Embedding Meshes into Small Boolean Cubes

Ching-Tien Ho and S. Lennart Johnsson
YALEU/DCS/TR-791
May 1990

To appear in the Proceedings of the Fifth Distributed
Memory Computing Conference, Charleston, S.C., April 1990.

Embedding Meshes into Small Boolean Cubes

Ching-Tien Ho*
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
Ho@ibm.com

Abstract

The embedding of arrays in Boolean cubes, when
there are more array elements than nodes in the
cube, can always be made with optimal load-factor
by reshaping the array to a one-dimensional array.
We show that the dilation for such an embedding is
at most [logy(3 — . ,?:,..,lk_l)] for the embedding
of an £y X £ X +++ X {34 array in an n-cube. Dila-
tion one embeddings can be obtained by splitting
each axis into segments and assigning segments to
nodes in the cube by a Gray code. The load-factor
is optimal if the axis lengths contain sufficiently
many powers of two. The congestion is minimized,
if the segment lengths along the different axes are
as equal as possible, for the cube configured with at
most as many axes as the array. A further decrease
in the congestion is possible if the array is parti-
tioned into subarrays, and corresponding axis of
different subarrays make use of edge-disjoint Hamil-
tonian cycles within subcubes. The congestion can
also be reduced by using multiple paths between
pairs of cube nodes, i.e., by using “fat” edges.

1 Introduction

Arrays are frequently used data structures, and
many computations imply local interaction in a
Cartesian space corresponding to the array. Mod-
eling the array elements by nodes in a graph and
connecting adjacent array elements defines a mesh

*This work was done while the author was with the De-
partment of Computer Science, Yale University.

tThe author is also with Thinking Machines Corp., 245
First Street, Cambridge, MA 02142. This work was sup-
ported by ONR. Contract No. N00014-86-K-0310.

S. Lennart Johnsson'
Department of Computer Science
Yale University
New Haven, CT 06520

Johnsson@cs.yale.edu, Johnsson@think.com

with the same number of axes, and length of axes,
as the array. In the following we refer to this in-
duced mesh and the array interchangeably. Ar-
rays are subgraphs of Boolean cubes. Using the
subgraph property for the embedding of arrays re-
quires that each array axis is assigned a unique
subcube that contains at least as many nodes as
there are elements along the axis [17]. For a large
number of axes the number of cube nodes used for
the embedding may be a very small fraction of the
total number of nodes. A variety of techniques
[8,19,15,2,6,5,7,9] have been devised to improve the
utilization of the address space for the embedding
of arrays with axes of a length not equal to a power
of two. Any embedding with an increased utiliza-
tion of cube nodes does not preserve adjacency for
all mesh nodes. The subgraph property, and the
techniques for increased utilization of the address
space can also be used when the number of array el-
ements exceeds the number of nodes in the Boolean
cube.

Partitioning an array into a number of subarrays
of equal size yields perfect load balance, if the num-
ber of subarrays is equal to the number of nodes in
the Boolean cube. Some, or all of the axes are split
into segments with one segment per node. Em-
bedding the segments by a binary-reflected Gray
code preserves adjacency. If the product of the axis
lengths contains more powers of two than the num-
ber of dimensions in the cube, then several parti-
tionings, or factorings of the axes are possible, all
of which yields perfect load balance. Making the
length of the segments along the various axes as
equal as possible minimizes the maximum number
of mesh edges mapped to a cube edge, the conges-
tion, with the cube configured as an array with at
most as many edges as the array. If the number

of powers of two contained in the product of the
axis lengths is less than the number of dimensions
in the Boolean cube, then good load balance may
either be obtained by splitting an axis that is of
odd length after all powers of two are factored out,
or by leaving some nodes unused. Splitting an axis
of odd length always results in load imbalance. For
arrays of a high dimension the splitting of several
axes may lead to a load-factor! that is higher than
if some nodes are left unused. Note that axis split-
ting may be desirable with respect to congestion,
even if load balanced splittings exist.

