where e, pairs with b;, and if (e,h) is any pair in esther the body of R
or a tail of R, then (e,h) must be a pair in assignment A.

Proof: Let 'ej be a person either in R or in a tail of R. If e, is any other person such that s, =
hj, then in A, e, must pair with hk if €; pairs with hj; If not, then e, must be paired with a
person below s, on its list, since h, is already paired with & and A is in T. But s, is the head of
ej’s list in T, so e; must be the bottom of sk's list, and since Sy is on ek's list, e, is on sk’s list, and
is preferred to e; by s,. Hence e, and s, would block A. It follows that if e is in the body of R,
and if ¢ pairs with hj in A, then every e, in R must pair with hj in A. Now consider any tail of
R (relative to T). If (e,h,s) is the last triple of the tail, then s = h. for some e, in R, so (e,h)
must be a pair in A, and the implication follows backwards along the tail. Hence in A, each

person in the tail must also pair with the head person on their list in T. O

2.4. The execution tree D

Algorithm I is guaranteed to produce a stable assignment if there is one. However, in this
paper we are concerned with the the structure of the set of all the stable assignments for a
particular instance; most of what we will deduce will be by examining the possible executions of

algorithm 1. Hence we need the following

Theorem 2.1: If A is any stable roommate assignment, then there is an execution of algorithm




I which produces A.

Proof: Let T be any table obtained from a (partial) execution of algorithm I, where stable
assignment A is in T. If in T, the head of each persons list is their partner in A, then, as in the
proof of lemma 2.1, each list has only a single entry, and so T is the final table of an execution of
algorithm I, and A is the resulting stable assignment. So, assume that there is a person p whose
partner in A is not the head element of p's list in T. Hence p's list has at least two entries, and,
by corollary 2.1, p is either in the body or in a tail of a rotation R = (E,H,S) exposed in T. We
claim that no person e, in the body of R pairs with hi in A. This follows directly from lemma
2.5, since if (e, bh) is a pair in A, then p's partner in A must also be its head entry in T,
contradicting the selection of p. :

We will show that when R is eliminated from T, assignment A is still contained in the resulting
table. The elimination of R from T can be viewed as a two step process. First, the head of each
element e, in R is moved down one position to h.. By the argument in the paragraph above,
assignment A is in the table after these moves. Hence in A, each ¢, in E must be paired with s or
below in its list, and for the stability of A, it follows that each 5; in S must be paired with e, or
above, in its list. Hence A will be in the remaining table if, for each s, in S, we remove all the
elements below € in si’s list, and remove s from the lists of each of these elements. But these are
exactly the elements that are removed when R is eliminated from T. Hence rotation R can be
eliminated from T, creating a smaller table T’ which still contains the stable assignment A. The

theorem follows by repeating this argument until no rotations remain. 0

Corollary 2.2: Let R = (E,H,S) be an exposed rotation in table T, and let T" be the table
after eliminating R from T. If e, is any person in E, then T’ contains all stable assignments that
T contains, except for those assignments where e, mates with h..

Definition: We use D to refer to the resulting execution tree, when, for a given phase 1 table,
phase 2 of algorithm I is executed in all possible ways. Each node x in D represents the table
T(x), which is the current state of the algorithm at node x. Each edge out of x is labelled with a
rotation which is exposed in T(x), and which is the next rotation eliminated from T(x) on that

execution path out of x. We use D(x) to denote the subtree of D rooted at x.

Note that D is defined only for the the phase 2 executions. In the remainder of the paper.
when we talk about algorithm I, we will be referring to phase 2, unless we specifically state

otherwise.




2.4.1. Naive enumeration of all stable assignments

Given Theorem 2.1, we could generate all stable assignments by forcing all possible executions
of Irving’s algorithm. This would be simple to do, but would be terribly inefficient, as it would
most often generate the same stable assignment several times. However, we will show in this
paper that an efficiently implemented modification of this naive approach generates each stable
assignment exactly once, at a cost of O(n®) time per assignment. Although the modification is
simple, its proof of correctness and time is not, and most of this paper centers on developing the
needed tools for the proof. We will return to the enumeration problem after examining the

structure of D, and the rotations in the the next several sections.

3. Basic Lemmas

In this section we develop the basic (technical) tools and definitions that will be used in the
rest of the paper. Before going on, it is useful to examine the execution tree D in a running
example (see figure 3). Three initial observations stand out: first, if P and P’ are paths in D
that lead to the same stable assignment, then the edges of P and P’ are marked with the same
set of rotations, although in different order; second, every path in D has the same length; and
third, many of the rotations seem to come in dual pairs as defined below.

Definition: If R = (E,H,S) is a rotation in D then we define R to be the triple (S,E,E"), where
S and E have the same order in RY as they have in R. Note that with this definition (Rd)d =
R. Note also that RY has the form of a rotation; If RY is actually a rotation in D (i.e. is a
rotation exposed in some table), then we call R and RY a dual pair of rotations. Any rotation

without a dual is called a singleton rotation.

In the example, rotations R, and R, are singletons, and (R, R;) and (R,, Rg) are each a dual
pair of rotations. With this terminology, we can make a more precise observation, which replaces
the second and third observations above: Each path from the root to a leaf in D contains every
singleton rotation, and exactly one of each pair of dual rotations. We will prove that these
observations are facts which hold for any execution tree D of algorithm I, and these facts will
then be exploited to reveal the structure of the set of stable roommate assignments. However, we
first need several technical definitions and lemmas.

Lemma 3.1: If R = (E,H,S) and RY = (S,E.E") are dual rotations that are both exposed in a
table T, then in T each list of E U S has exactly two elements.

Proof: This follows simply from definition of duals, and the fact that person i is the head of j’s
list in any table if and only if person j is the bottom of i's list in that table. O

Definition: For a table T, the active part of T is the subtable of T consisting of those lists
which contain more than one person.




Lemma 3.2: If R = (E,H,S) and R4 = (S,E,E") are both exposed in T, then the active part of
the table resulting from eliminating R from T is the same as the active part of the table resulting
from eliminating RY from T. Further, that active part is just the active part of T minus the lists
of EUS.

Proof: This follows directly from the definitions dual rotations and rotation elimination, and
lemma 3.1 above. O

Definition: Let T be a table and R = (E,H,S) be a rotation. If there is a subset of elements of
T which form a table T’, such that R is exposed in T’, then we say that R is embedded in

T. Note that the definition does not require that some execution of algorithm I actually exposes
R.

Lemma 3.3: If R and R are dual rotations, then R is embedded in table T if and only if R4 is.

Proof: This follows directly from the definition of duals, and the fact that i is on j's list if and
only if jisoni's list. O

Definition: Let R be a rotation exposed in table T, and let T(R) be the table resulting from
eliminating R from T. If rotation R = (E’, H’, S§°) is embedded in T but not in T(R), then we
say that R removes R’ from T. Note that for R to remove R” from T all that is required is that

h’; or s’; not appear on e’.’s list in T(R), for at least one e”, in R’.
Definition: A path P in D is said to contain the rotations that label the edges of P.

Lemma 3.4: If P is a path from the root of D to a node x in D, and P’ is a path from the root
to a node x’, and P and P’ contain the same rotations in different order, then table T(x) and
table T(x’) are identical. Hence a table is determined from the phase 1 table by the set of

rotations leading to it, not by their order.

