
Fast algorithms for spherical harmonic expansions, II

Yale University Dept. of Computer Science technical report #1381
Mark Tygert

Program in Applied Mathematics, Yale University, A. K. Watson Hall, Room 110, 51 Prospect St., New Haven, CT 06511

Abstract

We provide an efficient algorithm for calculating, at appropriately chosen points on the two-dimensional surface of the
unit sphere in R3, the values of functions that are specified by their spherical harmonic expansions (a procedure known
as the inverse spherical harmonic transform). We also provide an efficient algorithm for calculating the coefficients in
the spherical harmonic expansions of functions that are specified by their values at these appropriately chosen points
(a procedure known as the forward spherical harmonic transform). The algorithms are numerically stable, and, if the
number of points in our standard tensor-product discretization of the surface of the sphere is proportional to l2, then
the algorithms have costs proportional to l2 ln(l) at any fixed precision of computations. Several numerical examples
illustrate the performance of the algorithms.

Key words: fast, algorithm, spherical harmonic, transform, special function, FFT, recurrence, spectral
2000 MSC: 65T50, 65N35, 76M22

1. Introduction

Over the past several decades, the fast Fourier transform (FFT) and its variants (see, for example, [10])
have had an enormous impact across the sciences. The FFT is an efficient algorithm for computing, for
any positive integer n and complex numbers β0, β1, . . . , βn−2, βn−1, the complex numbers α0, α1, . . . ,
αn−2, αn−1 defined by

αj =
n−1∑
k=0

βk ek(xj) (1)

for j = 0, 1, . . . , n− 2, n− 1, where e0, e1, . . . , en−2, en−1 are the functions defined on [−1, 1] by

ek(x) = exp
(

π i (2k − n) x

2

)
(2)

for k = 0, 1, . . . , n− 2, n− 1, and x0, x1, . . . , xn−2, xn−1 are the real numbers defined by

xk =
2k − n

n
(3)

for k = 0, 1, . . . , n− 2, n− 1. The FFT is efficient in the sense that there exists a reasonably small positive
real number C such that, for any positive integer n ≥ 10, the FFT requires at most C n ln(n) floating-point
operations to compute α0, α1, . . . , αn−2, αn−1 in (1) from β0, β1, . . . , βn−2, βn−1. In contrast, evaluating
the sum in (1) separately for every j = 0, 1, . . . , n− 2, n− 1 costs at least n2 operations in total.

28 May 2007

It is desirable to have an analogue of the FFT for functions defined on the two-dimensional surface of the
unit sphere in R3, in the following sense. The spherical harmonic expansion of a bandlimited function f on
the surface of the sphere has the form

f(θ, ϕ) =
2l−1∑
k=0

k∑
m=−k

βm
k P

|m|
k (cos(θ)) eimϕ, (4)

where (θ, ϕ) are the standard spherical coordinates on the two-dimensional surface of the unit sphere in R3,
θ ∈ (0, π) and ϕ ∈ (0, 2π), and P

|m|
k is the normalized associated Legendre function of degree k and order

|m|, defined on (−1, 1) via the formula

P
|m|
k (x) =

√
2k + 1

2
(k − |m|)!
(k + |m|)!

√
1− x2

|m| d|m|

dx|m|Pk(x), (5)

where Pk is the Legendre polynomial of degree k (see, for example, Chapter 8 of [1]). (Please note that
the superscript m in βm

k denotes an index, rather than a power.) Obviously, the expansion (4) contains 4l2

terms. The complexity of the function f determines l.
In many scientific endeavors, particularly those using spectral methods for the numerical solution of partial

differential equations, we need to evaluate the coefficients βm
k in an expansion of the form (4) for a function

f given by a table of its values at a collection of appropriately chosen nodes on the two-dimensional surface
of the unit sphere. Conversely, given the coefficients βm

k in (4), we often need to evaluate f at a collection
of points on the surface of the sphere. The former is known as the forward spherical harmonic transform,
and the latter is known as the inverse spherical harmonic transform. A standard discretization of the surface
of the sphere is the “tensor product,” consisting of all pairs of the form (θk, ϕj), with cos(θ0), cos(θ1), . . . ,
cos(θ2l−2), cos(θ2l−1) being the Gauss-Legendre quadrature nodes of degree 2l, that is,

−1 < cos(θ0) < cos(θ1) < . . . < cos(θ2l−2) < cos(θ2l−1) < 1 (6)

and
P

0

2l(cos(θk)) = 0 (7)

for k = 0, 1, . . . , 2l − 2, 2l − 1, and with ϕ0, ϕ1, . . . , ϕ4l−3, ϕ4l−2 being equispaced on the interval (0, 2π),
that is,

ϕj =
2π
(
j + 1

2

)
4l − 1

(8)

for j = 0, 1, . . . , 4l−3, 4l−2. This leads immediately to numerical schemes for both the forward and inverse
spherical harmonic transforms with costs proportional to l3.

Indeed, given a function f defined on the two-dimensional surface of the unit sphere by (4), we can
rewrite (4) in the form

f(θ, ϕ) =
2l−1∑

m=−2l+1

eimϕ
2l−1∑

k=|m|

βm
k P

|m|
k (cos(θ)). (9)

For a fixed value of θ, each of the sums over k in (9) contains no more than 2l terms, and there are 4l − 1
such sums (one for each value of m); since the inverse spherical harmonic transform involves 2l values θ0, θ1,
. . . , θ2l−2, θ2l−1, the cost of evaluating all sums over k in (9) is proportional to l3. Once all sums over k
have been evaluated, each sum over m may be evaluated for a cost proportional to l (since each of them
contains 4l − 1 terms), and there are (2l)(4l − 1) such sums to be evaluated (one for each pair (θk, ϕj)),
leading to costs proportional to l3 for the evaluation of all sums over m in (9). The cost of the evaluation of
the whole inverse spherical harmonic transform (in the form (9)) is the sum of the costs for the sums over
k and the sums over m, and is also proportional to l3; a virtually identical calculation shows that the cost
of evaluating of the forward spherical harmonic transform is also proportional to l3.

A trivial modification of the scheme described in the preceding paragraph uses the FFT to evaluate the
sums over m in (9), roughly halving the operation count of the whole procedure. Several other careful
considerations (see, for example, [2] and [14]) are able to reduce the costs by 50% or so, but there is no

2

simple trick for reducing the costs of the whole spherical harmonic transform (either forward or inverse)
below l3. The present paper presents algorithms for both forward and inverse spherical harmonic transforms
with costs proportional to l2 ln(l) at any fixed precision of computations. Thus, our scheme provides an
analogue of the FFT for functions defined on the surface of the sphere.

Specifically, the present paper provides an algorithm for evaluating a sum over k in (9) at θ = θ0, θ1,
. . . , θ2l−2, θ2l−1, given the coefficients βm

|m|, βm
|m|+1, . . . , βm

2l−2, βm
2l−1, for a fixed m, with costs proportional

to l ln(l). Moreover, the present paper provides an algorithm for the inverse procedure of determining the
coefficients βm

|m|, βm
|m|+1, . . . , βm

2l−2, βm
2l−1 from the values of a sum over k in (9) at θ = θ0, θ1, . . . , θ2l−2, θ2l−1,

with costs proportional to l ln(l). FFTs or fast discrete sine and cosine transforms can be used to handle
the sums over m in (9) efficiently.