For instance, an 8 X 9 logic array can be allo-
cated to the nodes in a 3-cube with one 1 x 9 sub-
array per node. The load-factor is optimal, but nine
mesh edges are mapped to each used cube edge. By
mapping the 8 x 9 logic array to a 4 X 2 array of
cube nodes, instead of the 8 x 1 array of nodes, the
maximum number of mesh edges mapped to a cube
edge is five. In this mapping some nodes receive a
2 X 4 logic array, some a 2 x 5 logic array. Optimal
load-factor can be achieved by moving one of the
elements in the 2 x 5 subarray adjacent to a 2 x 4
subarray into the cube node holding that subarray.
The communication load between the two nodes
involved in this transaction increases, but the max-
imum load does not.

If the product of the axis lengths does not contain
sufficiently many factors of two in order to assign
subarrays of equal size to all nodes in the cube, then
it may be preferable with respect to the load-factor
to reduce the number of segments, and leave some
nodes unused. We give some bounds on the load
imbalance, and the maximum distance between ad-
jacent array elements, the dilation, when some of
the axes are partitioned into a number of segments
that is not a power of two. The bounds are based
on embedding the segments along the different axes
by the techniques in [8,19,15,2,6,5,7,9] instead of a
binary-reflected Gray code embedding.

For one-dimensional arrays it is trivial to de-
termine the segment lengths for an optimal load-
factor. Adjacency is preserved by mapping the seg-
ments to nodes by a binary-reflected Gray code.
For higher dimensional arrays partitioning each
axis independently no longer yields an optimal
load-factor, in general. But, by reshaping arrays

1 All technical terms are defined in Section 2.

with multiple axes to arrays with a single axis, opti-
mal segment lengths with respect to the load-factor
are easily determined. Embedding the segments by
a binary-reflected Gray code preserves adjacency
within the one-dimensional array, but adjacency
within the original array is not guaranteed. We
show that the maximum distance between adjacent
array elements when embedded with this strategy
is bounded by the logarithm of the size of the array
divided by the product of the load-factor and the
length of the longest axis. The dilation, and con-
gestion, may be improved by reshaping the original
array to fewer axes, but not necessarily a single
axis. But, an optimal load-factor is no longer guar-
anteed.

The congestion is minimized by using all edges
of the Boolean cube. In a 2n-cube there exist n
edge-disjoint Hamiltonian paths. This property can
be used to partition the array into subarrays, and
by using a different embedding for each subarray.
This technique was used in [22] for matrix mul-
tiplication. The dilation is not affected, but the
load-factor may change. The existence of multiple
paths between pairs of nodes in a Boolean cube can
be used to create “fat-edges” [16] between adjacent
cube nodes. The fat-edge technique may increase
the dilation, but it does not change the load-factor.

Several techniques for equalizing the load by
moving grid points between adjacent cube nodes
have been devised [14,12,13,10,3,4]. Techniques
such as simulated annealing, and neural networks
have been used, in particular for irregular dis-
cretizations of continuous domains. Embedding
meshes into small hypercubes by techniques sim-
ilar to the ones used here have been considered by
Ellis et al. [9]. The results presented in this paper
apply to different schemes for defining segments,
such as cyclic and consecutive allocation [20].

2 Graph decomposition

Let V(G) be the node set and £(G) the edge set
of a graph G. |S| is the cardinality of a set S.
The embedding function, ¢ : G — H, maps each
node in G to a node in H. The dilation of the
embedding ¢ is the maximum distance of ¢(3) and
@(j) for all (3,7) € £(G). The load-factor is the
maximum number of nodes in G that are mapped

Figure 1: A product graph and two types of edges
in the product graph.

to a node in H. Clearly, the optimal load-factor is
[IV(G)|/IV(H)|]. The congestion is the maximum
number of edges in G that are mapped to the same
edge in H. [z]; denotes 2M°822], The (Cartesian)
product graph Gy x G, of two graphs G; and Gy is
defined as

V(G1 x Gz) = {[w:, vi] | Vu; € V(G1),vi € V(Ga)},
E(G1 x G2) = {([wi, vi], [us, v5]) | Vui € V(Gh),

(viyv;) € £(G2) YU
{([wiy vi], [uj, vi]) | Vo; € V(Ga), (us,25) € E(G1)}-

We will refer to the first form of edges as type-Gy
edges and the second form as type-G; edges. Fig-
ure 1 shows a product graph in which solid edges
are of type-G1 and dashed edges of type-G2. G1 X
G4 can be derived by replacing each vertex of Gy by
G4 and replacing each edge of G; by a set of edges
connecting corresponding vertices of G3. Note that
the product operator “Xx” is commutative and asso-
ciative. Also, [V(G1 x Ga)| = |V(G1)|*|V(G2)| and
IE(G1 x Ga)| = V(G| %IE(Ga)|+ (G [+ [E(G)]