Proof: It is clear from the way that elements are removed in phase 1 and phase 2, that at any
point in phase 2, the current table T is determined by the phase 1 table and the bottom elements
of each list in T. In phase 2, the bottom element of person i's list is changed only if person i is in
the S set of an eliminated rotation. Hence if i is not the second element in any rotation on the
path, then i's bottom element in T is its bottom in the phase 1 table; otherwise, the bottom of i's
list in T is given by the person p who i most prefers, such that i is the second element in p's list

in some rotation on the path to T. O

Definition: The set of rotations that appear on a path from the root to a leaf in D is called a
path set. We will use this term when the order of the rotations is not important.

Lemma 3.4 shows a mapping from the path sets onto the stable assignments, but does not
show the converse, i.e. it is still possible that two path sets generate the same stable assignment.
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We will later show that the mapping is in fact one-one. i.e. that any two paths in D which lead
to the same table must contain the same set of rotations. This fact, which is more difficult to

prove than Lemma 3.4, will be central in the efficient enumeration of the stable assignments.
We are now ready to state and prove the first non-trivial technical lemma.

Lemma 3.5: If R = (E,H,S)and R’ = (E’,H’,S’) are two distinct rotations exposed in a table
T, then R removes R’ from T if and only if R* = RY. Hence the only way to remove an
exposed rotation is to explicitly eliminate it or its dual rotation, if it has one.

Proof: One direction is trivial. If R and RY are dual rotations, then since one is embedded in
T if and only if the other is, the elimination of R must remove Rd. To prove the other direction,
suppose that R and R’ are exposed in T, and that R £ R’ eliminates R’ from T. We will show
that R’ must be R9. When R is eliminated, person s, € S is removed from the list of a person p
if and only if p is below e, on s.'s list in table T. Clearly, these removals of individual people from
T affect the lists of people in E” only if 5; is in H’ (hence in S°), or if 5; is in E’. To see that the
first case is not possible, recall that in table T the elements in the H column are a permutation of
the 2n people, and that in each rotation R, the set of S elements and H elements in R are the
same. So even though the S column of table T is not necessarily a permutation (i.e. a person can
appear more than once in the S column), no person can appear in the S set of more than one
rotation exposed in T. Hence SN S” = S N H’ = 0, and so the first case is not possible. Hence
the elimination of R removes R’ from T only if some s, is in S N E’. For ease of discussion,

assume wlog that s, € SN E’, and thats, = e'j.

Ife 5 h'j, then the change of the bottom of s, to e, (the consequence of eliminating R) will
not affect R, so we assume also that e, = h'j. Let T(R) be the table resulting from eliminating
R in T. Since the bottom of s,'s list moves up to e, which is the head of s's list in T (since s, =
e"i and e, = h'j), s,’s list in T(R) contains only the single element e;,. We claim that if e’; €
E’, then e”.’s list in T(R) must also contain only a single element. If not, then in T(R), e’, be on
a tail that leads to no rotation. To see this, note first that H® cannot be affected by the
elimination of R, and if e’, has two elements in its list in T(R), then its first two elements in
T(R) are the same as in T. Hence, following the proof of Lemma 2.1, the unique path from e’; in
T(R) is the same as in T, but that path can't form a cycle, since it will encounter a member of
R’ (s, or earlier) which has only one element on its list. Hence if e’; has more than one element
on its list in T(R) then it will be on a tail leading to no rotation. But this contradicts Corollary
2.1, so in T(R) each e’ in E’ contains only a single element in its list. Now R’ is exposed in T,
so each e’i in E’ has two or more elements on its list in T, so the affect of eliminating R in T is
to move the bottom of each e”; in R’. But this is possible only if for each e, € E’, e'i =s, and

h = € for some e, in R.
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So we now know that if R removes R’ from T, then as sets, E° = H,and H* = E = §S’.
This is necessary if R’ = R4, but in order to actually prove that equality, we need to show that
the order inside the sets is correct. We already know that the correspondence between E’ and
H’ is correct, i.e. that ', = s, and b’; = ¢, for the same k. So, assuming wlog that s, = e,
we must show that s’, = ¢, | for each i, where i+1 is taken (mod r), and r is the size of R. To
do this, we first note that in T the list of every element in R contains exactly two elements; this
follows from what we just showed, since in T, each ¢ in R is the head of s;'s list, so s, is the
bottom of e;'s list, so each element in R has exactly two people on its list in T. But then each e,
can be only on the list of b, or s, in T. Further, e, appears once in H’ and once in S°. Now e, is
the head of s.'s list in T, so e; must be the second element in h,'s list in T. So e’; 1
=€, s claimed. Hence if R removes R’

=5 = h

] . M »
and the second element on hi+l s list is €, 508
from T, then R’ = RY. O

Later in the paper we will strengthen this theorem to show that if R is exposed in T, and R’ is
embedded in T, but perhaps not exposed, then R removes R’ from T if and only if R* = R

4. The structure of D
In this section we examine the structure of D, as this structure will reveal the structure of the

set of stable assignments.

4.1. Covering Rotations .

Definition: Let x be a node in D and D(x) the subtree of D rooted at x. The active part of D(x)
is the tree D(x) where at each node y in D(x), T(y) is replaced by the active part of T(y). Note
that the edge labels of D(x) do not change.

Definition: If R and RY are dual rotations, and path P in D contains either of them, then we
say that P covers R and RY. If R is a singleton, and P contains it, then then P covers R.

Lemma 4.1: Let x be a node in D with associated table T(x). Every path from x to a leaf in

D(x) covers the same set of rotations.

Proof: Let d(x) denote the maximum number of edges on any path from x to a leaf in D. The
theorem will be proved by induction on d(x). For d(x) = 1, if there is only one edge out of x (i.e.
only one rotation exposed in T(x)) then the basis is trivially true. If there are two rotations R
and R’ exposed in T(x), then, by lemma 3.5, they must be duals of each other, since eliminating
cither one of them results in a table with no rotations (i.e. each removes the other). Similarly,
there cannot be more than two rotations in T(x), since the elimination of any of them removes

them all. So the basis is proved.

Assuming that the theorem holds for d(x) < k, let x be a node in D where d(x) = k+1, and let
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z be a child of x such that d(z) = k; by the induction hypothesis, all paths from x through z to a
leaf must cover the same rotations; let P be any such path, and let R be the rotation labelling the
edge (x,z). If R is the only rotation exposed in T(x) then there is nothing to prove, so let y be
another child of x, and let R’ be the rotation on the edge (x,y). We will show that every path

from x through y to a leaf of D(y) covers the same set of rotations as P.

If R’ = RY, then, by lemma 3.2 (since both R and RY are exposed in T(x)), the active parts of
T(z) and T(y) are identical, and hence the active parts of D(z) and D(y) are identical. Further,
d(z) = k, and d(y) < k, so each path from z covers the same rotations, and each path from y
covers the same rotations, so, since the subtrees from z and y are identical, any path from z must
cover the same rotations as any path from y. Then every path from x through y covers the same

rotations as P.

