A Reactive Plan Language
Drew McDermott

YALEU/CSD/RR #3864
August, 1991

This work was supported by the Defense Advanced Research Projects Agency, under
contract number DAAA15-87-K-0001, administered by the Ballistic Research Laboratory;
and contract number N00014-91-J-1577, administered by the Office of Naval Research.

A Reactive Plan Language

Drew McDermott

1 Overview

RPL (Reactive Plan Language)! belongs to the family of notations for writing reactive plans for agents
(e-g., robots) (Davis 1984, Ingrand and Georgeff 1990, Lyons 1990a,b, Gat 1991). Its immediate ancestor is
Firby’s (1987, 1989) RAP notation. Many of Firby’s concepts have been carried over, but there are some
differences: ‘

(1) The syntax is more “recursive,” more in the style of Lisp
(2) More high-level concepts (interrupts, monitors) have been made into explicit constructs.
(3) The interpreter does not attempt to maintain a world model that tracks the situation outside
the robot.
RPL is being applied to high-level robot planning, and to representing advisory plans for emergency

situations (McDermott et al. 1991).

1.1 Sensor-Guided Plans

A RPL plan looks like a Lisp program. (Indeed, I will use the terms “plan” and “program” interchange-
ably.) A plan consists of a set of procedure calls, of the form (f -args-), glued together with syntactic
constructs like (SEQ -steps-), (IF condition actypye. actsaise), and the like. Variable bindings in RPL are
lexically scoped. But Lisp global variables can be accessed, too. There are special facilities for binding
variables to the tasks created by the plan itself.

Any Lisp procedure can be called from a RPL plan. In addition, RPL procedures can defined using

(DEF-INTERP-PROC name (-formals-) -body-)
There are no local procedures (i.e., no LABELS). -

RPL looks so much like Lisp that many Lisp programs are valid RPL plans. However, the intent is not to
encourage users to think of plans as typical computer programs, whose ol;eration hinges on the maintenance
of complex datastructures. RPL plans are intended to spell out how the behavior of an agent is to be driven
by events around it, and to do so in a notation so transparent that a planner can reason about how well the
plans will work. A key mechanism to achieve these aims is the idea of a fluent, or time-varying quantity. Of
course, all program variables are time-varying quantities, but in plans we want behavior to be governed by

the temporal changes. For example, in RPL we can say (FILTER ¢ e) to mean, “Execute e while the fluent

! Thanks to Mark Drummond and Sean Engelson for comments on previous drafts of this paper. The work reported
herein was supported by the Defense Advanced Projects Agency, under BRL contract DAA15-87-K-0001, and ONR contract
NO00014-91-J-1577.

¢ remains true.” If ¢ becomes false, the execution of e is aborted. Fluents can be defined in terms of other
fluents. For example,
(FILTER (AND C1 (> I B)) (CARRY-OUT A))
does (CARRY-OUT A) only while C1 remains true and I remains greater than 5. Here C1 is a Boolean-valued
fluent, and I is a numerical-valued one.
Fluents can be set by sensors, thus allowing immediate sensory control of actions. Many plans could

consist only of batteries of parallel monitors waiting to react to various conditions:

(PAR (WHENEVER condition; reaction;)
(WHENEVER conditiony reactions)

(WHENEVER condition,, reaction,))

The terms C1, I, and A in the FILTER example are plan variables, which behave exactly as in standard
Lisp-like languages. There are local variables, bound with LET, and global variables, which it is convenient
to implement with ordinary Lisp globals. The programmer must distinguish between variables bound to

fluents and those bound to more mundane values. In a plan beginning:

(LET ((A (CREATE-FLUENT ’A 5))
(B 6))
.2

one can write both (+ A4 10) and (+ B 10), but “+” has been defined so that the former expression yields
a new fluent, and the latter a number. To get the current value of A, use the expression (FLUENT-VALUE h),
as in (+ (FLUENT-VALUE A) 10).