Lemma 1 Let ¢; be an embedding function which
maps a graph G; into a graph H; with load-factor
fi, dilation d; and congestion c;, i € {1,2}. Then,
there exists an embedding function which maps the
graph G1 x Gy into the graph Hy x Hy with load-
factor f = fi fa, dilation d = max(dy,dy) and con-
gestion ¢ = max(fica, fac1). Furthermore, for the
graph Hy x H,, the congestion of a type-Hi edge
increases by at most a factor of fa, and the conges-
tion of a type-H, edge increases by at most a factor

of f1.

Proof: We define the new embedding function by
applying o1 to each copy of H, and applying ¢, to
each copy of H;. Consider a node u; € H; and a
node v; € Hy. There are at most f; nodes in Gy
that map to node »;. Similarly, there are at most
f2 nodes in G2 that map to node v;. The corre-
sponding product node in Hy x Hy, [u;, ;] contains
at most f;f; nodes in G; X Gs.

For the dilation, each type-G; edge in Gy x Gy
is mapped to a copy of H; by ¢ with dilation d;.
Similarly, each type-G3 edge is mapped to a copy
of Hy by 2 with dilation dj.

For the congestion, consider an edge incident to
node [u;,v;]. It is either a type-H; edge or a type-
Hj edge. The congestion is < fjcp for the former
edges by the definition of graph products. Simi-
larly, edges of the latter type has congestion < faci.
1

Lemma 2 Let ¢ be an embedding function which
maps an Lo X £y X -+ X L1 mesh M into an n-cube
with load-factor f, dilation d, and congestion c; for
any cube edge to which edges of axis i is mapped.
Then, there exists an embedding function ¢ that
maps an Loly X L€y X+ -+ X L1 £}, _, mesh M into an
n-cube with load-factor f = f 1%L ¢, dilation d =

d, and congestion & < ma,x:.‘__fol{(c,' I'[;‘;(} /ey

Proof: With respect to the congestion, we show
that the congestion for the edges of axis 0 is <
co H?;ll £, without loss of generality. Consider the
following two facts:

1. By Lemma 1 and the embedding function ¢
for the mesh M, an lol{) Xy XLy X oo X L1
mesh Mj can be embedded into an n-cube with
load-factor f{j, dilation d, and congestion cg
of the edges of axis 0.

2. An £y x €4 x - x £} _, mesh My can be embed-
ded into a O-cube (i.e., one-node cube) with
load-factor H::ll ¢, dilation 0, and congestion
0.

From Lemma 1, the mesh M; x Mj can be em-
bedded into an n-cube with load-factor f Hf__fol e,
dilation d, and congestion for the edges of the axis
0 being co [T¥-] £!. Since the mesh M is a subgraph

of the mesh M; x M, [23], [18], the load-factor, di-
lation and congestion for the edges of axis 0 also

hold for the mesh M. |

The properties of the load-factor in this lemma
was also observed independently in [9].

3 Embeddings based on axis

splittings

If the product of the axis lengths contains at least
as many powers of two as there are dimensions in
the Boolean cube, then adjacency can be preserved
with an optimal load-factor. We state it formally
in the following theorem.

Theorem 1 An {5270 X £12™ X +++ X £p_12™k1
mesh M can be embedded into an ():f;ol n;)-cube
with dilation one, congestion ([TF2y &)/ min;{¢;},
and optimal load-factor.

Proof: Simply apply Gray code embedding to ¢
in Lemma 2 in mapping a 270 X 2™ X ... X 27k
mesh into a (Ef__fol n;)-cube with load-factor one,
dilation one and congestion one.

For example, a 100 x 100 x 100 mesh can be em-
bedded in up to a 6-cube with dilation one and op-
timal load-factor, either with consecutive or cyclic
partitioning,.

Even if the length of an axis is not divisible
by a power of two partitioning each axis into a
number of segments that correspond to some such
power allows for an efficient embedding of the seg-
ments by a binary-reflected Gray code. Adja-
cency is preserved. The load-factor is minimized
if T*-1[¢;/2™) is minimized, where Y12 n; = n.
The optimal load-factor is [Hf__j}l; /2™].