If R # Rd, then, by lemma 3.5, R is still exposed in table T(y), and R" is still exposed in
table T(z). Let z° be the node associated with the table obtained by eliminating R’ from T(z),
and let y’ be the node associated with the table obtained by eliminating R from T(y); and let
P(z’) and P(y’) be paths from x to leafs in D that pass through 2’ and y’ respectively. Now the
set of rotations on the path from the root of D to z’ is exactly the same as the set of rotations on
the path to y’, hence by lemma 3.4, T(z") is identical to T(y"), and so D(z’) = D(y’). It
follows, as in the case above, that P(z’) and P(y’) cover the same set of rotations. But, P(z")
covers the same set as P, and since d(y) < k, any path out of y covers the same set of rotations
as P(y’), hence covers the same set as P. Node y was an arbitrary child of x such that y £ z, so
the theorem is proved. O

By definition, every rotation is exposed somewhere in D, hence the major consequence of this

theorem is the following

Path Theorem

Theorem 4.1: Every path from the root of D to a leaf covers all the rotations. Further, since
no path can contain both a rotation and its dual, each path contains every singleton and exactly

one of each dual pair of rotations.
Corollary 4.1: Every path in D from the root to a leaf has the same length.
Hence the observations in the example hold in general.

We can now strengthen lemma 3.5.

Corollary 4.2: If R is exposed in table T, and R* % R is embedded in T, then R removes R” if
and only if R = R¢.

Proof: Clearly, R removes RY whether R is exposed or not. To prove the converse, let x be a
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node in D with associated table T(x), and let y be the child of x obtained by eliminating R from
T(x). Since R’ is embedded in T(x), neither R" nor R’Yd are on the path from the root to x. If R
removes R’, it removes R’9 also, so neither of these rotations is on any path from x to a leaf.
Hence to avoid contradicting theorem 4.1, it follows that R’ = Re O

5. The structure of the rotations and stable assignments
In this section we derive two compact representations of the set of all stable assignments. We

first need a few more technical observations.

5.1. Unique elimination

Definition: Let e, hi’ s; be a triple in rotation R; hence when R is eliminated from any table it
is exposed in, the bottom of s.'s list moves from e, +1 %0 € where i+1 is taken mod r. Let A(R,i)
denote the set of people on s,'s original list between e; and ¢, ,, including e, but excluding e, ,.
Similarly, let B(R,i) be the people between ¢; and ¢, |, including e, , but excluding e,

Lemma 5.1: Foranye in R, Ris the only rotation whose elimination moves the bottom of s;'s
list to a person in A(R,i), and is the only rotation whose elimination moves the bottom of s;'s list

from a person in B(R,i).

Proof: Let R’ be a different rotation whose elimination moves the bottom of ss list to a
person p in A(R,i), from a person q. Clearly, since e, is above q, and p is above ¢, |, no path in D
can contain both R and R’. Further, R% (if it is a rotation) cannot precede R’ on any path,
since RY moves the head of s;'s list to e, ,, which is below p. Similarly, R’ cannot precede R¢ on
any path, since it moves s.’s bottom to p, which is above e, _ ;. But every path contains either R
or RY, so no path contains R’, contradicting the definition of a rotation. The proof for moves

from B(R,1) is similar. O

Corollary 5.1: A person p is the H element a person q's list in at most one rotation, and is the
S element of q's list in at most one rotation. Hence there is at most one rotation whose
elimination moves the head of q's list to p.

Corollary 5.2: If p 5% e, and p € A(R,i), then s; can never be paired with p in any stable

roommate assignment.

Proof: Consider any path P where p is paired with s.. Since s, prefers p to e, p is not the
bottom of si's list in the phase I table. Hence, somewhere on P, p must become the bottom of si's
list. But this contradicts lemma 5.1 above. O
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5.1.1. Necessary elimination
Let R be a rotation with the triple e, b, s, in R. If p5# b, and p is above s, in ¢/'s list, then R

will never be exposed until p is removed from e;’s list.

Lemma 5.2: Let p be a person who must be removed from e;'s list before R is exposed. There
exists a unique rotation R, such that R’ appears before R on every path that contains R, and
such that of all the rotations which appear before R on any path in D, R’ is the only one whose
elimination removes p from ;s list. :

Proof: From examination of algorithm I, there are only two ways in which p is removed from
e’s list: either p is removed when the bottom of ¢,'s list moves up above p, or when the bottom
of p's list moves up above e. If p is removed by the first case event, then R cannot be embedded
in the table after e,’s bottom moves above p, since p is above s;. Hence p is removed by the first
case event only on paths that don’t contain R. By lemma 5.1, the second case can happen only
when a particular unique rotation, R’, is eliminated. Since p most be removed from e;'s list

before R can be exposed, R’ must precede R on any path that contains R. O

Definition: If p must be removed from e's list before R is exposed, and if R’ is the (unique)

rotation discussed in lemma 5.2, then we say that R’ ezplicitly precedes R.

5.2. The partial order I7* and the structure of the stable assignments
Definition: Let IT* be the reflexive transitive closure of the above relation of explicit
precedence. It is clear that IT* is a partial order on the rotations.

Figure 4 shows the Hasse diagram of IT* for the running example.

Definition: In partial order IT*, a subset C of rotations is called closed if and only if it is closed

under the predecessor relation, i.e. if R is in C, and R” precedes R in IT*, then R" isin C.

Lemma 5.3: There is a one-one correspondence between the path sets in D and the set of those
closed subsets of JT* which contain all the singleton rotations, and contain exactly one of each
dual pair of rotations.

Proof: One direction is trivial. Let C be a path set in D, and let P be any of the paths in D
containing path set C. We claim that C forms a closed subset in IT* of the required type. We
know that each path in D contains all the singleton rotations and exactly one of each dual pair of
rotations, hence we only need to show that C is closed in IT*. But, by lemma 5.3 above, any
rotation that precedes R € C must be contained on P, hence C is closed. Conversely, let C be a
closed set of the required type; we will show that there is a path P in D which contains C exactly.
First, the maximal elements C;, C C (those with no predecessors in IT*) must be exposed

rotations in the phase I table, and since only one of any dual pair is in C, there is a subpath from
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the root of D consisting of the rotations C,. After the C; rotations are eliminated, the elements
c,ccC whose only predecessors are in Cy must now be exposed, and (since only one of each dual
pair is in C) each remains exposed until eliminated, and hence there is a path from the root
consisting of C, followed by C,. Continuing in this way, there is a path from the root to a leaf

in D consisting of the rotations in C. O

The proof of the following is essentially the same as the second part of the above proof of

Lemma 5.3.

Corollary 5.3: If C is a closed set in IT*, and is contained in some path P in D, then there
exists a path P’ in D containing the same rotations as P, but where all rotation in C appear
before any rotations not in C. Further, the internal order of the rotations in C is the same on
both paths, as is the internal order of the rotations not in C, i.e. in P’ the rotations in C simply

move above the non-C rotations, but keep their same internal order.

Since each path set maps to a unique stable assignment, Lemma 5.3 implies that each closed
subset in IT* of the required type maps to a unique stable assignment. We now show that

distinct closed subsets map to distinct stable assignments.

Lemma 5.4: Let C and C’ be two distinct closed subsets of IT* which both contain all the
singletons and exactly one of each dual pair of rotations. Then, as path sets, C and C’ yield

distinct stable assignments.

