An Overview of the
Yale Gem System
John Levine
Technical Report #163, April 1979

Abstract

The Gem System is an experimental computing
facility that provides low cost, high speed,
graphics-oriented computing to between ten
and sixteen simultaneous users. It provides
many unusual facilities to its users and
presents a user interface that is unique in
its convenience and flexibility. The motiva-
tion for the system, its design, and user ex-
perience are described. Possible future ave-
nues of research are also outlined.

This work was funded in part by grants from the Sloan Foundation
and the Exxon Foundation.

1
The Gem System is an experimental computing facility that
provides low cost, high speed, graphics-oriented computing to
between ten and sixteen simultaneous users. It provides many
unusual facilities to its users and presents a user interface
that is unique in its convenience and flexibility. The motiva-
tion for the system, its design, and user experience are

described.

1. Motivation

In 1972 the Yale Computer Science department undertook to
build an inexpensive computing system for student use. The goals
were to provide interactive computing fo e;ch user, and to allow
the use of text and graphical output in any combination. Since
the system had to be inexpensive, substantial effort was made to
build it out of standard commercially available components when-
ever possible. Also, since the project would evolve rapidly over
the years, it was imperative to maintain the maximum of flexibil-

ity to allow for reconfiguring the system for unforeseen uses.

2. Hardware design

The Gem System hardware is pictured in figure 1. The heart
of the system is the Gem memory, a bank of 256K 16-bit words of
semiconductor memory, which is of course called Gemory. Each
screen is assigned a 16K (16 bits/word) section of Gemory. All
the screens are refreshed simultaneously from their respective
Gemories 30 times per second. Each screen is considered to be an
array of bits 576 wide and 454 high (these numbers are due to the

resolution of the standard television monitors used and the size

2

of the screen memory.) Pictures are drawn on the screens by the
simple act of writing bit patterns into Gemory. Individual words
or bytes of memory can be changed to change individual sections
of the screen. Operations such as blanking out a selected sec-
tion of the screen or copying the image on one part of thé"screen

to another part of the screen are easily programmed.

Iwo computers access the Gemory. The ‘‘terminal’’ computer,
which is a Digital PDP-11/05, has the primary job of simulating
more or less conventional typewriter terminals. The other one, a
PDP-11/45, does general-purpose time-sharing. Each computer has
mapping hardware that allows it to access the Gemory for any ter-
minal as though the Gemory were part o% the primary memory for
the computer. It is quite possible for both computers to access
the same screen memory at the same time; hardware resolves the
contention. The primary connection between the two computers
(other than through the shared Gemory) is a simple bidirectional
link that appears to each machine to be a very fast paper tape
reader and punch. The terminal computer sends the characters
typed on the keyboards (except for locally handled functions) to
the main computer, and the main computer sends characters to be

typed to the terminal computer.

A variety of peripherals are attached to the two computers,
a few of which bear further discussion. A chronic problem facing
CRT oriented systems is the difficulty of obtaining paper copies
of the contents of the screen at reasonable cost, especially when
the screen can display pictures as well as text. The terminal
computer has attached to it a standard electrostatic matrix

printer. Since the data in a screen memory is an array of bits

in essentially the same format required by the matrix printer,
copying the screen memory directly to the printer produces a pa-
per copy of the screen image. We have programmed the terminal
computer so that on each keyboard, there is a ‘‘Print’’ button
that makes a copy of the screen, allowing users to obtain hard
copy as often as needed. A user program can also arrange to copy
screen images repetitively to the printer so that longer paper
pictures can be drawn. All sixteen terminals share the same
printer, so that the cost per terminal of providing the printer
is quite low. All of the figures for this paper were printed on

the matrix printer.

There is also an analog I/0 subsystem, which is described

later, attached to the terminal computer.

3. System Software

After a good deal of investigation and experiment, we decid-
ed to adopt the well-known Unix time sharing system [1]. Minimal
modification of the operating system was needed in order to ex-
ploit the full power of the Gem terminals. Each Gem terminal can
be used just like a typewriter terminal. Since the behavior of
the terminal depends solely on the program in the terminal com-
puter, we have been able to develop a terminal with some very
unusual characteristics. In fact, changing terminal characteris-
tics has been so easy that when we receive programs written else-
where that depend on the special features of a particular type of
terminal, it has often been easier to change the program in the
terminal computer to emplate that kind of terminal than to change

the programs themselves. The terminal can be switched to use the

APL character font rather than the regular 96 character ASCII
set, and characters from the two can be intermixed, since text
already written does not change when the terminal mode is
changed. One can also switch between having characters over-
strike as on a real typewriter and having only the most recent
character at a screen position show, as on a conventional CRT.
For demonstrations, the terminal can switch to double size char-

acters.