The load-factor obtained by creating as many
subarrays as there are nodes in the Boolean cube
by partitioning each axis, may not yield the best
load-factor among all possible partitionings of indi-
vidual axis. A better load-factor may actually be
obtained by leaving some cube nodes unused. The
following theorem gives a bound on the load-factor
for some such partitionings.

Theorem 2 An £y X £y X +-+ X €1 mesh M can
be embedded in an n-cube with load-factor optimal
within a factor of two, and dilation at most two for
k = 2, at most 7 for k = 3 and at most 4k + 1
for k > 3, if there exist values £} and £! such that
4 = £4" for all 0 < i < k, and [log, [1}5g £4] = n.

Proof: Apply the embedding techniques devised
for one element per node to the array £y x £3 X« -+ X

!
k—1° I

For instance, embedding a 35 X 27 array into a 6-
cube can be made by factoring it into a 7 X 9 array
to be embedded in the 6-cube by the techniques
in [5,6,18], and a local 5 x 3 array in each cube
node. The dilation is two and the load-factor is 15
(optimal). All nodes assigned array elements have
the same number of elements assigned to them.

4 Embeddings by

axes.

combining

In the embedding of the 8 X 9 mesh in a 3-cube,
the optimal load-factor could be obtained by mov-
ing a single node between a pair of partitions.
The dilation remained minimal, but the congestion
increased. One technique for determining which
nodes of the logic array should be allocated to the
same cube node for an optimal load-factor is to re-
shape the array into a one-dimensional array, par-
tition this array for optimal load-factor, and em-
bed the partitions by a binary-reflected Gray code.
In general, the dilation will increase through such
an embedding, and so will the congestion. As a
compromise, the array can be reshaped into an ar-
ray with fewer axes, and a binary-reflected Gray
code used for each axis in the new logic array.
Such a strategy does not guarantee optimal load-
factor, however. Theorem 3 establishes an upper
bound on the dilation for reshaping an array to a
one-dimensional array that is partitioned for opti-
mal load-factor and embedded by a binary-reflected
Gray code.

Let G(i) be the binary-reflected Gray code [25] of
i and Hamming(i,j) be the Hamming distance be-
tween i and j. The following lemma gives a bound

on the Hamming distance between two Gray coded
integers as a function of the absolute difference in
their values. The bound is due to Yuen [27]. For

convenience, we include the proof below.

Lemma 3 [27]
Hamming(G(3), G(7)) < Mogy(34/2)], ifli—j| = d.

Proof: We prove instead that if Hamming(G(i),
G(j)) = m, then |i — j| > 2™ /3. First observe that
Gi)eG(j)=1i1® 5] ®j®]| = GG j); thus
the Gray code of £ = i@ j has m bits equal to one.
Let k1 < kg < +++ < kyn be the positions of the
m ones in G(£). Then £, = 1, k1 < k < k3
£, =0, ko < k < k,,_1; and so forth. Note that
km > m.

Without loss of generality assume ¢ > j. Then,
given £ =i @® j, 1 — j is clearly minimized if

T

"“‘{0,

. {1, Ly =1 and k # k.,
Je = 0
Y

otherwise.
It follows that

k= km,
otherwise,

z'_j — 2km—1_2km-—-2_.“

— gkm-1 _ gkm-2=1 _ |

— km—l —_ km—z"l e e
2 2 .

Consequently, if k,,—1 > m, we have
i—j > 2km-t —gkmoa > gkmoiml > gml s 9™y,

On the other hand, if k,,_1 = m — 1, then k; =1,
t <m — 1, thus,

2m-—1 _ 2m——3 _ 2m-—-5 .

t—j =
> 2m—1_2m—3(1+l+i+“,)
4 16

4
= ri-er)=2s |

Note, that the Hamming distance in Lemma 3
is a tight upper bound for a binary-reflected Gray
code, but it is not tight for any Gray code. The
tight lower bound for the Hamming distance in
Lemma 3 using any Gray code is |logy d| + 1, ex-
cept for d = 4 + 1, ¢ > 1, in which case it is

|logs(d + 1)] + 1. Recently, Madhavapeddy and
Sudborough [24] defined a Gray code, called win-
dow code, that achieves the lower bound. How-
ever, the window code is defined only when d is
given (i.e., different d’s might yield different win-
dow codes) and the improvement of the Hamming
distance over the binary-reflected Gray code is ei-
ther zero or one, depending on d.