The similarity between the transforms of the present paper and the discrete Fourier transform in (1)
is perhaps most transparent in the following (equivalent) formulation. Given any integers l and m with
|m| ≤ 2l − 1 and real numbers βm

|m|, βm
|m|+1, . . . , βm

2l−2, βm
2l−1, one of the algorithms of the present paper

computes rapidly the real numbers αm
−l, αm

1−l, . . . , αm
l−2, αm

l−1 defined by

αm
j =

2l−1∑
k=|m|

βm
k fm

k (zj) (10)

for j = −l, 1− l, . . . , l− 2, l− 1, where fm
|m|, fm

|m|+1, . . . , fm
2l−2, fm

2l−1 are the functions defined on (−1, 1) by

fm
k (x) = P

|m|
k (x) (11)

for k = |m|, |m|+ 1, . . . , 2l − 2, 2l − 1, and z−l, z1−l, . . . , zl−2, zl−1 are the real numbers defined by

zk = cos(θk+l) (12)

for k = −l, 1− l, . . . , l − 2, l − 1, where θk+l is from (7). (Incidentally, it follows from (12) that

zk = −z−k−1 (13)

for k = −l, 1 − l, . . . , l − 2, l − 1.) The present paper also provides an algorithm for computing rapidly
βm
|m|, βm

|m|+1, . . . , βm
2l−2, βm

2l−1, given αm
−l, αm

1−l, . . . , αm
l−2, αm

l−1.
We refer the reader to [11] and its compilation of references for prior work on fast algorithms for spherical

harmonic expansions, as well as to [8] for an alternative approach that is suitable for certain applications.
The present paper utilizes techniques based on recurrence relations, techniques that are substantially more
efficient than the similar ones in [11]. We gave an overview of these techniques in [16]; the present paper
gives details regarding their application to computing spherical harmonic transforms rapidly. Large-scale
spherical harmonic transforms such as those accelerated by the present paper are probably most commonly
used today in numerical weather simulations and other geophysical computations (see, for example, [12]
and [13]).

The present paper has the following structure: Section 2 summarizes a number of facts from numerical
and mathematical analysis, used in Section 3. Section 3 constructs fast algorithms. Section 4 describes the
results of several numerical tests of the algorithms of Section 3.

Throughout the present paper, we denote the normalized associated Legendre function of degree k and
order m by P

m

k , as in (5).

2. Preliminaries

In this section, we summarize certain widely known facts from numerical and mathematical analysis, used
in Section 3. Subsection 2.1 summarizes properties of the fast multipole method. Subsection 2.2 describes
certain properties of divide-and-conquer methods for diagonalizing self-adjoint tridiagonal matrices and ap-
plying their matrices of normalized eigenvectors. Subsection 2.3 summarizes basic properties of normalized
associated Legendre functions. Subsection 2.4 provides tools for the analysis and synthesis of linear combi-
nations of normalized associated Legendre functions. Subsection 2.5 provides tools for the interpolation of

3

linear combinations of normalized associated Legendre functions. Subsection 2.6 describes the Prüfer trans-
formation for classical Sturm-Liouville problems (concerning the eigenfunctions of self-adjoint second-order
linear differential operators).

2.1. The fast multipole method

This subsection summarizes properties of fast algorithms developed in [9] and [18] for applying scaled
Cauchy matrices.

For any positive integers l and n, and real numbers u0, u1, . . . , un−2, un−1, v0, v1, . . . , vl−2, vl−1, x0, x1,
. . . , xn−2, xn−1, and y0, y1, . . . , yl−2, yl−1, we define

tj =
n−1∑
k=0

vj uk

yj − xk
(14)

for j = 0, 1, . . . , l − 2, l − 1.
As described in [9] and [18], there exist an algorithm and a positive real number C such that, for any

positive integers l and n, real numbers u0, u1, . . . , un−2, un−1, v0, v1, . . . , vl−2, vl−1, x0, x1, . . . , xn−2, xn−1,
y0, y1, . . . , yl−2, yl−1, and positive real number ε ≤ 1/10, the algorithm computes t0, t1, . . . , tl−2, tl−1 defined
in (14) with a precision of computations ε, using at most

C (l + n) (ln(1/ε))2 (15)

floating-point operations.

Remark 2.1 In practice, the algorithms described in [18] require only a small fraction of the memory
required by the algorithm described in [9]. Also, the constant C in (15) is effectively smallest for the
algorithm described in [9] only when it is used with fixed choices of xj and yk in (14) for many different
choices of uj and vk. When the numbers xj and yk are fairly uniformly distributed, the “simple exponential-
expansion FMM” algorithm described in Section 4 of [18] is often the most efficient of all the algorithms
described in [9] and [18].

2.2. Divide-and-conquer spectral methods

This subsection summarizes properties of fast algorithms introduced in [6] and [7] for spectral represen-
tations of tridiagonal real self-adjoint matrices. Specifically, there exists an algorithm such that, for any
tridiagonal real self-adjoint matrix T , (firstly) the algorithm computes the eigenvalues of T , (secondly) the
algorithm computes any eigenvector of T , (thirdly) the algorithm applies a square matrix U consisting of
normalized eigenvectors of T to any arbitrary column vector, and (fourthly) the algorithm applies UT to any
arbitrary column vector, all using a number of floating-point operations proportional to n (ln(n)) (ln(1/ε))3,
where n is the positive integer for which T and U are n × n, and ε is the precision of computations. The
following is a more precise formulation.

For any positive integer n, self-adjoint n× n matrix T , and real n× 1 column vector v, we define ‖T‖ to
be the largest of the absolute values of the eigenvalues of T , δT to be the minimum value of the distance
|λ− µ| between any two distinct eigenvalues λ and µ of T , and

‖v‖ =

√√√√n−1∑
k=0

(vk)2, (16)

where v0, v1, . . . , vn−2, vn−1 are the entries of v; we say that v is normalized to mean that ‖v‖ = 1. As
originated in [7], there exist an algorithm and a positive real number C such that, for any positive real
number ε ≤ 1/10, positive integer n ≥ 10, tridiagonal real self-adjoint n × n matrix T with n distinct
eigenvalues, real unitary n× n matrix U whose columns are n normalized eigenvectors of T , and real n× 1
column vector v,

4

1. the algorithm computes to within absolute precision ‖T‖ ε the n eigenvalues of T , using at most

C n (ln(n)) (ln(1/ε))3 (17)

floating-point operations,
2. the algorithm computes to within absolute precision ‖T‖ ‖v‖ ε/δT the n entries of the matrix-vector

product U v, using at most
C n (ln(n)) (ln(1/ε))3 (18)

operations,
3. the algorithm computes to within absolute precision ‖T‖ ‖v‖ ε/δT the n entries of the matrix-vector

product UT v, using at most
C n (ln(n)) (ln(1/ε))3 (19)

operations, and,
4. after the algorithm performs some precomputations which are particular to T at a cost of at most

C n (ln(n)) (ln(1/ε))3 (20)

operations, the algorithm computes to within absolute precision ‖T‖ ε/δT the k n entries of any k
user-specified normalized eigenvectors of T , using at most

C k n (ln(1/ε))2 (21)

operations, for any positive integer k.

Remark 2.2 We omitted distracting factors of very small powers of n in the precisions mentioned in the
present subsection.

Remark 2.3 In the second item of the present subsection, the algorithm in fact requires at most

C k n (ln(n)) (ln(1/ε))2 (22)

operations in order to compute the matrix-vector products U v0, U v1, . . . , U vk−2, U vk−1, for any posi-
tive integer k, and real n × 1 column vectors v0, v1, . . . , vk−2, vk−1, after the algorithm performs some
precomputations which are particular to T at a cost of at most

C n (ln(n)) (ln(1/ε))3 (23)

operations. Moreover, we can improve the precisions to which the algorithm calculates U v0, U v1, . . . ,
U vk−2, U vk−1, by performing more expensive precomputations (using higher-precision floating-point arith-
metic or precomputation algorithms whose costs are not proportional to n ln(n), for example). For the
numerical results reported in Section 4, we improve the precisions thus, by performing precomputations in
extended-precision arithmetic. Similar considerations apply to the third item of the present subsection.