1.2 The Task Network

As a RPL plan is executed, a task network is constructed. The task network corresponds to the stack
in a standard programming language. However, an important difference is that the “stack frames” can come
into being before the interpreter reaches them, and the planner and interpreter can refer to them in advance.
A task is an action (token) that the planner has carried out or might try to carry out. A task has two kinds
of subtask (McDermott 1985): syntactic subtasks and reducing subtasks. A: syntactic subtask of a task T is
one that is generated from a piece of the text of the action of T'; a reducing subtask of a task T is one that
purports to be an effective way of carrying out T

For example, if the action of T is (LOOP (A) (B)), then one of its syntactic subtasks might be “the
second step in the third iteration of T',” i.e., the third execution of (B). A task with an open-ended set
of syntactic subtasks is said to be iferative. Obviously, only a finite number of subtasks can actually be

executed (or even committed to).

Syntactic subtasks are accessible using plan variables, which are bound using the :TAG construct. In
this plan:
(SEQ (A) (:TAG STEP2 (B)) (C))
the second step can be referred to using the variable STEP2. One use of :TAG is in the PARTIAL-ORDER

construct, which expects explicit constraints among steps:

(PARTIAL-ORDER ((:TAG STEP1 (A))
(:TAG STEP2 (B))
(:TAG STEP3 (C)))
(:ORDER STEP1 STEP3)
(:ORDER STEP2 STEP3))

Each STEPi is a plan variable, bound to a particular task, that is, a particular occurrence of an (A),
(B), or (C) action. The binding is located in the environment belonging to the highest supertask for which
there is a single occurrence of the action. There will be multiple occurrences if the PARTIAL-ORDER occurs
inside an iterative context, such as a LOOP or WHENEVER. In such a case, the tag binding is located in the
task for each iteration, and is rebound each time the LOOP or WHENEVER goes around again.

Transformations on plans need to be able to refer to arbitrary subtasks, so we provide a general mech-
anism for that job. Suppose T is an expression whose value is a LOOP task. We stipulate that (SUB ITER 3
T') refers to the task corresponding to the third iteration of the loop. (Cf. McDermott 1985.) Similarly, for
each construct in the language, we provide a notation for referring to the syntactic subtasks it gives rise to.
(See Sect. 4.4.) Most of the time we can avoid constructing lengthy terms to refer to sub-sub-. . .-subtasks

by using the expression (TAGGED ¢ T') to refer to the subtask of T with tag t. So the following is legal:

(PARTIAL-ORDER
((:TAG DOIT (FOO))
(FILTER CC (:TAG LL (LOOP (A) (:TAG SS (B)) (C)))))
(:ORDER (TAGGED SS (SUB ITER 3 LL))
DOIT))

This plan says to do (4), (B), and (C) repeatedly (until CC becomes false), and also to do (FOO) at some
point after the (B) step of iteration 3 of the loop.

A new task is created for every “step” of a plan. To avoid generating a huge pile of tasks, we distinguish
between steps and ezpressions. The latter are pieces of the plan that are evaluated rather than ezecuted. For
example, in (IF e a b), the expression e is evaluated, resulting in the usual choice of a or b. A task with an
IF action has two subtasks, one for the true arm and one for the false arm. There is no subtask for the test,
e. It’s important that expressions be Lisp forms that have no side effects, that is, Lisp forms that can be
evaluated whenever their ﬁrguments are known, in case some planning algorithm needs to know what their

values will be.

Suppose a task T"s action is to call a RPL-procedure. In that case, it will have a single subtask, whose
action is the body of the procedure. This subtask is not really syntactic, but we use the SUB notation to
refer to it all the same, as (SUB PROC-BODY T').

There is a similar trick for “syntactifying” reducing subtasks. Suppose that the planner has been given
a plan of the form (SEQ A1 A2 (PAR A3 A4 A5)) to improve, and it has determined that the third and fifth

step can be performed more efficiently by doing action B. It can replace the text of the plan with

(REDUCTION (SEQ A1 A2
(PAR (:TAG R1 A3)
A4
(:TAG R2 A5)))

(R1 R2)
B
MY-TAG)

This plan is executed just as the original one was, but the execution of A3 and A5 is short-circuited, and B is
done in their place. The task for B appears as a subtask of both task R1 and task R2. (There is no other way
for a task to have more than one supertask.) The task with action B is not a syntactic subtask of R1 or R2,
but we can pretend it is, by referring to it as (SUB REDUCTION MY-TAG R1) or as (SUB REDUCTION MY-TAG
R2).