The following theorem gives an upper bound
on the dilation of arrays reshaped into a one-
dimensional array partitioned for optimal load-
factor, then embedded by a binary-reflected Gray
code. If the window code is used, then the bound
on the dilation is modified accordingly.

Theorem 3 An £y X £y X -+« X £, mesh can be
embedded into an n-cube with optimal load-factor

and dilation < ﬂogz(%m‘——“*—ax(lo,?:...,lk_l))].

Proof: Assume £y > {3 > +++ > {1 without loss
of generality. Define a function f that maps each
node (zg, %1,y Tk—1), 0 < z; < £;, in the logic
array to a distinct node in a one-dimensional array
through reshaping where the shortest axis is labeled
first, and the longest axis labeled last.

k—1 k—1

Z(z,' H £;).

=0 J=i+l
The range of indices is 0 to (Hl—“__fl £;) — 1. The
optimal load-factor is 8 = [(Hf;o £)/2™]. Seg-
ments of length B, or B — 1 in the reshaped ar-
ray are embedded using a binary-reflected Gray
code. A node with index y in the reshaped array is
mapped to node G(|y/B]) in the Boolean cube. Let
2 = f(ivo,wl,"',qu) and 23 = f(mOamla'”!zi+
1,--+,z3—1) be the indices of two nodes adjacent
in the original array. Then, zp — 2; is maximized
when i =0, and 23 — 21 < [I}2] 4 < B2"/4y < Bd.
From the assumption of the theorem £y > 2™/d and
2y — 21 < Bd. Hence, |23/8| — |21/8] < d, and the
proof follows from lemma 3.

As a corollary, dilation one and optimal load-
factor is achieved when max(£y, £1,- -, £k—1) > 2™.
When max(£y, £y, le—1) > 27—l dilation two
and optimal load-factor is attained. Figure 2 shows
an embedding of a 9 X 7 mesh into a 4-cube with
dilation two and optimal load-factor.

[

[

-

Figure 2: Embedding a 9 x 7 mesh into a 4-cube
with dilation two and optimal load-factor.

Theorem 3 can be applied to any reshaping of
an array. Subsets of axes may be reshaped into an
array with fewer axes. The theorem gives a bound
on the dilation for each new axis, and lemma 1 can
be used to determine the dilation, load-factor, and
congestion for the reshaped array. The reshaping
technique can also be used in combination with fac-
toring out a mesh with axis lengths being powers
of two.

For instance, in case of embedding the 8 x 9 mesh
into a 4 X 2 array, the problem is reduced to the em-
bedding of a 2 x 9 array in a 1-cube. Applying the-
orem 3 to this problem yields optimal load-factor.

5 Reducing congestion

The mappings of a mesh into a smaller cube using
the methods described above do not minimize the
congestion, if the cube has at least twice as many
dimensions as the mesh. For instance, for an array
with two axes at most four cube dimensions are
used, and for an array with three axes at most six
dimensions are used. The number of edges in the
array mapped to a cube edge increases rapidly with
the size and dimensionality of the domain mapped
to a single cube node. For a k-dimensional mesh of
shape £2™0 x 2™ x ... x {2™-1 embedded into an
(X} n;)-cube with optimal load-factor, and dila-
tion one according to the technique in Section 3, the
congestion is £*~1, To minimize the congestion the

fact that a 2n-cube contains n edge-disjoint Hamil-
tonian cycles can be used.

Lemma 4 [11] If graphs Ci and C2 are Hamil-
tontan, then Ci x Cp contains two edge-disjoint
Hamiltonian cycles.

Lemuna 5 [1] If the graph G contains two edge-
disjoint Hamiltonian cycles, and the graph C is
Hamiltonian, then the graph G x C contains three
edge-disjoint Hamiltonian cycles.

Lemuma 6 [26] A 2n-cube contains n edge-disjoint
Hamiltonian Cycles (HC’s).