 Proof: Suppose to the contrary that both the path sets C and C’ produce the same stable

assignment A. We claim that the minimal rotations in C must be in C’. Suppose not, and let R
= (E,H,S) be a minimal rotation in C, and let e be in E. Then in A, e must be mated to s; for
every rotation that moves e, below s, (and moves s, above ¢) must be preceded by R. But R is
minimal in C, so e, is mated to s, in A. But by Corollary 5.1, there is only one rotation that
moves the head of e to s, Hence R, and all minimal rotations in C, must also be in C’. But
since C and C’ are closed, all the predecessors of the minimal rotations in C must also be in C,
and hence in C’. But any closed subset is precisely the set of its minimal elements, plus the
predecessors of those minimal elements. Hence C C C’, but since they both have the same
cardinality, C=C’. O

The following two theorems connect the preceding lemmas and summarize what we now know

about the structure of the stable assignments.

Theorem 5.1: There is a one-one correspondence between stable assignments and those closed
sets in IT* which contain every singleton rotation and exactly one of each dual pair.

Hence IT* is a small, O(ng) nodes, representation of the set of all stable assignments. We will

later discuss how to efficiently construct IT*, and how to construct a stable assignment from a




16

closed subset of the correct type.

Theorem 5.2: There is a one-one correspondence between path sets in D and stable

assignments.

Theorem 5.2 is Lemma 3.4 and its converse, and is one of the keys to efficient enumeration of
the stable assignments. Before discussing enumeration, we derive an alternative representation

for the stable assignments.

5.3. Independent set representation of stable assignments
In this subsection we present a second compact representation of the set of all stable
assignments. We first need some additional observations.

5.3.1. Refining IT*
Lemma 5.5: Let (R, RY) and (R Rld) be two dual pairs of rotations, and R’ a singleton

rotation. Then:

1) Neither R nor RY can precede R’ in IT*, i.e. only a singleton rotation can precede a
v P

singleton.
2) R precedes R, in IT* if and only if Rld precedes RYin IT*.

Proof: Since each singleton rotation is on every path in D, any rotation which precedes a
singleton rotation must be on every path in D. So if R precedes R’, R is on every path, and RY is
on no paths in D, contradicting the assumption that RY is a rotation; so the first fact is proved.
For the second fact, observe first that since R precedes R, no path can contain both R, and Rd,
so any path containing RY contains Rld. We must show that in any such path, Rld appears
before R4. Let P be a path containing RY, and consider the point x where RY is eliminated.
Since no path can contain both R, and RY, R, cannot be exposed in D(x). But Corollary 6.2,
which will be proven later, states that if any non-singleton rotation is embedded in T(x), then
both it and its dual are exposed somewhere in D(x), the subtree of D below x. Hence it must be
that Rld is not embedded in T(x), so Rld must appear on P before RY, and fact 2 is proved. O

5.3.2. Graph G

We define an undirected graph G as follows. There exists one node in G for each non-singleton
rotation, and two rotations R1 and R, are connected by an edge in G if and only if there exists a
rotation R (possibly R, or R,) such that in IT*, R precedes R, and RY precedes R,. It follows
that R and RY are connected for each dual pair (R,Rd) and if two rotations are adjacent in G,
then they cannot appear together on any path in D.

Lemma 5.6: Every maximal independent set in G contains exactly one node from each dual
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pair of rotations.

Proof: First, no independent set can contain both nodes of a dual pair. For the other side, let
S be an independent set in G which does not contain either R or RY. If neither R nor RY can be
added to S, then there must be a node R, in S such that (R,Rl) is an edge in G, and there must
be a node R, in S such that (Rd,Rz) is an edge in G. But then there exists a rotation R, such
that R, precedes R, and de precedes R,, so Rld precedes R; (by Lemma 5.5 part 2), and it
follows that Rld precedes R. Also, there exists a rotation R, such that R, precedes RYand R 4d
precedes R,, so R precedes R 4d precedes R,. So R‘d precedes R precedes R,. But then R, and
R, would be connected in G. Hence it can’t happen that neither R nor RY could be added to S to

create a larger independent set, and continuing in this way, the lemma is proved. O
Definition: Let IT be the partial order J7* with the singletons removed.
The following is directly implied by Theorem 5.1 and Lemma 5.5 part 1.

Lemma 5.7: Let T be the set of all singleton rotations in IT*. A set of rotations C is closed in
IT* if and only if C - X is closed in II. Hence there is a one-one correspondence between the
stable assignments and the closed subsets of IT that contain exactly one of each dual pair.

We can now show a one-one correspondence between the maximal independent sets in G and

the stable assignments.

Lemma 5.8: Any closed subset C in IT that contains exactly one of each dual pair, is a

maximal independent set in G.

Proof: No path in D can contain two rotations which are connected in G. But since C is closed
in IT, C U X corresponds to a path set from D, hence to at least one path in D. Hence no
rotations in C can be connected in G, and C is an independent set in G. It is maximal, because it
has one rotation from each dual pair, and no independent set in G has more. O

Lemma 5.9: Any maximal independent set in G is a closed set in II.

Proof: Let S be a maximal independent set in G, and let R be any rotation in S. Suppose R’
precedes R in I7. Then, since R’d precedes itself, R and R’ are connected in G, so R*4 is not in

S. But S must contain one of each dual pair, so S contains R’. It follows that S is closed in I7. O
In summary,

Theorem 5.2: There is a one-one correspondence between the maximal independent sets in G

and the set of stable assignments.

Hence, G is another small implicit representation of the set of all stable assignments. We can

simplify the definition of G with the following
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Lemma 5.10: Rotations R and R’ are connected in G if and only if RY precedes R” in I7.

Proof: First, if R9 precedes R’, R and R’ are conmected in G, since R precedes R’.
Conversely, if R and R’ are connected in G, then there is a rotation R* such that R* precedes R
and R*9 precedes R’. But by Lemma 5.5, R* precedes R implies that RY precedes R*d so R

precedes R°. O

The above lemma allows a more efficient method to construct G: we can determine whether to
connect two nodes by looking directly at a single entry in the precedence relation, rather than
looking for a third rotation to satisfy the initial requirement for connecting two nodes in G. It
turns out that G can be constructed in time O(n‘); details are omitted, but are very similar to

the construction of a related partial order IT given in [G].

5.4. Equivalent sets and representations

We now know that the path sets of D, the closed subsets of IT* that contain each singleton and
exactly one of each dual pair, and the maximal independent sets of G augmented with the
singletons, are all exactly the same sets of rotations, and these sets are in one-one correspondence
with the stable assignments. We will see later that each such set can be used to generate the

associated stable assignment in O(n“") time.

6. Efficient enumeration of all stable assignments

We now discuss an efficient method to generate all stable assignments. The method is a
modification of a very general, naive method that is often suggested as a way to enumerate
constrained sets, but in general, this naive method is rarely efficient. The efficiency here is a
consequence of very special properties of the stable assignment problem, and the way the

enumeration is implemented.

By Theorem 2.1, the stable assignments can be generated by forcing all execution behaviors of
algorithm 1. This would not be guaranteed to be efficient, since the same assignment would likely
be generated many times. However, by Theorem 5.2, we need not generate each path in D, but
only each path set. One approach is to use graph G to generate each maximal independent set
(path set) in G, and, as we will show below, then use the path set to generate the associated
stable assignment. The fastest known methods to generate all maximal independent sets in a
general graph appear in [LLR], but applying those methods to G yields a time bound of O(n‘) per
independent set. Alternatively, we could try to generate all the closed subset of IT* which
contain all singletons and exactly one of each dual pair. However, general techniques for such
constrained enumeration in general partial orders seem very inefficient. Here, we will use a
different approach, heavily exploiting results about the structure of D and the rotations, to obtain

a method which, after IT* is constructed, will generate each path set, and each stable assignment,



19

in O(n?) time per assignment. This compares favorably with the O(n%) methods given in [K] and
[MW] to construct each stable marriage!. In the first subsection we will present the method and
prove it correct, and in the second subsection we will discuss the time it requires. We first need

the following definitions.