Remark 2.4 There exist similar algorithms when the eigenvalues of T are not all distinct.

Remark 2.5 The algorithm of the present subsection utilizes the fast multipole method (described, for
example, in Subsection 2.1).

2.3. Basic properties of normalized associated Legendre functions

This subsection discusses several classical facts concerning normalized associated Legendre functions. All
of these facts follow trivially from results contained, for example, in [1] or [15].

The following lemma states that the normalized associated Legendre functions of order m are orthonormal
on (−1, 1).

5

Lemma 2.6 Suppose that m is a nonnegative integer.
Then, ∫ 1

−1

dx P
m

k (x) P
m

l (x) =

 1, k = l

0, k 6= l
(24)

for k, l = m, m + 1, m + 2,

The following lemma states that the normalized associated Legendre functions satisfy a certain self-adjoint
second-order linear (Sturm-Liouville) differential equation.

Lemma 2.7 Suppose that m is a nonnegative integer.
Then,

− d

dx

(
(1− x2)

d

dx
P

m

l (x)
)

+
(

m2

1− x2
− l(l + 1)

)
P

m

l (x) = 0 (25)

for any x ∈ (−1, 1), and l = m, m + 1, m + 2,

The following lemma states that the normalized associated Legendre function of order m and degree
m + 2n has exactly n zeros inside (0, 1), and, moreover, that the normalized associated Legendre function
of order m and degree m + 2n + 1 also has exactly n zeros inside (0, 1).

Lemma 2.8 Suppose that m and n are nonnegative integers with n > 0.
Then, there exist precisely n real numbers x0, x1, . . . , xn−2, xn−1 such that

0 < x0 < x1 < . . . < xn−2 < xn−1 < 1 (26)

and
P

m

m+2n(xk) = 0 (27)
for k = 0, 1, . . . , n− 2, n− 1.

Moreover, there exist precisely n real numbers y0, y1, . . . , yn−2, yn−1 such that

0 < y0 < y1 < . . . < yn−2 < yn−1 < 1 (28)

and
P

m

m+2n+1(yk) = 0 (29)
for k = 0, 1, . . . , n− 2, n− 1.

The case m = 0 of the preceding lemma is particularly important in applications; the following lemma
restates part of the preceding lemma for the case m = 0.

Lemma 2.9 Suppose that l is a positive integer.
Then, there exist precisely l real numbers z0, z1, . . . , zl−2, zl−1 such that

0 < z0 < z1 < . . . < zl−2 < zl−1 < 1 (30)

and
P

0

2l(zk) = 0 (31)
for k = 0, 1, . . . , l − 2, l − 1.

Suppose that m and n are nonnegative integers with n > 0. Then, we define real numbers ρ0, ρ1, . . . ,
ρn−2, ρn−1, σ0, σ1, . . . , σn−2, σn−1, and σn via the formulae

ρk =
2 (2m + 4n + 1)

(1− x2
k)
(

d
dxP

m

m+2n(xk)
)2 (32)

for k = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are from (27),

σk =
2 (2m + 4n + 3)

(1− y2
k)
(

d
dxP

m

m+2n+1(yk)
)2 (33)

6

for k = 0, 1, . . . , n− 2, n− 1, where y0, y1, . . . , yn−2, yn−1 are from (29), and

σn =
2m + 4n + 3(

d
dxP

m

m+2n+1(0)
)2 . (34)

The following lemma describes what are known as Gauss-Jacobi quadrature formulae corresponding to
associated Legendre functions.

Lemma 2.10 Suppose that m and n are nonnegative integers with n > 0.
Then, ∫ 1

−1

dx (1− x2)m p(x) =
n−1∑
k=0

ρk p(xk) (35)

for any even polynomial p of degree at most 4n−2, where x0, x1, . . . , xn−2, xn−1 are from (27), and ρ0, ρ1,
. . . , ρn−2, ρn−1 are defined in (32).

Furthermore, ∫ 1

−1

dx (1− x2)m p(x) = σn p(0) +
n−1∑
k=0

σk p(yk) (36)

for any even polynomial p of degree at most 4n, where y0, y1, . . . , yn−2, yn−1 are from (29), and σ0, σ1,
. . . , σn−1, σn are defined in (33) and (34).

Suppose that l is a positive integer. Then, we define real numbers w0, w1, . . . , wl−2, wl−1 via the formula

wk =
2 (4l + 1)

(1− z2
k)
(

d
dxP

0

2l(zk)
)2 (37)

for k = 0, 1, . . . , l − 2, l − 1, where z0, z1, . . . , zl−2, zl−1 are from (31).
The case m = 0 of the preceding lemma is particularly important in applications; the following lemma

restates part of the preceding lemma for the case m = 0.

Lemma 2.11 Suppose that l is a positive integer.
Then, ∫ 1

−1

dx p(x) =
l−1∑
k=0

wk p(zk) (38)

for any even polynomial p of degree at most 4l− 2, where z0, z1, . . . , zl−2, zl−1 are from (31), and w0, w1,
. . . , wl−2, wl−1 are defined in (37).

Suppose that m is a nonnegative integer. Then, we define real numbers cm, cm+1, cm+2, . . . and dm, dm+1,
dm+2, . . . via the formulae

cl =

√
(l −m + 1)(l −m + 2)(l + m + 1)(l + m + 2)

(2l + 1) (2l + 3)2 (2l + 5)
(39)

for l = m, m + 1, m + 2, . . . , and

dl =
2l(l + 1)− 2m2 − 1

(2l − 1)(2l + 3)
(40)

for l = m, m + 1, m + 2,
The following lemma states that the normalized associated Legendre functions of order m satisfy a certain

three-term recurrence relation.

Lemma 2.12 Suppose that m is a nonnegative integer.
Then,

x2 P
m

l (x) = dl P
m

l (x) + cl P
m

l+2(x) (41)

7

for any x ∈ (−1, 1) and l = m or l = m + 1, and

x2 P
m

l (x) = cl−2 P
m

l−2(x) + dl P
m

l (x) + cl P
m

l+2(x) (42)

for any x ∈ (−1, 1) and l = m + 2, m + 3, m + 4, . . . , where cm, cm+1, cm+2, . . . are defined in (39), and
dm, dm+1, dm+2, . . . are defined in (40).

2.4. Analysis and synthesis of linear combinations of normalized associated Legendre functions

This subsection provides tools for the analysis and synthesis of linear combinations of normalized associ-
ated Legendre functions via the theory of tridiagonal matrices. The methods of the present subsection have
been in wide use for numerical purposes at least since [5] appeared.