When a task is first created, it has status created. It can be created arbitrarily far in advance of when it
is executed. When it is ready to be executed, that is, when no further condition needs to be satisfied before
execution can begin, it gets status enabled. When execution begins, its status becomes active. An active
task has three possible fates: it can become finished, failed, or evaporated. The normal end of a task is to
“finish,” presumably “successfully.” A task evaporates if events outside it cause its execution to suspend
prematurely. An example is the fate of the task for the body of a FILTER, should the filtering fluent become
false. The status of a task is stored in a fluent, which can be used to trigger events. See BEGIN-TASK and
END-TASK in Sect. 4. '

1.3 Failure

Task failure is a more complex issue. We can distinguish at least three possible concepts of task failure:
(1) A task fails if it does not accomplish its purpose; (2) a task fails if it becomes impossible; (3) a task fails
if it explicitly gives up. An example of the first is a robot’s failed attempt to collect a bunch of ice cubes in
a room by leaving them on a table in the room (without noticing that they will melt). An example of the
second is failing to collect five blocks before midnight by having collected only four when midnight comes.
An example of the third is a robot’s failing to retrieve a blue block it left on a table because when it returns
it finds two similar-looking blue blocks there.

As far as the RPL interpreter is concerned, the only type of failure it can care about is (3). There

is a primitive FAIL that never finishes successfully, and causes all its supertasks to fail as well, unless the

4

failure is “caught” by a construct like TRY-ALL or TRY-IN-ORDER that expresses alternative strategies. If a
failure is caught by a TOP-LEVEL task, then it is reported to the planner. The idea is that the current plan
is inadequate to deal with the world’s behavior, and the planner should step in to generate a better one.
Meanwhile, execution of the other TOP-LEVEL subtasks proceeds, presumably unaffected by the failure.

Because the reactive interpreter cannot be expected to do deep reasoning about whether it is succeeding,
it is up to the planner (and the human plan writer) to try to make failures of types (1) and (2) look like (3)
if they are to be recognized. For example, to catch a deadline violation, it suffices to have code that checks
the time and FAILs if the deadline has passed. -

FAIL computes a failure description, or “faildescrip,” on the spot, which gets transmitted to supertasks.
These are implemented as objects with at least these three slots:

TASK The task that failed or #F? if unknown.
- ID A descriptive S-expression that is printed when the task is.

SEVERITY An integer between 0 and 10 that summarizes how intractable the failureis. A value of 0 means
that the failure is trivial, caused for some backtracking purpose within the plan. A value of 10
means that the failure is so severe that the plan containing it should not be attempted again.

Faildescrips are implemented as Common Lisp Object System (Keene 1989) classes, so more specific
classes of failure can be constructed that include more slots. Such specific information is useful in allowing
a plannef to choose a way to repair a failed plan. The only such class used by the RPL intepreter is the
class composite-failure, produced by constructs like TRY-ALL when every one of its subtasks fails. It has

one extra slot, COMPONENTS, which is a list of all the faildescrips for its subtasks. See (McDermott 1991) for

more information.

1.4 Concurrency

The partially ordered plan is a commonplace in classical Al planning. However, all that is usually meant
by the partial order is that any compatible total order is allowed. With a real agent operating in a real
world, we have to allow for true concurrency. That’s because all actions take some time, and the agent may
want to engage in other activities while waiting for an action to finish. We control the concurrency using a
type of semaphore called a valve. Whenever two tasks should not execute simultaneously, we arrange that
they compete for a valve. The loser waits for the winner to finish and release it.

The entity that requests and waits for a valve is called a process. In a sense, every task is a process,
but it is convenient to single out a larger unit on which we confer the official process label. The construct
(PROCESS p -body-) binds variable p to a new process corresponding to the execution of body. Within this
task, a valve can be requested by executing (VALVE-REQUEST p v [f]), where p evaluates to a process, v

to a valve, and f to an optional fluent that will be explained later. If another process owns v, then the

2 I use #T and #F for Boolean true and false.

process p waits until the valve is available before proceeding. Valves become available upon execution of
(VALVE-RELEASE p v), which occurs implicitly when a process finishes.