Definition: Let SR be a set of rotations. For each person p, let SR(p) be the highest person on
p’s list such that SR(p) = ¢, and p == s, in some rotation R = (E,H,S) in SR.

Definition: Let T be a table and SR be a set of rotations. The elimination of SR from T is
the following: For each person p, delete all people in p's list below SR(p), if there are any, and
delete p from the lists of all of those deleted people, if p exists in those lists.

Note that the definition does not require that all the rotations in SR be embedded in T.

Definition: For a rotation R, define IT*(R) as the set of rotations consisting of R and all the
predecessors of R in IT*.

6.1. The dual enumeration method

The idea of the method is to simulate algorithm I forcing it to generate each path set, and
associated stable assignment, exactly once. We will represent the simulation by a binary tree
B. As in tree D, each node x in B will represent a table; when node x is a non-leaf, one edge out
of x will be labelled by a single rotation which is exposed in T(x), but the other edge, if it exists,
will be labelled by a set of rotations, not necessarily embedded in T(x). We will call the first
edge the left edge and the second edge the right edge. If the left edge (x,y) in B is labelled by R,
then the table T(y) at node y is obtained from T(x) by eliminating R from T(x). When R is a
singleton, then there will be no right edge out of x, but when R is a non-singleton, then the right
edge (x,z) will exist and will be labelled with IT*(RY), and the resulting table T(z) will be the
table obtained by the elimination of the set IT ‘(Rd) from T(x). Each leaf of B will contain a table
with no exposed rotations. The simulation begins with a node representing the phase one table,
and each node x in B is expanded by arbitrarily choosing an exposed rotation R in T(x),
eliminating R from T(x) on the left edge out of x, and, if R is a non-singleton, eliminating
T*(RY) from T(x) on the right edge out of x. A table with no exposed rotations is not
expandable; we will show that such a table must specify a stable assignment. The simulation
ends when no unexpanded nodes in B are expandable. We call this method the dual
enumeration method. Figure 5 illustrates this method on the running example.

It is reported in [K] that the time is O(n?), per marriage, but this is incorrect. Constructions appear in the
appendix of [G1] showing that the algorithm can take (n%k/[logk?]) time for k stable marriages.
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8.1.1. Correctness of the dual enumeration method
Lemma 6.1: The dual enumeration method never generates a path set (stable assignment)

more than once.

Proof: Let x be a non-leaf node in B, and let R be the rotation on the left edge out of
x. Consider the leaves in the subtree rooted at x, and the path sets associated with those leaves.
Those path set are divided into those sets containing R and those containing Rd (nome, if R is a
singleton). Since no path set contains both a rotation and its dual, there is no intersection
between these two set of path sets. Applying this fact inductively upward from the leaves to the
root in B, it follows that no path set is generated more than once. Theorem 5.2 then implies that

no stable assignment is generated more than once. O

Lemma 6.2: Every stable assignment (path set) is generated at least once by the above
method.

Proof: Let x be a non-leaf node in B which is also a node in D (the root of B is such a node,
although we will later see that all nodes of B are in D). Let A be a stable assignment contained
in T(x). Let R be the exposed rotation eliminated from T(x) on the left edge out of x in B, and
let T(y) be the resulting table. Suppose first that the path set for A contains R. Then by
Corollary 2.2, and the fact that T(x) is in D as well as in B, it follows that node y is in both D

and B, and assignment A is contained in table T(y).

Now suppose that the path set for A contains RY, and let w be any node in D(x), the subtree of
x in D, such that T(w) contains A and such that the edge into w is labelled with Rd. Clearly,
every path from x which leads to a leaf labelled with A contains such a node w. Also, every
rotation in I7*(RY) must be on the path in D from the root to w. Now, as in the proof of
Corollary 5.3, a rotation RYis exposed if all of its predecessors in IT* have been eliminated and R
has not been removed, so there must also be a path in D from x to a node z, containing exactly
those rotations in IT*(RY) that are on the path from x to w (i.e. this second path is obtained by
deleting all the rotations on the first path from x that are not in IT *(Rd)). Further, the elements
of T(w) are all contained in T(z), since the rotations leading to w are a superset of those leading
to z. Hence A must be contained in T(z) as well as in T(w). But T(z) is exactly the table
obtained in B by the elimination of IT*(RY) from T(x). Hence, if the path set for A contains RY,
then the right child of node x in B is the above node z in D, and T(z) in B contains assignment
A.

Now the phase one table is in both D and B, and so by iterating the above arguments
downward from the root, we see that there is a path in B consisting of nodes in both D and B,
such that assignment A is contained in each of the tables on the nodes in the path. Since the

nodes on this path are in D, and the table sizes decrease with each edge on the path, the path
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ends with a table containing assignment A exactly. Hence assignment A appears at some leaf of
tree B. O ‘

The above lemmas show that every stable assignment is generated exactly once, but this does
not prove the correctness of the dual method, since we have not proved that the method never
generates tables that are not in D. If it did, then it could generate assignments that are not
stable, or it could generate tables that have “rotations” that are not in D. Lemma 6.2 does not
show that every table in B is also in D, although it is immediate that if x is in B and D, then y,
the left child of x in B, is also in D. What remains to show is that the right child of x in B is
necessarily in D. The point is that even though there is an assignment in T(x) whose path set
contains the non-singleton rotation R, which is exposed in T(x), we don't know for sure that
there is an assignment in T(x) whose path set contains RY. If there is no such assignment, then
the dual enumeration method will either generate a table which doesn't specify an assignment but
which has no exposed rotations (in which case it will have done excess work), or it will generate
an assignment which is not stable. Neither of these things can happen if each table in B is also
in D. To prove that each table of B is in D, we show that for any node x in D, if R is exposed in
T(x), then RY is exposed in some table in D(x), the subtree of D rooted at x. This implies that
T(x) contains a stable assignment whose path set contains R%in D(x), if R is exposed in T(x). Of
course, since R is exposed in T(x), Rd appears below x on any of these paths.

Theorem 6.1: Let R and RY be dual rotations, and x-a point in D. If R is exposed in T(x), then
RY is exposed in D(x). Hence if R is exposed in T(x), then there is a stable assignment in T(x)

whose path set contains RY as well as one which contains R.
To prove this Theorem we first need the following

Lemma 6.3: If P is a path from the root of D to a node x in D, and P’ is a path from the root
to a node x’, and P and P’ cover the same set of rotations, then the active parts of table T(x)

and table T(x ") are identical, and hence the active parts of D(x) and D(x ") are also identical.