Suppose that m and n are nonnegative integers with n > 0. We define S to be the tridiagonal real
self-adjoint n× n matrix with the entry

Sj,k =

cm+2j−2, k = j − 1

dm+2j , k = j

cm+2j , k = j + 1

0, otherwise (when k < j − 1 or k > j + 1)

(43)

for j, k = 0, 1, . . . , n−2, n−1, where cm, cm+2, . . . , cm+2n−4, cm+2n−2 and dm, dm+2, . . . , dm+2n−4, dm+2n−2

are defined in (39) and (40). We define T to be the tridiagonal real self-adjoint n× n matrix with the entry

Tj,k =

cm+2j−1, k = j − 1

dm+2j+1, k = j

cm+2j+1, k = j + 1

0, otherwise (when k < j − 1 or k > j + 1)

(44)

for j, k = 0, 1, . . . , n − 2, n − 1, where cm+1, cm+3, . . . , cm+2n−3, cm+2n−1 and dm+1, dm+3, . . . ,
dm+2n−3, dm+2n−1 are defined in (39) and (40). We define U to be the real n × n matrix with the en-
try

Uj,k =
P

m

m+2j(xk)√∑n−1
i=0

(
P

m

m+2i(xk)
)2

(45)

for j, k = 0, 1, . . . , n − 2, n − 1, where x0, x1, . . . , xn−2, xn−1 are from (27). We define V to be the real
n× n matrix with the entry

Vj,k =
P

m

m+2j+1(yk)√∑n−1
i=0

(
P

m

m+2i+1(yk)
)2

(46)

for j, k = 0, 1, . . . , n− 2, n− 1, where y0, y1, . . . , yn−2, yn−1 are from (29). We define Λ to be the diagonal
real n× n matrix with the entry

Λj,k =

 (xj)2, k = j

0, k 6= j
(47)

for j, k = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are from (27). We define Γ to be the diagonal
real n× n matrix with the entry

Γj,k =

 (yj)2, k = j

0, k 6= j
(48)

8

for j, k = 0, 1, . . . , n− 2, n− 1, where y0, y1, . . . , yn−2, yn−1 are from (29). We define A to be the diagonal
real n× n matrix with the entry

Aj,k =

√√√√n−1∑

i=0

(
P

m

m+2i(xj)
)2

, k = j

0, k 6= j

(49)

for j, k = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are from (27). We define B to be the diagonal
real n× n matrix with the entry

Bj,k =

√√√√n−1∑

i=0

(
P

m

m+2i+1(yj)
)2

, k = j

0, k 6= j

(50)

for j, k = 0, 1, . . . , n− 2, n− 1, where y0, y1, . . . , yn−2, yn−1 are from (29).
The following lemma states that U is a matrix of normalized eigenvectors of the tridiagonal real self-adjoint

matrix S, and that Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S (which, according
to (26), are distinct). The lemma also states, similarly, that V is a matrix of normalized eigenvectors of
the tridiagonal real self-adjoint matrix T , and that Γ is a diagonal matrix whose diagonal entries are the
eigenvalues of T (which, according to (28), are distinct).

Lemma 2.13 Suppose that m and n are nonnegative integers with n > 0.
Then,

UT S U = Λ, (51)

where S is defined in (43), U is defined in (45), and Λ is defined in (47). Moreover, U is real and unitary.
Furthermore,

V T T V = Γ, (52)

where T is defined in (44), V is defined in (46), and Γ is defined in (48). Moreover, V is real and unitary.

Proof. Combining (41), (42), and (27) yields that

S U = U Λ. (53)

Combining (53), (45), (47), and (26) yields that U is a real matrix of normalized eigenvectors of S, with
distinct corresponding eigenvalues. Therefore, since eigenvectors corresponding to distinct eigenvalues of a
real self-adjoint matrix are orthogonal, U is orthogonal. Applying UT from the left to both sides of (53)
yields (51). The remaining statements of the lemma follow similarly. 2

The following lemma expresses in matrix notation the analysis and synthesis of linear combinations of
normalized associated Legendre functions.

Lemma 2.14 Suppose that m and n are nonnegative integers with n > 0, and α, β, µ, and ν are real n× 1
column vectors, such that α has the entry

αj =
n−1∑
k=0

βk P
m

m+2k(xj) (54)

for j = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are from (27), and µ has the entry

µj =
n−1∑
k=0

νk P
m

m+2k+1(yj) (55)

for j = 0, 1, . . . , n− 2, n− 1, where y0, y1, . . . , yn−2, yn−1 are from (29).

9

Then,
α = A UTβ (56)

and
β = U A−1 α, (57)

where U is defined in (45), A is defined in (49), and A UTβ and U A−1 α are matrix-matrix-vector products.
Furthermore,

µ = B V Tν (58)

and
ν = V B−1 µ, (59)

where V is defined in (46), B is defined in (50), and B V Tν and V B−1 µ are matrix-matrix-vector products.

Proof. Combining (45) and (49) yields (56). According to Lemma 2.13, U is real and unitary. Therefore,
applying the product U A−1 from the left to both sides of (56) yields (57). The remaining statements of the
lemma follow similarly. 2

2.5. Interpolation of linear combinations of normalized associated Legendre functions

This subsection provides tools for the interpolation of linear combinations of normalized associated Leg-
endre functions. The methods of the present subsection are taken from [8] and [17].

The following lemma provides what is known as a Christoffel-Darboux identity for the normalized associ-
ated Legendre functions.

Lemma 2.15 Suppose that m and n are nonnegative integers with n > 0.
Then,

n−1∑
k=0

P
m

m+2k(x) P
m

m+2k(y) =
cm+2n−2

x2 − y2

(
P

m

m+2n(x) P
m

m+2n−2(y)− P
m

m+2n−2(x) P
m

m+2n(y)
)

(60)

for any x, y ∈ (−1, 1) such that x 6= y, where cm+2n−2 is defined in (39).
Furthermore,

n−1∑
k=0

P
m

m+2k+1(x) P
m

m+2k+1(y) =
cm+2n−1

x2 − y2

(
P

m

m+2n+1(x) P
m

m+2n−1(y)− P
m

m+2n−1(x) P
m

m+2n+1(y)
)

(61)

for any x, y ∈ (−1, 1) such that x 6= y, where cm+2n−1 is defined in (39).

Proof. Combining (41) and (42) yields that

n−1∑
k=0

(
x2 P

m

m+2k(x)
)

P
m

m+2k(y)−
n−1∑
k=0

P
m

m+2k(x)
(
y2 P

m

m+2k(y)
)

= cm+2n−2

(
P

m

m+2n(x) P
m

m+2n−2(y)− P
m

m+2n−2(x) P
m

m+2n(y)
)

. (62)

Dividing both sides of (62) by x2 − y2 yields (60). The remainder of the lemma follows similarly. 2

The following lemma provides a formula which interpolates an even linear combination of n normalized
associated Legendre functions of order m from its values at the positive zeros of P

m

m+2n to its values at
arbitrary points in (−1, 1). Furthermore, the lemma provides a formula which interpolates an odd linear
combination of n normalized associated Legendre functions of order m from its values at the positive zeros
of P

m

m+2n+1 to its values at arbitrary points in (−1, 1).

10

Lemma 2.16 Suppose that m and n are nonnegative integers with n > 0. Suppose further that β0, β1, . . . ,
βn−2, βn−1 and ν0, ν1, . . . , νn−2, νn−1 are real numbers, and f and g are the functions defined on (−1, 1)
via the formulae

f(y) =
n−1∑
k=0

βk P
m

m+2k(y) (63)

and

g(x) =
n−1∑
k=0

νk P
m

m+2k+1(x). (64)

Then,

f(y) = cm+2n−2 P
m

m+2n(y)
n−1∑
k=0

1
y2 − x2

k

ρk P
m

m+2n−2(xk) f(xk) (65)

for any y ∈ (−1, 1), where cm+2n−2 is defined in (39), x0, x1, . . . , xn−2, xn−1 are from (27), and ρ0, ρ1,
. . . , ρn−2, ρn−1 are defined in (32).

Furthermore,

g(x) = cm+2n−1 P
m

m+2n+1(x)
n−1∑
k=0

1
x2 − y2

k

σk P
m

m+2n−1(yk) g(yk) (66)

for any x ∈ (−1, 1), where cm+2n−1 is defined in (39), y0, y1, . . . , yn−2, yn−1 are from (29), and σ0, σ1,
. . . , σn−2, σn−1 are defined in (33).