To help exploit the unique features of CRT terminals, we

NS ’

have implemented screen '‘windows’’ which allow screen activity
to be restricted to an arbitrary sub-rectangle of the screen.
All of the regular terminal-control characters such as clear
page, horizontal tabulate, and scroll up or down, then operate
only within the selected window. Unlike most windowing systems,
no program in the main computer need be aware that it is writing

to a window rather than to the full screen, since the terminal

computer handles all such activity automatically.

There is also a mechanism enabling each program to manipu-
late the screen memory of its terminal. We have exploited some
otherwise unused mode-switching hardware in the pdp-11 to provide
a direct hardware path from every running program to the section
of Gemory associated with its terminal. The overall effect is
that a user program need only execute some special instructions
and words of data are moved in and out of the screen memory
without any further intervention from the operating system. This
allows a screen memory to be totally rewritten in about 50 ms,
which looks like an instantaneous change of the picture. A user

can also map the screen memory directly into the address space of

5
a running program, which provides faster screen access but
severely limits the space available for the program itself. 1In
fact, most programs use the first access mechanism since it is

usually fast enough.

All of the major languages used on the system, including
~ Fortran, Basic, APL, and C, have had some sort of graphics inter-
face added. The most sophisticated routines, which are described

below, are for programs written in the language C [2].

A variety of user software has been written to assist in
picture creation. The most widely used package lets the user
draw lines and points in subrectangles of the screen. A frequent
approach is to define several screen windows, some for graphics,
some for text, and some for a combination of both. For example,
there is a screen editor which has a large window which shows a
portion of the file being edited, and a small one-line window

which holds arguments to editor commands.

Another package allows character fonts to be created, edit-
ed, and used to draw text and pictures on the screen. Besides a
wide variety of character sefs such as regular Roman, Greek,
Cyrillic, and old German, there are character sets that are used
to build more complicated pictures such as musical notes and map
symbols, and various novelty characters including excellent

reproductions of the signatures of some of the faculty members.

Other less widely used software includes Calcomp-compatible
Fortran routines for drawing lines and characters, and some rou-

tines for viewing three-dimensional objects in perspective from a

variety of viewpoints.

4. Applications

By far the most heavily used piece of graphics software is
the screen oriented text editor, which is based on Yale's-;xten—
sive previous work on screen editors. On many other systems,
screen editors have failed to gain acceptance because they have
verbose and confusing syntax and because they generally place a
severe load on the computing system or else run very slowly. The
approach we use is that the editor provides a window into the
file, and that the user can simply cross out and overwrite as he
would on paper except, of course, that the results are much
neater. Using single-key commands, the user can invoke a variety
of cut-and-paste operations, as well as the usual editor opera-
tions of moving forward andrbackward in the file and doing con-
text searches. He can draw a box around some part of the text on
the screen and then delete it, move it somewhere else in that
file or to a different file, or even execute it as commands #o
the system command interpreter. By careful design of the termi-
nal emulator program and the interface between the terminal com-
puter and the main computer, we have been able to make the screen
editor run faster and cheaper than the various line editors, so
that most users edit only with the screen editor and many don’t
even know how to use any other. Beginning users find the editor
very easy to use because most of the operations are intuitively
easy to grasp, and have close analogies in things they do while

typing on an ordinary typewriter.

We have found that simple-minded graphics programs are ex-

7

tremely easy to write. For example, the program used to draw
figure 1 (the block diagram of the system) only took about half
an hour to write and debug. The ability to avoid having a
display list and to work directly with the screen image lets the
user bypass a whole level of complexity inherent in most other
graphics systems. If there is some need for more complicated
display data structures, it is usually very easy to write the
routines that translate them into the actual screen image. It is
also possible, though we have not done it much, to read back the
picture for further analysis. TheAmost common application of

A Y

this is that we usually draw lines in ‘‘complement mode,’’ i.e.,
inverting the bit values on the screen rather than just turning
them on, which has the very useful effect that a line can be re-

moved just by redrawing it.

The APL subsystem makes use of the APL character font and
lets line drawings be made directly from APL. There has also
been work done on mapping rectangular areas on the screen direct-
ly into APL arrays so that pictures can be drawn with the full
flexibility of the APL operators, working directly on the
hardware representation without interposing relatively ineffi-

cient and inflexible line-drawing routines.