Proof: Note first that since no path can contain both rotations in a dual pair, the length of P
and P’ are the same. Let dP and dP’ be the parts of P and P’ respectively, after the point v in
D where P and P’ diverge. The proof of the lemma is by induction of the length of dP (which is,
of course, also the length of dP’). For length of one, dP must contain R while dP" contains RY,
for some dual pair of rotations. Then in T(x), both R and RY are exposed and the basis follows
from lemma 3.2. Now assuming the theorem holds for dP of length k, consider dP of length
k+1, and let R and R’ be the first rotations on dP and dP " respectively, and let VR and VR be
the first nodes below v on these paths (see figure 8a). If R’ = RY then the active tables are the
same after eliminating either rotation, and hence there must be a path from vp that is identical
to the part of dP’ starting at vg.. Hence the table T at the end of that path is T(x"). But, by
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the induction hypothesis, the active part of T(x) is the same as the active part of T, hence the

theorem follows in this case.

Now suppose that R’ 5 RY. There are two cases to consider: either R is on dP’, or RY is on
dpP’.

Let w be the point on dP’ where R (in the first case) or RY (in the second case) is eliminated.
Since both R and R’ are exposed at v, R must be exposed at every table on dP’ down to w.

In the first case, consider the edge on dP’ into w, and let R* be the rotation eliminated there
(see figure 6b). If instead of eliminating R*, R is eliminated at that point, R* will not be
removed (since R* # RY), hence the path which is identical to dP " except that the order of R*
and R is reversed, is in fact a path from v; call that path dP*. Now dP’ and dP* contain
exactly the same rotations, so the table at the end of dP* is T(x’). Repeating this argument up
the length of dP’, moving R up at each step and leaving the rest of the path the same, it follows
that there is a path from v through vy which contains the same rotations as dP’, and hence ends
with table T = T(x’). But, by the inductive hypothesis, as above, the active parts of T(x) are
identical to the active parts of T, and hence of T(x").

In the second case, there must be a path, P(R), from v through vp. which is identical to dP’,
except that R replaces RY (see figure 6¢c). This follows from lemma 3.2, and the fact that R is
exposed at w. But now dP’ and P(R) diverge below v, hence by the induction hypothesis, the
active part of the table, T, at the end of P(R) is identical to the active part of T(x"). Now we
can repeat the step argument of the first case, moving R up P(R) to v, and conclude that there is
a path from v through vp which contains exactly the same rotations as P(R). Then, by the
inductive hypothesis, the active part of T(x) is the same as the active part of T, which is the
same as the active part of T(x"). O

Proof of theorem 8.1: Let z be the closest ancestor of x such that RY is exposed in D(z), and
let y (possibly x) be the child of z on the path from z to x; Let R, be the rotation on the (z,y)
edge. Let P be a path from z to a leaf, where P contains RY, and let R, be the first rotation on
P (see figure 7a). If R, = R,, , then the active tables after ehmlnatmg either rotation are the
same, so the subtrees below those two pomts must be the same, hence D(y) must contain RY. So,
assume that R, % R, 4 Neither R, mor R is on the path from the root to z, so either R, or
R must be on P, say at a point w. Note that in either case, R is exposed at w, as in the above
proof of lemma 4.9. Hence if RY is before w on P, then we can assume P contains R;. If P
contains R and RY is after w (see figure 7b), then consider the affect of eliminating R, at w; the
resulting actlve table is the same as after eliminating Rl , so there is a path from w which
contains RY. So we can always assume that P contains R, and RY. But now, we can move R,

up a step at a time, as the preceding proof, concluding that there is a path from z through y that
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contains RY. This contradicts the selection of z, and proves the theorem. O
Theorem 6.1 completes the proof of correctness of the dual enumeration method. In summary,

Theorem 6.2: The dual enumeration method generates each stable assignment exactly once,
and the table at each leaf in B specifies a stable assignment.

There are several useful corollaries of theorem 6.1.

Corollary 8.1: For any table T(x) in D, if R is the only rotation exposed in T(x), then R is a

singleton.

Corollary 6.2: If R and RY are duals embedded in T(x), then both are exposed somewhere in
D(x).

Recall that the proof of Lemma 5.5 part 2 depended on Corollary 6.2, so Lemma 5.5 is now
fully proved.

Corollary 6.3: If R and RY are duals, then there is a point x in D where both R and RY are
exposed in the table T(x).

Corollary 8.4: If R is a non-singleton rotation, and e € R, then there is a stable roommate
assignment where each e, is paired with hi' and also one where each e; is paired with s, where ¢,

is in R.

Proof: At point x where both R and RY are exposed, eliminating RY makes b, the only element
on ei’s list, and eliminating R makes s, the only element on ei‘s list. With either elimination, the
algorithm is guaranteed to find a stable assignment in the resulting table. O

6.2. Complexity Analysis

In this subsection we show that the dual enumeration method works in time O(n3logn + knz)
to enumerate k stable assignments. The O(n%logn) term is the time needed to find all the
rotations in D and to construct IT*. Thereafter, each stable assignment is generated in O(n?)
time, per assignment. To prove the above bound, we first examine the computational steps
needed before and in the dual method: how to find all the rotations and recognize the singletons,
how to eliminate a set of rotations, how to generate “enough” of IT*, and how to find IT*(R) for
a rotation R. We then show how to charge the work during the dual algorithm, and prove the

above time bound.
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8.2.1. Finding all the rotations in O(n3logn) time

Even though the number of stable assignments, hence the size of D, grows exponentially in n,
the Path Theorem, and the fact that algorithm I runs in O(n"’) time, imply that there can be at
most O(n?) rotations in D. In fact, Corollary 5.1 shows that there can be at most n(n-1) rotations.
We show here that all the rotations in D can be found in O(nslogn) time. To do this, we run
algorithm I once, following a path P in D, finding the rotations on P. By the Path Theorem, P
covers all the rotations on D, but we still have to determine which are singletons and which have
duals. If R is a rotation on P, then we can test if RY is a rotation by simply returning to the
point on P where R is eliminated and successively choosing and eliminating any rotation other
than R. By Corollary 4.2, we will either expose and eliminate RY, or we will have a table where
only R is exposed; in the latter case, R must be a singleton, by Corollary 6.1. There are at most
n(n-1) rotations on P, and each run of algorithm I costs O(n?) time, so although the size of D can
be exponential in n, all rotations in D can be found in O(n?) time. Of course, in practice this
procedure can be sped up by noting at each step which other rotations are exposed.

We can speed up the above method to run in time O(n®logn). The idea is that we can find 2n
chains in I7* that contain all the rotations on path P; there is one chain for each person p, and it
simply consists of the ordered list of the rotations on P that move the head of p's list. The
rotations in the chain are ordered by the relative order that they appear on P. It is easy to see
that if rotation R moves p's head before rotation R’ does, on P, then R precedes R’ in the
partial order IT*. Now Lemma 5.5 part 1 says that in IT* only singleton rotations can precede a
singleton, so this implies that there is a point on each chain where all the rotations above the
point are singletons, and all below it are non-singletons; we search for that point using binary
search. Each query in the search costs O(n?) time, as above, and since there are only n(n-1)
rotations per chain, the breakpoint for each chain is found in O(n%logn) time. There are only 2n
chains, so at most O(n®logn) total time is required. Since the form of the dual rotations (not on
P) are known, and the total size of their description is O(n?), once the singletons have been
identified, the rotations not on P can be generated in O(nz) total time.