Proof. Combining (63) and (24) yields that

n−1∑
k=0

∫ 1

−1

dx f(x) P
m

m+2k(x) P
m

m+2k(y) = f(y) (67)

for any y ∈ (−1, 1). Applying (35) to the integral in the left-hand side of (67) — as permitted by (63) and (5)
— yields that

f(y) =
n−1∑
k=0

n−1∑
j=0

ρj f(xj) P
m

m+2k(xj) P
m

m+2k(y) (68)

for any y ∈ (−1, 1). Combining (68), (60), and (27) yields (65). The remainder of the lemma follows similarly,
using in addition the fact that P

m

m+2n−1(0) = 0 = P
m

m+2n+1(0) (after all, P
m

m+2n−1 and P
m

m+2n+1 are odd
due to (5)). 2

The following lemma provides a formula which interpolates an even linear combination of n normalized
associated Legendre functions of order m from its values at the positive zeros of P

0

2l to its values at the
positive zeros of P

m

m+2n. Here, l is an integer such that m + 2n ≤ 2l. Furthermore, the lemma provides
a formula which interpolates an odd linear combination of n normalized associated Legendre functions of
order m from its values at the positive zeros of P

0

2l to its values at the positive zeros of P
m

m+2n+1.

Lemma 2.17 Suppose that l, m, and n are nonnegative integers, such that n > 0 and m+2n ≤ 2l. Suppose
further that β0, β1, . . . , βn−2, βn−1 and ν0, ν1, . . . , νn−2, νn−1 are real numbers, and f and g are the
functions defined on (−1, 1) via the formulae

f(x) =
n−1∑
k=0

βk P
m

m+2k(x) (69)

and

g(y) =
n−1∑
k=0

νk P
m

m+2k+1(y). (70)

11

Then,

f(xj) = cm+2n−2 P
m

m+2n−2(xj)
l−1∑
k=0

1
z2
k − x2

j

wk P
m

m+2n(zk) f(zk) (71)

for j = 0, 1, . . . , n − 2, n − 1, where cm+2n−2 is defined in (39), x0, x1, . . . , xn−2, xn−1 are from (27),
z0, z1, . . . , zl−2, zl−1 are from (31), and w0, w1, . . . , wl−2, wl−1 are defined in (37).

Furthermore,

g(yj) = cm+2n−1 P
m

m+2n−1(yj)
l−1∑
k=0

1
z2
k − y2

j

wk P
m

m+2n+1(zk) g(zk) (72)

for j = 0, 1, . . . , n − 2, n − 1, where cm+2n−1 is defined in (39), y0, y1, . . . , yn−2, yn−1 are from (29),
z0, z1, . . . , zl−2, zl−1 are from (31), and w0, w1, . . . , wl−2, wl−1 are defined in (37).

Proof. Combining (69) and (24) yields that

n−1∑
k=0

∫ 1

−1

dy f(y) P
m

m+2k(x) P
m

m+2k(y) = f(x) (73)

for any x ∈ (−1, 1). Applying (38) to the integral in the left-hand side of (73) — as permitted by (69) and (5)
— yields that

f(x) =
n−1∑
k=0

l−1∑
j=0

wj f(zj) P
m

m+2k(x) P
m

m+2k(zj) (74)

for any x ∈ (−1, 1). Combining (74), (60), and (27) yields (71). The remainder of the lemma follows similarly.
2

2.6. The Prüfer transformation

This subsection describes a certain reformulation of classical Sturm-Liouville problems (those concerning
the eigenfunctions of self-adjoint second-order linear differential operators). The methods of the present
subsection are taken from [4].

Straightforward calculations yield the following lemma, reformulating a certain self-adjoint second-order
(Sturm-Liouville) differential equation as a pair of coupled first-order differential equations. This reformu-
lation is classically known as the Prüfer transformation (see, for example, [4]).

Lemma 2.18 Suppose that a and b are real numbers with a < b, and f , p, q, r, and θ are functions of
x ∈ (a, b), such that f is twice differentiable, p is differentiable, p(x) > 0, q(x) > 0,

d

dx

(
p(x)

d

dx
f(x)

)
+ q(x) f(x) = 0, (75)

r(x) =

√(√
p(x)

d

dx
f(x)

)2

+
(√

q(x) f(x)
)2

, (76)

and

θ(x) = tan−1

(√
p(x) d

dxf(x)√
q(x) f(x)

)
(77)

for any x ∈ (a, b).
Then, for any x ∈ (a, b), f(x) = 0 if and only if

θ(x) =
π

2
+ kπ (78)

12

for some integer k. Furthermore,

d

dx
r(x) =

r(x)
2

(
d
dxq(x)
q(x)

cos2(θ(x))−
d
dxp(x)
p(x)

sin2(θ(x))

)
(79)

and
d

dx
θ(x) = −

√
q(x)
p(x)

−

(
d
dxq(x)
q(x)

+
d
dxp(x)
p(x)

)
sin(2 θ(x))

4
(80)

for any x ∈ (a, b).
Moreover, if θ is strictly decreasing as a function of x, then x and r are parameterizable as functions of

θ, with

dx

dθ
= −

(√
q(x(θ))
p(x(θ))

+

(
d
dxq(x(θ))
q(x(θ))

+
d
dxp(x(θ))
p(x(θ))

)
sin(2θ)

4

)−1

(81)

and

dr

dθ
=

r

2

(
d
dxp(x(θ))
p(x(θ))

sin2(θ)−
d
dxq(x(θ))
q(x(θ))

cos2(θ)

)

·

(√
q(x(θ))
p(x(θ))

+

(
d
dxq(x(θ))
q(x(θ))

+
d
dxp(x(θ))
p(x(θ))

)
sin(2θ)

4

)−1

. (82)

Remark 2.19 The variables r in (76) and θ in (77) are polar coordinates in the (phase) plane having√
q f as the abscissa (“x-coordinate”) and

√
p d

dxf as the ordinate (“y-coordinate”). Please note that (80)
and (81) do not involve r.

3. Description of the algorithms

In this section, we describe the algorithms of the present paper.
We describe all processing as it pertains to even or odd functions. To process a function h defined on

(−1, 1) which is neither even nor odd, we first separate h into its even and odd parts f and g, defined via
the formulae

f(x) =
h(x) + h(−x)

2
(83)

and

g(x) =
h(x)− h(−x)

2
. (84)

All subsequent processing then concerns f or g, each of which is uniquely defined by its values on (0, 1).
Combining (83) and (84) yields that

h = f + g. (85)

In the present section, we assume that f has the form

f(x) =
n−1∑
k=0

βk P
m

m+2k(x) (86)

for any x ∈ (−1, 1), where m and n are nonnegative integers with n > 0, and β is a real n×1 column vector.
Combining (86) and (5) yields that f is a linear combination of even functions, and hence f(−x) = f(x) for
any x ∈ (−1, 1). Similarly, we assume that g has the form

g(y) =
n−1∑
k=0

νk P
m

m+2k+1(y) (87)

13

for any y ∈ (−1, 1), where again m and n are nonnegative integers with n > 0, and ν is a real n × 1
column vector. Combining (87) and (5) yields that g is a linear combination of odd functions, and hence
g(−y) = −g(y) for any y ∈ (−1, 1).

Subsection 3.1 constructs the underlying algorithms which Subsection 3.2 uses to compute fast associ-
ated Legendre transforms (thus allowing us to compute fast spherical harmonic transforms, as elaborated in
Section 1). Subsection 3.3 discusses certain auxiliary precomputations needed by the algorithms of Subsec-
tion 3.2.

3.1. Analysis and synthesis of linear combinations of normalized associated Legendre functions

Suppose that m and n are nonnegative integers with n > 0, and α and β are real n × 1 column vectors,
such that α has the entry

αj = f(xj) =
n−1∑
k=0

βk P
m

m+2k(xj) (88)

for j = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are the positive zeros of P
m

m+2n from (27), and
f is defined in (86). This subsection constructs algorithms which compute α in (88) rapidly given β, and,
vice versa, compute β rapidly given α.