Some students have investigated picture creation languages,
such as Logo, [3]and others have created relatively sophisticated
systems to manipulate and display arbitrary polyhedra in perspec-
tive with hidden line elimination. Although animation is quite
difficult, display of arbitrarily pictures is easy since there
need be no display list that grows with the complexity of the

picture.

8

This ability has encouraged some cartographic work. There
is a set of routines with which users easily create maps of the
United States and display information keyed by Zip code. This is
of interest to groups which maintain mailing lists on the
machine. An undergraduate has created a sophisticated package
which keeps track of information about Yale’s underground utility
tunnels. It stores data about which tunnels are connected to
which others, what types of pipes go in which direction, which
doors have locks, where the burglar alarms are, etc. The inter-
face to this is almost entirely graphical: the user has a map of
the campus on which he can overlay the various tunnels and facil-
ities. Information is added and deleted by pointing to the
building or tunnel of interest (by moving a cursor around the

screen) and then typing the changes.

We enhanced the terminal emulator so that bytes of Gemory
could be converted to and from analog signals, using the above
mentioned analog I/0 subsystem. An exciting application is the
analysis of electrocardiagrams, done in cooperation with the
Veterans’ Administration. Analog tapes of patients’ heartbeats
are read into the A-to-D converter on the terminal computer and
the signal digitized every 200 microseconds. The digitiéed in-
formation stored in Gemory is then read into the main computer
and usually written on computer digital tapes. People working at
the terminals can then rapidly analyze these tapes. Individual
heartbeats are shown graphically on the screen, and the operator
characterizes each as normal or abnormal. As heartbeats are
analyzed, they are stored so that further similar heartbeats can

be identified automatically. The entire data from a typical

twelve~hour tape can be thoroughly analyzed in about half an

9

hour, which is about an order of magnitude faster than any other
method of comparable accuracy. The resolution of the Gem termi-
nals and their ability to display arbitrarily complex pictures

are crucial to this application, since ten or twenty heartbeats

are displayed simultaneously, each with maximum screen detail.

Having noticed that analog signals could be read into the
Gem system, some students investigated the feasibility of produc-
ing output analog signals in real time, and thus a system that
plays music was written. It can play six to ten voices simul-
taneously, and operates reasonably well even when other users
continue working, which is unusual for computerized music syn-
thesis. Work is now in progress to develop a music score editor
that lets users manipulate music in the conventional musical no-

tation and to integrate it with the music playing system.

The analogue input system has also been used to handle a
joystick for picture drawing. We found that for many purposes,
cursor keys on the keyboard are more convenient for pointing than
the joystick is, so there has been comparatively little use of it

so far.

Naturally, a wide variety of games and demonstrations rapid-
ly appeared. The usual time-of-day command has been supplanted
by a ‘‘clock’’ command which draws a clock face on the screen,
with the hands indicating the correct time. A sweep second hand
is optional. When a terminal is idle, the system displays a pic-
ture from a library of appropriate messages, such as the seal of
Yale University, various portentious mottoes, and other computer

artwork. This actually had some practical benefit, since users

can more easily identify available terminals and, since having a

10
picture selected for the library is considered something of an
honor, there was an incentive to develop some of the picture

display packages.

’

Two undergraduates developed a '‘Star Wars’’ game which lets
several people at different terminals fly space ships, land on

planets, and of course blow each other to smithereens. Each per-
son sees the universe out the windows of his own ship, and has a

set of controls and indicators. The illusion of being in a 3-D

space is quite persuasive, and the entire game is very involving.

J. User Reactions

The Gem system provides a user interface that is quite dif-
ferent from that provided by any other time-shared computing sys-
tem of similar cost that we know. It is one of the only systems
to provide screen-oriented editing (as opposed to typewriter-
oriented editing adapted to a CRT terminal.) It is absolutely the
only system that allows ordinary users at any terminal to do
graphics without making special arrangements in advance and hav-
ing to use special terminals different from the ones used for
normal work. Every introductory computing course that uses the
Gem system includes a few assignments involving graphics. Some
of ‘them have been surprisingly sophisticated, as for instance one
that simulated the spread of pollutants downwind from an explo-

sion.

All users use the graphics editor for text and program
preparation. It is much easier to learn than the standard line
editor and, for most functions, allows faster editing. Our ex-

perience has been that when users move to other systems that do

11
not provide window editing they have reactions not unlike those
of people accustomed to interactive computing who have to use

batch systems.

The editor has recently been augmented so that a user can
automatically execute a system command of his choice upod'leaving
the editor, typically to compile a program or reformat a docu-
ment. Another increasingly popular feature lets the user execute
part or all of a file as system commands. The commands can in-
volve the use of variables, conditional statements And branches.
Some users now have files of favorite commands from which they

select pieces to execute.