6.2.2. Time needed for the elimination of a set of rotations

Any set of rotations SR can be eliminated from any table T in O(n?) time. The key is that the
total size of the description of SR is O(nz), so a simple scan through the rotations in SR finds
SR(p) for each person p, and this takes O(n?) time in total. Further, any table is of size O(n?),
and when SR is eliminated, each element to be removed can be found and removed in constant
time, so the elimination of the elements only requires O(n?) time. This also shows that given a
path set, the associated stable assignment can be generated in O(nz) time, by simply eliminating
the path set from the phase one table.
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8.2.3. Time needed to “construct” IT* and to find IT*(R)

The partial order IT* has O(n?) elements, and if we represent IT* as a directed graph, DG,
where each node is an element in JT* and each edge corresponds to a pair in the relation, then
there might be as many as fAn?) edges in the graph. However, in the dual enumeration method,
we only need to know IT* in order to find the predecessors of a rotation. Hence it will suffice to
know any subgraph of DG whose transitive closure is JT*. By definition, the Hasse diagram of
IT* is the smallest such subgraph. It turns out that the Hasse diagram has at most O(n?) edges,
and there is a supergraph, DG*, of the Hasse diagram, which also contains only O(n®) edges, and
DG* can be found from the set of rotations in O(n®) time. Then since DG* has only O(n®) nodes
and edges, given any rotation R, we can find IT*(R) in O(nz) time by backwards search from R in
the obvious way.

Summarizing, we have

Lemma 6.4: There exists a directed acyclic subgraph, DG*, of DG containing all the nodes of
DG, such that R leads to R’ by a path in DG* if and only if R is connected by a directed edge to
R’ in DG. Further, DG* has O(n®) edges, and it can be constructed from the set of rotations in
O(n?) time.

Proof: Let e, h, s, be a triple in rotation R. Recall that when R is eliminated from any table

it is exposed in, the bottom of s;'s list moves from ¢; ; to e, where i+1 is taken mod |R|. Recall

i+1
also that A(R,i) is the set of people on s's original list between e; and e, ,, including e, but

excluding ) In order to “construct” IT*, we first examine each rotation R = (E,H,S), and for

+1
each person s, in S, we find A(R,i) and then for each person p in A(R,i), we mark s, in p’s list
with rotation R. All of these markings can be done in O(n®) time, since each A(R,) is a

contiguous list of elements in s’s original list, and by Lemma 5.1, no two A(R,1) sets intersect.

The rest of the construction method, and the proof of its correctness and time, essentially
appear in [G] section 4.2 where enumeration for the stable marriage problem is discussed. In the
stable marriage problem, the set of stable marriages are also represented by a supergraph of a the
Hasse diagram of a particular partial order. That supergraph has O(n?) nodes and edges and is
constructed from a marked table similar to the one above. What is important is that the only
properties of the marked table that are needed in the construction of the supergraph of [G], and
to prove the size and time bounds, also hold for the above marked table used here. The reader is
refered to [G] for the complete details. O

8.2.4. Time needed for the dual enumeration method
Theorem 6.3: Given DG* as above, each stable assignment can be generated in O(n?) time, per

assignment. In fact, the assignments can be generated on-line in this time.

Proof: Consider a node x in B, and define x as a left node if it is the root of B, or if the edge




26

into it from its parent is a left edge. From each leaf which is also a left node there is a unique
maximal path upward from the leaf consisting only of left nodes (see figure 8). For example, the
path from the leftmost leafl in B runs to the root of B. These paths are edge disjoint, and cover
every left edge in B. Now consider the top node x of one of these paths. Starting from this top
node x, the work of the dual enumeration method along the path down to the associated leaf,
consists of an execution of algorithm I starting from T(x), which is a subtable of the phase one
table. Hence the total time for the work along this path is O(n?). But these paths are disjoint,
each ends at a distinct leaf of B, hence at a distinct stable assignment, and these paths cover all
the left edges in B. Hence the total work of the dual enumeration method along the left edges of
B is O(n?), per assignment.

The work on any right edge out of any node x in B consists of finding IT“(Rd) for a given RY,
and eliminating H*(Rd) from T(x). As shown above, each of these operations can be done in
O(n?) time. If (x,y) is a right edge, and y is a leaf, then we can charge the O(n?) time for edge
(x,y) to the assignment at node y. If (x,y) is a right edge and y is not a leaf, then y is the top
node of one of the maximal paths discussed above. We charge the work on (x,y) to the
assignment at the end of that path. Clearly, no assignment gets charged twice for a right edge,
so the work for all the right edges in B is also O(n?), per assignment.

In order to make the time bound on-line, simply expand B in a depth first manner, going left
whenever possible. In such a traversal, no more than O(n?') time can pass between the generation

of new stable assignments. O

In the above analysis, the time for the left edges can be accounted for more closely, to get an
O(n) time bound per assignment for the left edges. However, the work for the right edges
remains O(n®) per assignment, and it is an open question whether this can be substantially

reduced.

7. Characterizing the Stable Pairs
Definition: If persons i and j are paired together in some stable assignment, then they are
called a stable pair. If they are paired together in all assignments, then they are called a fized

pair.

Knuth mentions the utility of knowing the stable pairs in the stable marriage problem, and in
[G] it is shown how to find all the stable pairs in O(n?) time. Here we examine the equivalent

question for the stable roommate problem.

Definition: Let L be the set of singleton rotations, and let P be a subpath from the root in D

containing all and only the singleton rotations. Let x* be the end of path P.

By lemmas 5.3 and 5.5, it is clear that such a P exists, and that all stable assignments are in
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D(x*). In other words, if all the singleton rotations are eliminated as a set from the phase one

table, T(x*) results, and it contains all stable assignments.
Lemma 7.1: Person i is in a fixed pair if and only if i’s list in T(x*) has only a single entry.

Proof: First, since D(x*) contains all the stable assignments, if i's list in T(x*) contains only
one entry, j, then (i,j) is a pair in every stable assignment. If i's list in T(x*) is not a single entry,
then i must be in the E set of a rotation R, and in the H = S sets of rotation RY. Hence by

corollary 6.4, i is in at least two stable pairs, and so is not in a fixed pair. O

Given the working of algorithm I, and the fact that T(x*) is generated by the singletons, it is
clear that if i is not in a fixed pair, then i can mate with person p only if p is in the S set for i in
some non-singleton rotation R, if and only if i is in the S set for p in RY. This observation
combined with Corollary 6.4 gives

Theorem 7.1: If (e;,j) is not a fixed pair, then it is a stable pair if and only if j = b, in some
non-singleton rotation R = (E,H,S).

Hence the non-fixed stable pairs can be found immediately from the non-singleton rotations,
and the fixed pairs can be found in O(nz) time from the singletons, by eliminating the singletons
from the phase 1 table. Hence the set of all stable pairs can be found in O(r®logn), and any
speed up, down to O(n®) time, in finding the rotations will speed up finding the stable pairs. It is
not difficult, using Theorem 7.1, to find all the fixed pairs in O(n%) time, but it is open whether
this leads to a faster way to find all the stable pairs, or to find the singletons.

8. Specializing the roommate structure to marriage
Definition: Let MP be an instance of the stable marriage problem on n men M, and n women
W. Let RMP be an instance of the stable roommate problem on M U W, obtained from MP by

adding to the end of each man (woman) p's list all the men (women) other than p.