According to (56) and (57),
α = A UTβ (89)

and
β = U A−1 α, (90)

where U is defined in (45), A is defined in (49), and A UTβ and U A−1 α are matrix-matrix-vector products.
Since A defined in (49) is diagonal, we can apply A and A−1 for a cost proportional to n to an arbitrary real

n× 1 vector. According to (51), U in (89) and (90) is a matrix of normalized eigenvectors of the self-adjoint
tridiagonal matrix S defined in (43), so we can apply U and UT for a cost proportional to n ln(n) to an
arbitrary real n×1 vector using items 2 and 3 of Subsection 2.2. Thus, we can use (89) to compute α in (88)
for a cost proportional to n ln(n) given β, and, vice versa, use (90) to compute β for a cost proportional to
n ln(n) given α.

Via similar procedures, we can compute µ in (55) for a cost proportional to n ln(n) given ν, and, vice
versa, compute ν for a cost proportional to n ln(n) given µ.

3.2. Interpolation of linear combinations of normalized associated Legendre functions

Given nonnegative integers m and n with n > 0, the vector α defined in (88) provides the values of a
function f at the positive zeros x0, x1, . . . , xn−2, xn−1 of P

m

m+2n, where f is defined in (86). Subsection 3.1
provides an algorithm for computing α rapidly. To compute the inverse spherical harmonic transform,
however, we need to calculate the values of f at the positive zeros z0, z1, . . . , zl−2, zl−1 of P

0

2l from (31)
(or, equivalently, from (7) and (12)), where l is an integer such that m + 2n ≤ 2l. The present subsection
provides efficient schemes for performing this task, in addition to related tasks needed for computing the
forward spherical harmonic transform, given the output of the algorithms of Subsection 3.1.

We can interpolate from the values of f at x0, x1, . . . , xn−2, xn−1, obtained via the algorithm of Subsec-
tion 3.1, to the values of f at z0, z1, . . . , zl−2, zl−1 by means of (65), that is,

f(zj) = cm+2n−2 P
m

m+2n(zj)
n−1∑
k=0

1
z2
j − x2

k

ρk P
m

m+2n−2(xk) f(xk) (91)

for j = 0, 1, . . . , l−2, l−1, where cm+2n−2 is defined in (39), and ρ0, ρ1, . . . , ρn−2, ρn−1 are defined in (32).
Similarly, we can interpolate from the values of f at z0, z1, . . . , zl−2, zl−1 to the values of f at x0, x1,

. . . , xn−2, xn−1 by means of (71), that is,

14

f(xj) = cm+2n−2 P
m

m+2n−2(xj)
l−1∑
k=0

1
z2
k − x2

j

wk P
m

m+2n(zk) f(zk) (92)

for j = 0, 1, . . . , n − 2, n − 1, where cm+2n−2 is defined in (39), and w0, w1, . . . , wl−2, wl−1 are defined
in (37).

Using the fast multipole method summarized in Subsection 2.1 in conjunction with (91), we can compute
for a cost proportional to l + n the values of f at z0, z1, . . . , zl−2, zl−1 from the values of f at x0, x1, . . . ,
xn−2, xn−1 (much like in [8] and [17]). Similarly, using the fast multipole method in conjunction with (92),
we can compute for a cost proportional to l + n the values of f at x0, x1, . . . , xn−2, xn−1 from the values
of f at z0, z1, . . . , zl−2, zl−1.

Via analogous procedures, we can interpolate for a cost proportional to l + n between the values of a
function g at z0, z1, . . . , zl−2, zl−1 and the values of g at the positive zeros y0, y1, . . . , yn−2, yn−1 of
P

m

m+2n+1 from (29), where g is defined in (87).

3.3. Auxiliary precomputations

In order to use (91) and (92), we have to precompute the positive zeros x0, x1, . . . , xn−2, xn−1 of P
m

m+2n,
the positive zeros z0, z1, . . . , zl−2, zl−1 of P

0

2l, the values of P
m

m+2n−2 at x0, x1, . . . , xn−2, xn−1, the values of
P

m

m+2n at z0, z1, . . . , zl−2, zl−1, the numbers ρ0, ρ1, . . . , ρn−2, ρn−1 defined in (32), and the numbers w0, w1,
. . . , wl−2, wl−1 defined in (37). This subsection describes algorithms which perform these precomputations.

To find the positive zeros x0, x1, . . . , xn−2, xn−1 of P
m

m+2n, we integrate the ordinary differential equation
(ODE) in formula (81) via an explicit predictor-corrector method like that in [3], thus obtaining the zeros
of P

m

m+2n when (78) is satisfied. In (81), we take p(x) = 1 − x2 and q(x) = (m + 2n)(m + 2n + 1) − m2

1−x2 ,
in accordance with the combination of (25) and (75), with f(x) = P

m

m+2n(x).
To find the numbers ρ0, ρ1, . . . , ρn−2, ρn−1 defined in (32), we calculate r defined in (76) by integrating

the ODE (82) (together with the ODE (81)) via an explicit predictor-corrector method like that in [3]. We
then obtain ρ0, ρ1, . . . , ρn−2, ρn−1 via the formula

ρk =
2 (2m + 4n + 1)

(r(xk))2
(93)

for k = 0, 1, . . . , n− 2, n− 1, which follows from (32), (76), and (27), with f(x) = P
m

m+2n(x). In (76), (81),
and (82), we again take p(x) = 1 − x2 and q(x) = (m + 2n)(m + 2n + 1) − m2

1−x2 , in accordance with the
combination of (25) and (75), with f(x) = P

m

m+2n(x).
Via similar procedures, we can compute the positive zeros z0, z1, . . . , zl−2, zl−1 of P

0

2l and the numbers
w0, w1, . . . , wl−2, wl−1 defined in (37). We can compute the values of P

m

m+2n−2 at x0, x1, . . . , xn−2, xn−1

and the values of P
m

m+2n at z0, z1, . . . , zl−2, zl−1 by integrating ODEs of the form (75) together with ODEs
of the form (81), again via an explicit predictor-corrector method like that in [3].

We can compute similarly the positive zeros y0, y1, . . . , yn−2, yn−1 of P
m

m+2n+1, as well as the other
numbers needed to interpolate functions of the form (87).

Since we use an explicit predictor-corrector method like that in [3], we find that we can perform all
computations needed by the algorithm of the present subsection for a cost proportional to l+n. However, we
found it expedient to perform the precomputations in extended-precision arithmetic, in order to compensate
for the small loss of precision incurred during the precomputations.

Remark 3.1 We used the ODE integration scheme of [3] primarily for convenience; other highly accurate
integration schemes would probably suffice.

15

4. Numerical results

In this section, we describe the results of several numerical tests of the algorithms of the present paper.
Tables 1, 2, and 3 report on the analysis and synthesis schemes described in Subsection 3.1, while Tables 4,

5, and 6 report on the interpolation schemes described in Subsection 3.2. Computing the forward or inverse
spherical harmonic transform requires the schemes of both subsections, as well as fast discrete sine and cosine
transforms (see Sections 1 and 3 for details). In each table, n is the size of the transform, m is the order of
the normalized associated Legendre functions used in the transform, tfast is the time in seconds required to
apply the algorithm of the present paper once to calculate the application of a matrix to one input vector,
tprecomps. is the time in seconds required to precompute all data needed in order to execute the algorithm of
the present paper, and εr.m.s. is the root-mean-square of the difference of the output vector calculated by the
algorithm of the present paper from the directly calculated output vector, divided by the root-mean-square
of the input vector. We should note that we made no attempt to optimize the precomputations.