An effect of these features has been to make the edit-
compile-test sequence, which users typically repeat over and
over, much faster than before. This has sped up program develop-

ment considerably.

The primary obstacle that has kept us from using more graph-
ics seems to be the inherent difficulty of designing a good
graphical interface for a system or application. Typically, much
more information is displayed with graphics than with regular
textual outputs and the programs are thus more difficult to

write.

6. Summary and Future Directions

Overall, our experience with this approach to computation
has been very positive. We developed a variety of applications
with comparatively little effort, and the utility of a graphics

terminal for program development is now firmly established. The

12
bit-map terminals we developed have turned out to be useful for
some types of graphics and impractical for others. The ability
to change selective parts of the screen and to overlay picture
elements on top of each other makes it easy to draw very complex
pictures with parts that change frequently. On the other hand,
animation is very difficult, since continuous animation requires
continuous computation to redraw changing parts of the picture,
and this is hard to do in a time-sharing environment. Animation
which is not done in real time should be practical, with the com-
puter drawing a frame and then triggering a camera, changing

parts of the picture and triggering the camera again, and so on.

Future developments of the system may go in several direc-
tions. With minimal effort we could arrange grey scale and
colored pictures by suitable combination of images from multiple
screen memories, but we don’t see any fundamental breakthroughs
in this direction. A direction we would like to pursue is to
provide a terminal computer for each screen. This would enable
animation and permit an increased amount of the processing to be
done in the terminal. There is currently a restriction that all
terminals must be in the same building as the computers, since
the screen images are now transmitted via coaxial cables which
are impractical over long distances; the individual terminal com-
puters would alleviate this. Our work on windows points the way
to transmitting complex pictures with minimum transmission time,
by transmitting only the minimum of windows needed to update or
maintain a screen image. There is also opportunity fo; work on

graphical input devices, such as tablets and mice.

We also plan to do further work in integrated graphical en-

13
vironmenﬁs, extending the screen windows to be more generally
useful, with different programs simultaneously accessing dif-
ferent windows on the same screen, somewhat in the manner of
Teitelman’s ‘‘Programmer’s Assistant’’ [4] or the IBM 3270 Ses-

sion Manager [5].

Since the screen editor seems to be so generally useful, we
are moving toward making it the standard system interface, so
that users only leave it occasionally to do something unusual.
Programs can be run directly from the editor, and their input and
output data can be manipulated jusﬁ like any other file. In some
cases, khe output from a program would even be edited and then
fed back into the same program forlfurther processing without
leaving the editor; this is useful in word-processing applica-

tions.

Our bit-map terminals make it easy to draw characters on the
screen from a variety of different fonts. This would allow
technical and scientific reports which include mathematical sym-
bols and letters from foreign alphabets to be typed up directly.
(Current systems for this purpose require that codes for the sym-
bols be used which are only translated to the correct form when
the document is finally printed.) We could then provide a system
that let such documents be prepared with full visual fidelity
maintained from initial keying through editing to final printing.
Such a system would be equally useful for producing slides and
transparancies. A matrix printer with higher resolution than the
one we now have would be needed to print documents of acceptable

quality for distribution.

14

We believe that much work remains to be done on graphical
programming tools. We are now developing a screen-oriented pro-
gram editor which recognizes the syntax of the programming
language, so that editing commands can be phrased in terms of the
language of the program rather than just in terms of lines and
characters.

Finally, many of us have noticed that a graphicé terminal
allows a program to put an immense amount of information on the
screen in a very short time. Large portions of most graphical
programs are dedicated to maintaining the data structures that
hold the information displayed. There has been interest in
creating data base packages tailored to the graphics environment
so that complicated pictures can be more easily manipulated. The

font routines mentioned earlier are a simple example of this.

I. Acknowlegements

The original conception of the Gem system was due to Edgar
T. Irons and Peter Weiner. The terminal hardware was primarily
designed and built by Charles Minter and Mark Brown. The key-
board subsystem was designed and built by Inder Singh. Robert W.
Tuttle is responsible for the design of the two-computer system
and also wrote the screen editor., John Levine designed and wrote
the screen access features of the operating system and the termi-
nal emulator program. The electrocardiagram software was
designed and written by John W. Lewis. The music software is due

to S. M, Haflich, of the Yale School of Music.

15
8. Figures

1. Block diagram of the GEM system. There is a good deal of
conventional computing equipment here not referred to in the
text. As was mentioned above, the program used to draw this was

developed in less than an hour.