Proof: We prove the lemma by induction on the
dimensionality of the “even” cubes. A 2-cube is a
cycle. A 4-cube contains two edge-disjoint HC’s by
Lemma 4. Assume that a 2k-cube contains k edge-
disjoint HC’s for all ¥ < n. We wish to show that

“a (2n + 2)-cube contains n + 1 edge-disjoint HC’s.

o If n + 1 is even, then decompose the (2n + 2)-
cube into two (n + 1)-cubes. By the induction
hypothesis, each (n+1)-cube contains (n+1)/2
edge-disjoint HC’s. Consider the (n + 1)/2
product graphs formed as the product of the
¢th HC in the two cubes, for 1 <i < (n+1)/2.
Each product graph contains two edge-disjoint
HC’s by Lemma 4. Furthermore, all these
product graphs are edge-disjoint. - Therefore,
there exist (n + 1) edge-disjoint HC’s in the
(2n + 2)-cube.

e If n +1is odd, then decompose the (2n + 2)-
cube into an n-cube and an (n + 2)-cube. Pair
each but one HC of the n cube with a HC in
the n + 2-cube. This leaves one HC of the n-
cube and two HC’s of the n + 2-cube unpaired.
By Lemmas 4 and 5, there are (n + 1) edge-
disjoint HC’s in the (2n + 2)-cube. 1

For an £y X £; X -+ - x £_; array in which axis i is
embedded in an n;-cube, 0 < i < k, E‘,':ol n; = n,
and £; is a multiple of 2"in;/2 where n; is even, the
ith axis is partitioned into n;/2 segments of the
same size. Each such segment is embedded accord-
ing to one of the n;/2 edge-disjoint Hamiltonian

paths in the n;-cube. The congestion of the cube
edges corresponding to the ith array axis is reduced
by a factor of n;/2. From Theorem 1, we have the
following theorem.

Theorem 4 An £y2™ |ng/2| x £12™ |n1 /2] x -+ X
£,—12™ -1 |ng_1/2] array can be embedded into
an (E?;OI n;)-cube with dilation one, congestion
(¥4 &)/ min;{£;}, and optimal load-factor.

The congestion is minimized if n; is chosen such
I
that [£;/[5]] is minimized.

Instead of partitioning the array into
II::OIn,- /2% subarrays each with its own embedding
the “fat-edge” technique [16] can be used. There
exist n edge-disjoint paths between any pair of
nodes in an n-cube. Of these paths d are of length
d and n—d paths are of length d+2. By using more
than one path between a pair of nodes, in particular
by using paths of non-minimum length, the conges-
tion can be reduced. In the fat-edge technique, the
mesh embedding techniques of the previous sections
can be used for the assignment of array indices to
nodes in the cube. The fat-edge technique is used
for routing messages, and does not affect the map-
ping of array indices. Not all paths between all
pairs are edge-disjoint (though edges for a given
pair are) and the scheduling of messages needs to
account for this fact.

6 Summary

The strategy in mapping an array to an n-cube de-
pends upon the desired objective for the mapping:
optimal load-factor, dilation, or congestion, or what
combination thereof should be minimized. A good
starting point in exploring alternatives is to decom-
pose a given array M into two arrays M; and M,
M; x My = M, such that all axis lengths of M;
are powers of two, and all axis lengths of M, are
odd numbers. For instance, an array M (100, 200)
is decomposed into Mj(4,8) and Ma(25,25). Then,
if

1. logy |M1| = n: a binary-reflected Gray code
embedding of each axis yields optimal load-
factor and dilation one. The congestion is |Ma|

divided by the length of the shortest axis of
M,, unless any of the techniques in Section 5
can be used to reduce the congestion.

. logy |[M1]| > n: only a subset of all even par-

titionings of the axes can be used for assign-
ing array indices to cube nodes. In general,
there are many ways to choose the partitions
while maintaining an optimal load-factor and
dilation one by a binary-reflected Gray code
encoding of the partitions along each axis. To
minimize the congestion, the total boundary
area of a partition should be minimized. For
instance, the congestion for the embedding of
a 100 x 320 array into a 4-cube is minimized
by configuring the n-cube as a 2 X 8 array re-
sulting in partitions of the shape 50 x 40.

. logy |[Mi| < n. The embedding problem is

reduced to the embedding of the array My,
Lo X £y X voo X Lpqy Lo > 4 > 000 2 Ly
in an (n — logy | Mj|)-cube.