In each table, tdirect is the time in seconds required to apply a dense matrix to a vector via the conventional
matrix-vector multiplication algorithm. We estimated the last two entries for tdirect by multiplying the third-
to-last entry in each table by 4 and 16, since the large matrices required to generate those entries exceeded
the memory addressable by the (32-bit addressing) Lahey-Fujitsu compiler. We indicate that these entries
are estimates by enclosing them in parentheses. We individually describe the dimensionality of the matrix
associated with each table in the description for each table below. Please note that the Lahey-Fujitsu
compiler we used optimizes matrix-vector applications to make them particularly efficient (50–100% faster
than matrix-vector applications effected using the f2c- and gcc-based fort77 compiler under its highest
optimization setting, -O3).

Table 1 lists the results of computing from real numbers ν0, ν1, . . . , νn−2, νn−1 the real numbers µ0, µ1,
. . . , µn−2, µn−1 defined via the formula

µj =
n−1∑
k=0

νk P
m

m+2k+1(yj) (94)

for j = 0, 1, . . . , n − 2, n − 1, where y0, y1, . . . , yn−2, yn−1 are the zeros of P
m

m+2n+1 from (29). Table 1
tests the transform with each of the numbers ν0, ν1, . . . , νn−2, νn−1 being distributed uniformly on (−1, 1),
as obtained from a pseudorandom number generator. In Table 1, tdirect is the time in seconds required to
apply a dense real n× n matrix to a real n× 1 vector.

Table 2 lists the results of computing from real numbers β0, β1, . . . , βn−2, βn−1 the real numbers α0, α1,
. . . , αn−2, αn−1 defined via the formula

αj =
n−1∑
k=0

βk P
0

0+2k(xj) (95)

for j = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are the zeros of P
0

0+2n from (27). Table 2 tests
the transform with each of the numbers β0, β1, . . . , βn−2, βn−1 being distributed uniformly on (−1, 1), as
obtained from a pseudorandom number generator. In Table 2, tdirect is the time in seconds required to apply
a dense real n× n matrix to a real n× 1 vector.

Table 3 lists the results of computing from real numbers µ0, µ1, . . . , µn−2, µn−1 the real numbers ν0, ν1,
. . . , νn−2, νn−1 satisfying

µj =
n−1∑
k=0

νk P
m

m+2k+1(yj) (96)

for j = 0, 1, . . . , n−2, n−1, where y0, y1, . . . , yn−2, yn−1 are the zeros of P
m

m+2n+1 from (29). Table 3 tests
the transform with each of the numbers ν0, ν1, . . . , νn−2, νn−1 being distributed uniformly on (−1, 1), as
obtained from a pseudorandom number generator. We calculated the input values for µ0, µ1, . . . , µn−2, µn−1

using (96), calculating P
m

m+2k+1(yj) for j, k = 0, 1, . . . , n−2, n−1 via the recurrence relations (41) and (42)
in extended-precision arithmetic (to compensate for the apparently mildly unstable recursion on the degrees

16

of the normalized associated Legendre functions). In Table 3, tdirect is the time in seconds required to apply
a dense real n× n matrix to a real n× 1 vector.

Table 4 lists the results of computing from the values of a function f at the positive zeros x0, x1, . . . ,
xn−2, xn−1 of P

m

m+2n from (27) the values of f at the positive zeros z0, z1, . . . , zm/2+n−2, zm/2+n−1 of

P
0

m+2n from (31), where f is the function defined on (−1, 1) via the formula

f(x) =
n−1∑
k=0

βk P
m

m+2k(x) (97)

for some real numbers β0, β1, . . . , βn−2, βn−1. Table 4 tests the transform with each of the numbers β0, β1,
. . . , βn−2, βn−1 being distributed uniformly on (−1, 1), as obtained from a pseudorandom number generator.
In Table 4, tdirect is the time in seconds required to apply a dense real (m

2 + n) × n matrix to a real n × 1
vector.

Table 5 lists the results of computing from the values of a function g at the positive zeros y0, y1, . . . ,
yn−2, yn−1 of P

0

0+2n+1 from (29) the values of g at the positive zeros z0, z1, . . . , zn−2, zn−1 of P
0

2n from (31),
where g is the function defined on (−1, 1) via the formula

g(y) =
n−1∑
k=0

νk P
0

0+2k+1(y) (98)

for some real numbers ν0, ν1, . . . , νn−2, νn−1. Table 5 tests the transform with each of the numbers ν0, ν1,
. . . , νn−2, νn−1 being distributed uniformly on (−1, 1), as obtained from a pseudorandom number generator.
In Table 5, tdirect is the time in seconds required to apply a dense real n× n matrix to a real n× 1 vector.

Table 6 lists the results of computing from the values of a function f at the positive zeros z0, z1, . . . ,
zm/2+n−2, zm/2+n−1 of P

0

m+2n from (31) the values of f at the positive zeros x0, x1, . . . , xn−2, xn−1 of
P

m

m+2n from (27), where f is the function defined on (−1, 1) via the formula

f(x) =
n−1∑
k=0

βk P
m

m+2k(x) (99)

for some real numbers β0, β1, . . . , βn−2, βn−1. Table 6 tests the transform with each of the numbers β0, β1,
. . . , βn−2, βn−1 being distributed uniformly on (−1, 1), as obtained from a pseudorandom number generator.
In Table 6, tdirect is the time in seconds required to apply a dense real n×(m

2 +n) matrix to a real (m
2 +n)×1

vector.
We wrote all code in Fortran 77, compiling it using the Lahey-Fujitsu compiler, with optimization flag

--o2 enabled. We ran all of the examples on a 2.8 GHz Pentium Xeon with 1 MB of L2 cache and 2 GB of
RAM. We performed all precomputations in quadruple-precision arithmetic, as implemented in software by
the Lahey-Fujitsu compiler. Aside from the precomputations, our code is compliant with the IEEE double-
precision standard (so that the mantissas of variables have approximately one bit of precision less than 16
digits, yielding a relative precision of about .2e-15). For the fast multipole method (FMM) needed in the
algorithms of Subsections 2.2 and 3.1, we used the FMM of [9]. For the FMM needed in the algorithm of
Subsection 3.2, we used the “simple exponential-expansion FMM” algorithm described in Section 4 of [18].

Remark 4.1 The timings reported in Tables 1–6, as well as in our further experiments, appear to be
consistent with the expected costs of the algorithms. In Tables 1–3, tfast takes on values that are consistent
with its expected values of a constant times n ln(n), for sufficiently large n. In Tables 4–6, tfast takes on
values that are consistent with its expected values of a constant times n, for sufficiently large n. In Tables 1–
6, tdirect takes on values that are consistent with its expected values of a constant times n2. In Tables 4–6,
tprecomps. takes on values that are consistent with its expected values of a constant times n, for sufficiently
large n. In Tables 1–3, tprecomps. takes on values that appear to scale as a constant times n2. We were
expecting tprecomps. to scale as a constant times n2 in Tables 1–3: to simplify our implementation, we used
precomputations for the algorithm summarized in Subsection 2.2 that should scale as a constant times n2.
In principle, the methods of [7] and the last lemma of Section 2.2 in [16] can give rise to precomputations
that would scale as a constant times n ln(n). We made no attempt to optimize the precomputations.

17

Remark 4.2 When n = 32,768, the algorithm of the present paper appears to be around 16 times faster
than the direct algorithm. The method of the present paper would seem to be preferable to the algorithm
of [11] whenever the method of the present paper is available, as this method is much more efficient, partic-
ularly at smaller problem sizes. However, while the algorithm of the present paper does generalize to certain
classes of special functions not treated by [11] (see, for example, [16]), the algorithm of the present paper
does not generalize directly to spheroidal wave functions (which are amenable to the method of [11]).