2. Sample editor session. This example shows the words

*“display arbitrary polyhedra'' selected for an operation.

3. A graphics oriented game. Note the use of a text window on
the right to display instructions. This window is also used for

error messages and comments from the program.

4, A graphics tree editor. This particular editor was written
as an assignment for a class. The symbols are from a standard

font and do not, in this case, mean anything.

5. Display from a curve plotting program, Note the ability to
easily plot a great deal of information. (These data are not

from the Gem system.)

6. Output from a small APL program. Note the combination of
regular characters at the top with APL characters in the middle

and the graphical figures.

16

9. References

1. D. M. Ritchie and K. Thompson, '“The UNIX Time-Sharing Sys-

tem,'' CACM 17:7 (July 1974,) pp. 365-175

‘'UNIX Time-Sharing System Special Issue,'' Bell System

Iechnical Journal 57:6 part 2 (July=-August 1978,) pp. 1897~
2312

2. B. W. Kernighan and D. M. Ritchie, The C Programming

Language, Prentice-Hall, Englewood Cliffs, 1976, 228 pp.

3. Papert, Seymour, '‘Teaching Children Thinking,'' IFIP

Conference on Computing Education (1970,) North-Holland, Am-

sterdam,

4. Teitelman, Warren, The Programmer's Assistant, Veport CSL

77-3, Xerox Palo Alto Research Center, 1977.

5. ''TSO Session Manager,'' IBM Systems Journal, 17:3 (1978).

17

16 CRET
FCreans

Gemory

2

SEH

pdp-11-95 —_—
TTY

12K

[Analoy

pdp-11-45
7 "paper tape” limk ™
184K ., -
™~ -
TTY
Disks Tapes
Line printer

Quality typeuwriter

Figure 1.

subsys

Joystick

Speaker

Electrostatic

Frinter

18

.sp
1

Block diagram of the GEM system.

There is a good deal of conventional cemputing egquipment here not
referred to in the text.

As was mentioned abowe, the progeam used to draw thiszs was developed
in less than an hour.

LEp

r
- .
Sample aditor =e
bis example show

LA
he words ["dizplay arbiirary polyhedra’] selected

T
for an operation.

5 =P

ﬁ.graphics oriznted game.

Mote the wu foa text window on the right to display instructicons.
This window iz zlso used for error meszages and comments from the
progran.

.sp

4.

B graphics tree esditor.

This particular editor was written a3s an sssigrment for a3 class
The symbols are from a standard fornt and do not, in thiz case,

mean anything.
LEp

5.
Display from a curve plotting program.

Note the ability to easily plot s great deal of informations.
tThis data is mnot from the Gem system.

.CH References

.FR

¥¥ cursor defined %% File gemZ.n Line 231

Figure 2.

19

To move,
maove the cur-
sor where you

Ce want and plant
: a pey theres
ftwith the home
keyd. A bar-
rier iz creat-

gd twixt that
peg and a2
pegs of the

S ame
which
krights
HWEY, i
arae no
ing bareld
af the

WD
P
113

The -t
iz to -1
O e
series Qs
to point
behind of
your o 2rs

FRETURH -
Take back mowve

SFPAHCE - Step
thru future

ESC - Enter

o e

=

Figure 3.

20

Figure 4.

+
¥

21

DEC-28 response time ws number of jobs

+
+
+
+
+ +
-+
_ +
+
+
+ *x
. + ! %; + N % X
++ ; 1": j E X
5 bt ~ ¥
SHHITHIHHITI L
T 1 I 1 i T 1 1
$.68988 13.689 12.68 22.88 22.88 232.80 T3.60 43 .88 42.60 53.60
Ctotal number of jobs)
256K memory
S1ZK memory

Figure 5.

22

N < o

datew_//
n May 21 414:47:46 EDT "1\?79 Py
2 @:,g;:33 k s
'l

t
X apl
AP L N T4 - VERSION 14 ooTXss
13.22 82 B4 19-79 CONTINUE X
LLISE™ s
ZeP LI gfs F Iy / \
Zew (2, fHopcdlaNy, 1oPFPxl \
e ve
zeLz | ;T \\
SETU?/ / Y
ge.sfliss 2 / 0
Zebeh. 2 LISS 2 / :
MR elz / !
/ i
— 1‘,1
/
j
/{
T
; e
',} -_'_.H‘"
/ e
7 -
/ -~
-
/o
f*’/f
/f
,f”if
S B
/’ —f—”-—__'-’
y -

Figure 6.