Assigning array elements to all nodes of the
cube requires that some axis of odd length
(possibly after powers of two have been fac-
tored out) be partitioned. For an optimal load-
factor the array Mj is reshaped into an ar-
ray by combining j axes such that Hf;zl,- <
2" | M| < II{;;Z,‘, and a binary-reflected Gray
code used for the new axis.

For minimal load-factor under the constraint
of unit dilation the longest axis is partitioned
recursively until the number of partitions is
equal to 2”7 /| My |. Hence, the embedding of the
array £ox £y X+« x 41 is divided into the tasks
of embedding the arrays f%] X8y X oo X g1
and [%QJ X £1 X +++ X £3_1 into two independent
cubes of dimension n — log, |[M;i| — 1. In the
recursion the partitioning is always applied to
the longest axis. However, if [";2“—] is even, then
the maximum power of two should be factored
out before proceeding with the recursion.

If instead minimal congestion is sought under
the constraint of unit dilation, the cube is con-
figured such that its shape is as congruent as
possible to the array shape, making the parti-
tions having an aspect ratio as close to one as
possible.

Leaving some nodes unused by partitioning an
axis of odd length into an odd number of seg-

ments may sometimes yield a lower load-factor
than if an even number of partitions is gener-
ated, if the axes are partitioned independently
and the maximum number of subarrays are
given. The embedding of a 35 X 27 array in a
6-cube illustrated this fact. With 7 partitions
along the first axis and 9 along the second the
load-factor is 15, which is optimal. The mini-
mum load-factor if all nodes are used is 18.

Embedding by the axis splitting technique may
increase the load-factor, while the axis combining
technique may reduce it. The dilation may be re-
duced by axis splitting, and increased by the merg-
ing of axes. The dilation is increased, in general, if
the fat-edge technique is used to reduce the conges-
tion. Using edge-disjoint Hamiltonian paths to re-
duce congestion is equivalent to axis splitting, but
does not affect the dilation. The communication
along an axis for a subarray is determined by the
product of all axis segments, but the segment along
the axis of communication [21]. Hence, the conges-
tion for a given array axis in the embedding is only
reduced to the extent that the segments along the
other axes are reduced in defining subarrays (for
exploiting the multiple paths property). Splittings
of an axis for multiple path embeddings increase
the communication requirements in proportion to
the number of paths utilized, and do not affect the
congestion along the axis being split. Reducing the
congestion by the fat-edge technique leaves the par-
titions unaffected, and hence the communication
requirements.

Acknowledgement This work has been
supported in part by the Office of Naval Research
under Contract N00014-86-K-0310. The authors
would like to thank Alan Wagner for his helpful
comments on the construction of n edge-disjoint
Hamiltonian cycles in a 2n-cube and pointing of
reference [1]; Ajit Agrawal for his helpful discus-
sion on references [1] and [11]; Michel Jacquemin for
translating the reference [1] from French into En-
glish; David Greenberg for stimulating discussion
on Section 5; Seshu Madhavapeddy for discussions
of Lemma 3 and the window code in [24].

References

[1] Jacques Aubert and Bernadette Schneider.
Decomposition de la somme cartesienne d’un
cycle et de ’'union de deux cycles hamiltoniens
en cycles hamiltoniens. Descrete Mathematics,
38:7-16, 1982.

[2] Said Bettayeb, Zevi Miller, and I. Hal Sud-
borough. Embedding grids into hypercubes.
In Proceedings of '88 AWOC: VLSI, Algo-
rithms and Architectures Conf., Springer Ver-
lag’s Lecture Notes in Computer Science, no
319, 1988.

[3] Shahid H. Bokhari. On the mapping problem.
IEEE Trans. Computers, G-30:207-214, 1981.

[4] Shahid H. Bokhari. Partitioning problems in
parallel, pipelined and distributed computing.
IEEE Trans. Computers, C-37(1):48-57, Jan-
uary 1988.

[5] M.Y. Chan. Dilation-2 embeddings of grids
into hypercubes. In 1988 International Conf.
on Parallel Processing, The Pennsylvania
State University Press, 1988.

[6] M.Y. Chan. The Embedding of Grids into
Optimal Hypercubes. Technical Report, Com-
puter Science Dept., University of Texas at
Dallas, 1988.

[7] M.Y. Chan. Embeddings of 3-dimensional
grids into optimal hypercubes. In Proceedings
of the Fourth Conference on Hypercubes, Con-
current Computers, and Applications, Vol. I,
pages 297-299, 1990.