It is easy to prove that each stable assignment in RMP is a stable marriage in MP and
conversely. Hence the structure of the stable roommate problem applies to the marriage problem,
and it is of interest to see how the general structure specializes in the case of stable marriage. In
particular, it is interesting to compare the results here to those of [IL], where a structure of the
set of stable marriages was first obtained. The results in this paper specialize to those in [IL] for
the marriage problem. However, the structure of stable marriages is somewhat simpler than the
general roommate structure, and this allows faster algorithms to construct it, and a simpler view
of how to construct stable marriages from the partial order(s). Hence the structure resulting from
specializing the roommate structure to stable marriage at first appears different than that in [IL].
In the next paragraphs we sketch additional observations that connect the structures and the

expositions.
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The following facts are stated without proof:
1. In IT* resulting from RMP, there are no singleton rotations.

2.fR = (E,H,S) is a rotation in IT* resulting from RMP, then all people in E have the same
sex, and all people in H have the opposite sex. Hence the E set in R is male if and only if the E
set in RY is female, and the rotations partition naturaly into two equal sized sets of rotations, one
where each rotation has a male E set and one where each rotation has a female E set. We call the

first type the male rotations, and the second type the female rotations.

3. In every pair in relation IT* resulting from RMP, the two rotations have the same sex.
Hence, the partial order IT* in RMP is composed of two disjoint partial orders: MIT* containing
the male rotations, and FIT* containing the female rotations.

4. Let C be a closed set-in MIT*, and let C* be the rotations in MIT* - C, and let C ¢ be the
duals, in FIT*, of the rotations in C’. If C is closed in MIT*, then C *d is closed in FIT*, and
hence their union is closed in I7*, and since the union contains exactly one of each dual pair, it
represents a stable assignment in RMP (stable marriage in MP). The converse is obviously also
true. Hence, there is a one-one correspondance between the closed sets in MIT* (without further

constraints) and the stable marriages of MP.

This paper introduced the concepts of dual rotation and singleton rotation. Facts 1 and 4
explain why these concepts where not needed in the structure of stable marriage. Although the
exposition is quite different here, the representation of the set of stable marriages given in (IL]
can be expressed as MIT*. Facts 3 and 4 help “explain” why the representation of stable
marriages is simpler than the representation of stable assignments: each closed subset in MIr*
represents a stable marriage, and conversely, while in the general case of stable assignment, only
particular, highly constrained closed subsets in IT* represent stable assignments. This also partly
“explains® why each stable marriage can be constructed in O(n) time in [G], while in this paper,
O(n?) time for each stable assignment is the best bound obtained. Hence what makes the
roommate problem more involved is the existance of singleton rotations, and the fact that the
non-singletons don't partition in a nice way, as they do in the marriage problem. As a final
comment, note that given fact 1, all rotations in MI7* can be obtained from a single pass through
algorithm I in O(n®). This bound was first obtained for the stable marriage problem by a very

different method and argument in [G].

9. Open Problems
First, given the O(n) time method in [G] to enumerate each stable marriage, compared to the
O(n2) method for the more general problem of stable assignment, a natural problem is to bring

down the time for enumerating assignments, or to more fully explain why the stable assignment
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problem is more complex than the marriage problem. Second, the O(n%logn) bound for finding
all the rotations, and hence the stable pairs, seems too large. We conjecture that O(n?) is the
correct bound, and that the singletons should be recognizable after a single execution of
algorithm 1. It seems likely that there are additional structural observations about rotations that
will lead to this time bound. For example, it is an easy corollary of Theorem 6.1 that if R =
(E,H,S) is a rotation such that E N H 5 @, then R is a singleton rotation. In the example
presented in this paper, that fact identifies the singletons, but it is not true that for every
singleton rotation E N H £ 0. Finaly, there is the more general question of what algebraic
structure is generated by the set of stable assignments, under some reasonable relation. It is
known that the stable marriages generate a distributive lattice under the relation of
“domination” [K], and as pointed out in [GILS], this is the essential key to the efficient
representation of the set of stable marriages. Further, there is a good sized class of interesting
combinatorial problems each of whose solution sets generate a distributive lattice over some
natural relation. It then follows (see [IR] or [N]) that for each of these problems, the solution sets
can be represented by a compact partial order where the solutions are in one-one correspondence
with the closed subsets of the partial order, although the time needed to find the partial order
and to extract the solutions differs in each case. This partial order representation has many
algorithmic uses; applications in stable marriage appear in [IL], [ILG], and [GILS], but there are
many other applications in other combinatorial problems (see [IR] for a good bibliography). The
stable assignments are not known to be representable as closed subsets in a partial order, but
their representation in IT (closed subsets which contain exactly one of each dual pair) is certainly
related, and it raises the question of whether an algebraic study of this structure would be
fruitful. In particular: What sort of algebraic structure do these closed subsets of IT generate,
and is there a natural relation that ties them together! Is there an interesting general class of
problems with this structure? Can such problems be reduced to problems of the first (seemingly
simpler) type? Does this more general algebraic approach lead to more efficient or generalizable

algorithms?
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3 5 2 1 7 4 6

4 1 73 6 5 8
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6 3 8 45 1 2

7 8 4 3 5

8 4 2 5 6 7

2a. Phase 1 table.

E, H S5 E, Hy 5
1 2 6 4 1 7
2 6 5 S 7 1
3 5 2

ob. Rotation R; = (Ei,H1,51) Rotation
R; = (B, Ha,S2) both exposed in the phase
1 table. In the phase 1 table 6,7, 8 is a tail
of Ry, and R has no tail.
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2c. Table after eliminating R; from the phase
1 table. Note that R, is still exposed, and now
has a tail of 3. Rotation Rz = (E3, H3,S3)
where E3 = {2,6,7,8} is now also exposed.

1 |16 5
2|15 3
312 46

4 | 7 3 6 5 8
5 1 8 46 2
6 |3 8 451
718 4

8 145 6 7

2d. Table after eliminating R,. Rj3 is the only exposed rotation.
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Table after elimination of R3. Now
R4, Rs are exposed, where E4 = {1,8}
Es = {5,8}.

O 00 = I WL

00 ~1 O UV b W N =

Table after elimination of Rj.




1126
R1= 2 6 5 4 1 7
3|5 2 Rr= 5| 71
215 3
Ro= 7 | s 4
R R
8| 45 2 !
1|65
Bo= g ’ 56 Ry Ry Rs
7|45
51 8
1’54 Ry Ry Rs R4R5=6'81
Ry
1,4 1,5 1,6
2R 9 2 o0 0 O
3 vy ® 2y ® (®)
6,8 6,8 5,8

Figure 3. Tree D for the example. The tables at the nodes are not shown. All paths

have length 4. (R4, Rs) and (R, Rs) are each a dual pair of rotations. R,
and R3 have no duals.




m* (R{) = {Ri, Rs, Ry, Rf}

5. Tree B given by the dual enumeration method.
The labels at the leaves refer to assignments
given in Figure 3.



root root

VR'
L 4po
dP ¢ dp
[ )
- ™ o )
T(x) T(x*) e’y TCx") iy |
630 Proof of LEmma 6.3, When R' = Rd, \Va_vy lines T(x') T(X )

are known paths in D, solid edges are known sin-
gle edges in D, labelled dashed lines are inferred
edges, and unlabelled dashed lines are inferred
paths in D.

6b. R’ # R%and R%ison dP’

root

P(R)

X .
T(x) T(x*')

6c. R'# R%and R%ison dP’




7b. RY is on P after w

8. Schematic tree B. The maximal paths of left edges arc
drawn with wavy lines.