Notwithstanding this, it is possible that the algorithms of the present paper will generalize in a non-
obvious manner. For instance, combining a fast associated Laguerre transform algorithm with the fact that
the eigenfunctions of the Fourier-Bessel transform are associated Laguerre functions would yield a fast
Fourier-Bessel transform algorithm, as pointed out to us by Michael O’Neil and Vladimir Rokhlin during
personal communication in early 2007. (Please note here that the Fourier-Bessel transform is also known
as the Hankel transform.) As described in [16], the algorithms of the present paper do indeed appear to
generalize to associated Laguerre functions.

Acknowledgements

We would like to thank Vladimir Rokhlin for his support, for his numerous technical and editorial sug-
gestions, and for sharing his extensive library of codes.

References

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover Publications, New York, 1972.

[2] J. C. Adams, P. N. Swarztrauber, SPHEREPACK 3.0: A model development facility, Mon. Wea. Rev. 127 (1999) 1872–1878.

[3] A. Glaser, A new class of highly accurate solvers for ordinary differential equations, Ph.D. thesis, Yale University, V.
Rokhlin (Ph.D. advisor) (May 2007).

[4] A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, Tech. Rep. 1367, Dept.

of Computer Science, Yale University (June 2006).
[5] G. H. Golub, J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23 (106) (1969) 221–230 and s1–s10.

[6] M. Gu, S. C. Eisenstat, A stable and efficient algorithm for the rank-1 modification of the symmetric eigenproblem, SIAM

J. Matrix Anal. Appl. 15 (1994) 1266–1276.
[7] M. Gu, S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J. Matrix Anal.

Appl. 16 (1995) 172–191.
[8] R. Jakob-Chien, B. Alpert, A fast spherical filter with uniform resolution, J. Comput. Phys. 136 (2) (1997) 580–584.

[9] P.-G. Martinsson, V. Rokhlin, An accelerated kernel-independent fast multipole method in one dimension, Tech. Rep. 1353,

Dept. of Computer Science, Yale University (May 2006).
[10] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes, 2nd ed., Cambridge University Press, Cambridge,

UK, 1992.

[11] V. Rokhlin, M. Tygert, Fast algorithms for spherical harmonic expansions, SIAM J. Sci. Comput. 27 (6) (2006) 1903–1928.
[12] P. N. Swarztrauber, Shallow-water flow on the sphere, Mon. Wea. Rev. To appear.

[13] P. N. Swarztrauber, Spectral transform methods for solving the shallow-water equations on the sphere, Mon. Wea. Rev.

124 (4) (1996) 730–744.
[14] P. N. Swarztrauber, W. F. Spotz, Generalized discrete spherical harmonic transforms, J. Comput. Phys. 159 (2) (2000)

213–230.

[15] G. Szegö, Orthogonal Polynomials, vol. 23 of Colloquium Publications, eleventh ed., American Mathematical Society,
Providence, RI, 2003.

[16] M. Tygert, Recurrence relations and fast algorithms, Tech. Rep. 1343, Dept. of Computer Science, Yale University, also
available in revised form as cs.CE/0609081 at http://www.arxiv.org/ (December 2005).

[17] N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical
harmonics, J. Comput. Phys. 147 (2) (1998) 594–609.

[18] N. Yarvin, V. Rokhlin, An improved fast multipole method for potential fields on the line, SIAM J. Numer. Anal. 36 (2)

(1999) 629–666.

18

Table 1

Times in seconds and relative errors for synthesis of odd degrees

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 512 .81e-03 .97e-03 1.2 .36e+02 .18e-12

1024 1024 .24e-02 .37e-02 1.5 .19e+03 .21e-11

2048 2048 .65e-02 .14e-01 2.2 .77e+03 .26e-11

4096 4096 .16e-01 .56e-01 3.5 .34e+04 .52e-11

8192 8192 .40e-01 .27e-00 6.8 .12e+05 .39e-10

16384 16384 .93e-01 (.11e+01) 12 .59e+05 .19e-10

32768 32768 .21e-00 (.43e+01) 20 .20e+06 .46e-10

Table 2
Times in seconds and relative errors for synthesis of even degrees

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 0 .82e-03 .97e-03 1.2 .33e+02 .14e-11

1024 0 .25e-02 .37e-02 1.5 .15e+03 .37e-11

2048 0 .66e-02 .14e-01 2.2 .65e+03 .48e-11

4096 0 .18e-01 .60e-01 3.5 .27e+04 .11e-10

8192 0 .40e-01 .27e-00 6.8 .13e+05 .28e-10

16384 0 .10e-00 (.11e+01) 11 .44e+05 .42e-10

32768 0 .22e-00 (.43e+01) 20 .19e+06 .81e-10

Table 3

Times in seconds and relative errors for analysis of odd degrees

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 512 .82e-03 .93e-03 1.1 .37e+02 .12e-13

1024 1024 .25e-02 .36e-02 1.4 .17e+03 .51e-13

2048 2048 .65e-02 .14e-01 2.2 .83e+03 .67e-13

4096 4096 .16e-01 .56e-01 3.5 .34e+04 .68e-13

8192 8192 .40e-01 .27e-00 6.8 .12e+05 .15e-12

16384 16384 .93e-01 (.11e+01) 12 .52e+05 .27e-12

32768 32768 .24e-00 (.43e+01) 18 .22e+06 .18e-12

19

Table 4
Times in seconds and relative errors for interpolation

from zeros of P
m
m+2n to zeros of P

0
m+2n

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 512 .89e-03 .14e-02 1.6 .20e+03 .60e-13

1024 1024 .19e-02 .58e-02 3.1 .39e+03 .66e-13

2048 2048 .37e-02 .24e-01 6.5 .79e+03 .94e-13

4096 4096 .74e-02 .93e-01 13 .16e+04 .17e-12

8192 8192 .15e-01 .42e-00 28 .32e+04 .31e-12

16384 16384 .30e-01 (.17e+01) 57 .64e+04 .60e-12

32768 32768 .60e-01 (.67e+01) 112 .13e+05 .12e-11

Table 5

Times in seconds and relative errors for interpolation

from zeros of P
0
2n+1 to zeros of P

0
2n

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 0 .66e-03 .88e-03 1.3 .17e+03 .42e-12

1024 0 .13e-02 .36e-02 2.8 .33e+03 .34e-11

2048 0 .27e-02 .15e-01 5.6 .66e+03 .63e-11

4096 0 .54e-02 .62e-01 11 .13e+04 .14e-10

8192 0 .11e-01 .27e-00 25 .27e+04 .18e-10

16384 0 .22e-01 (.11e+01) 50 .52e+04 .31e-10

32768 0 .44e-01 (.43e+01) 98 .11e+05 .90e-10

Table 6
Times in seconds and relative errors for interpolation

from zeros of P
0
m+2n to zeros of P

m
m+2n

n m tfast tdirect
tdirect
tfast

tprecomps. εr.m.s.

512 512 .81e-03 .14e-02 1.7 .20e+03 .45e-13

1024 1024 .15e-02 .54e-02 3.6 .39e+03 .55e-13

2048 2048 .32e-02 .22e-01 6.9 .79e+03 .78e-13

4096 4096 .65e-02 .92e-01 14 .16e+04 .14e-12

8192 8192 .15e-01 .41e-00 27 .32e+04 .28e-12

16384 16384 .35e-01 (.16e+01) 46 .64e+04 .55e-12

32768 32768 .83e-01 (.66e+01) 80 .13e+05 .11e-11

20