[8] M.Y. Chan and F.Y.L. Chin. On Embedding
Rectangular Grids. Technical Report TR-B2-
87, Center of Computer Studies and Appli-
cations, University of Hong Kong, February
1987. to appear in IEEE Trans. Computers.

[9] John Ellis, Zevi Miller, and I. Hal Sudborough.
Compressing Meshes into Small Hypercubes.
Technical Report, Dept. of Computer Science,
Univ. of Texas at Dallas, 1989. '

[10] J.W. Flower, Steve W. Otto, and M.C.
Salama. A Preprocessor for Irregular Finite

(11]

(12]

[13]

(14]

[15]

[16]

[17]

(18]

(20]

Element Problems. Technical Report CCCP-
292, California Inst. of Technology, Pasadena,
CA, June 1986.

Marsha Foregger. Hamiltonian decomposi-
tions of products of cycles. Descrete Mathe-
matics, 24:251-260, 1978.

Geoffrey C. Fox. Load Balancing and Sparse
Matriz Vector Multiplication on the Hyper-
cube. Technical Report CCCP-327, California
Inst. of Technology, Pasadena, CA, July 1986.

Geoffrey C. Fox and Wojtek Furmanski. Load
Balancing by a Neural Network. Technical Re-
port CCCP-363, California Inst. of Technol-
ogy, Pasadena, CA, September 1986.

Geoffrey C. Fox and Steve W. Otto. Con-
current Computation and the Theory of Com-
plez Systems. Technical Report CCCP-255,
California Inst. of Technology, Pasadena, CA,
March 1986.

David S. Greenberg. Minimum FEzpansion
Embeddings of Meshes in Hypercubes. Tech-
nical Report YALEU/DCS/RR-535, Dept. of
Computer Science, Yale Univ., New Haven,
CT, August 1987.

David S. Greenberg and Sandeep N. Bhatt.
Routing Multiple Paths in Hypercubes. Tech-
nical Report YALEU/DCS/RR-768, Dept. of
Computer Science, Yale Univ., New Haven,
CT, March 1990.

I. Havel and J. Méravek. B-valuations of
graphs. Czech. Math. J., 22:338-351, 1972.

Ching-Tien Ho and S. Lennart Johnsson. Em-
bedding meshes in Boolean cubes by graph
decomposition. Journal of Parallel and Dis-
tributed Computing, 8(4):325-339, April 1990.

Ching-Tien Ho and S. Lennart Johnsson. On
the embedding of arbitrary meshes in Boolean
cubes with expansion two dilation two. In
1987 International Conf. on Parallel Process-
ing, pages 188-191, Penn State, 1987.

S. Lennart Johnsson. Communication effi-
cient basic linear algebra computations on hy-
percube architectures. J. Parallel Distributed
Comput., 4(2):133-172, April 1987. (Tech.

(22]

23]

[24]

(25]

(26]
(27]

Rep. YALEU/DCS/RR-361, Yale Univ., New
Haven, CT, January 1985).

S. Lennart Johnsson. Optimal Communication
in Distributed and Shared Memory Models of
Computation on Network Architectures, page .
Morgan Kaufman, 1989.

S. Lennart Johnsson and Ching-Tien Ho. Mul-
tiplication of arbitrarily shaped matrices using
the full communications bandwidth on Boolean
cubes. Technical Report YALEU/DCS/RR-
721, Department of Computer Science, Yale
University, July 1989.

Yuen-Wah E. Ma and Lixin Tao. Embeddings
among toruses and meshes. In 1987 Interna-
tional Conf. on Parallel Processing, pages 178—
187, IEEE Computer Society, 1987.

Seshu Madhavapeddy and I. Hal Sudborough.
A Note on Cyclic Binary Codes. Technical
Report Tech. Report UTDCS-6-89, Dept. of
Computer Science, Univ. of Texas at Dallas,
March 1989. in preparation.

E M. Reingold, J Nievergelt, and N Deo. Com-
binatorial Algorithms. Prentice-Hall, Engle-
wood Cliffs. NJ, 1977.

Alan Wagner. 1988. Personal communication.

C.K. Yuen. The separability of Gray code.
IEEE Trans. on Information Theory, 668,
1974.