RPL’s process structure is somewhat unusual. Processes are essentially just parts of the task network, so
they have the same hierarchical structure as tasks. When one process P1 creates another, it does so simply
by having a piece of itself be declared a new process P2. Hence P1 remains active while P2 is running. The
result is that any given task is actually part of a “stack” of active processes. (There is always at least one,
because the top task in the network is given a process when it starts.) The innermost process is the one
nearest to it in the stack, that is, the one most recently created. The current task may own several valves
in the name of various of its processes.

Valves are created using (CREATE-VALVE name b), where b is a boolean determining whether the valve is
preemptible, that is, whether one process can take it away from another. Actually, all valves are preemptible
by more urgent processes (those with lower priority numbers; see Section 1.5). In addition, the interpreter
will force a preemption when it detects a blockage cycle among processes (to be defined shortly) that can
be eliminated by transferring ownership of a valve from one process to another. A process can be notified
of such an event by using the optional fluent argument to VALVE-REQUEST, which is set to #T whenever the
process gains control of the valve, and set to #F whenever it loses it. (This protocol is observed until the
VALVE-RELEASE is executed that terminates this VALVE-REQUEST.)

A process is blocked when none of its active tasks can actually proceed. At any instant, there is a set
of threads of control for a process, each corresponding to an attempt to make progress on a subtask of that
process. The interpreter keeps a queue of enabled threads that are ready to run.3 Other threads are located
in various other places. For example, when a plan executes (WAIT-FOR fluent), and the fluent has value
#F, the plan suspends, and a thread to resume it is queued up on the fluent, waiting for it to become true.
Similarly, (WAIT-TIME inierval) causes a thread to be placed on a queue of threads waiting for time to pass.
(VALVE-REQUEST p valve), when the valve is in use, causes a thread to be put on a queue associated with
the valve. To avoid losing track of what a process is waiting for, the interpreter keeps track of all the threads
it currently has queued; these are called blockages. The process is blocked when all its threads are located
in blockages.

An important class of fluents are those that refer to events within the interpreter itself. (BEGIN-TASK t)
becomes true when t becomes active. (END-TASK t) becomes true whenever ¢ comes to an end (by finishing,
failing, or evaporating). Constraints on the ordering of plan steps are realized by causing one task to wait

for another to begin or end.

3 The details are, as usual, more complex. There are actually two queues, the queue EFABLED#* of enabled threads, and a
queue UNBLOCKED#* containing threads that need more careful analysis before they can be declared enabled.

even when the policy is blocked by using the construct (WITH-TASK-BLOCKED ¢ -body-). This construct
prevents any subtask of ¢ from running until the body is finished. Typically t will evaluate to the primary
task or one of its crucial subtasks. -

WITH-POLICY installs a policy that lasts for exactly the duration of another task. If you want to make
the scope narrower, you can use the policy creator

_ (SCOPE b e policy)
where b and e are fluents. The resulting policy is equivalent to policy, but lasts only from the moment
when b becomes true to the moment when e becomes true. Two useful fluent creators in this context are
(BEGIN-TASK t) and (END-TASK t).

Valves, policies, WAIT-FOR and WITH-TASK-BLOCKED can be used to make one process wait for another
that it could interfere with if allowed to run. There is also a global priority mechanism that allows more
urgent processes to interrupt less urgent ones, preempting valves if necessary. Executing (PRIORITY z
~body-) causes body to be executed with the priority z. So far I have had less use for this construct than I

expected; presumably it would be valuable in implementing plans for dealing with emergencies.

1.6 Protections and Violations

A protected state is a state of affairs that an agent needs to keep true over some interval (Sussman 1975).
Classical planning theory is focused largely on the issue of preventing potential protection violations, that
is, events that cause protected states to become false. As Firby points out (Firby 1989), a reactive plan
interpreter must have a more complex view of protection. If a protection is viewed as a run-time plan
annotation, then it must specify code to

1 Check periodically whether the protected state is still true
2 Take appropriate action when it becomes false.
RPL contains the PROTECTION construct to make this job easier (and to interface to the planner):
(PROTECTION [:RIGID | :HARD | :SOFT] prop f repair)
Here f is the fluent being protected. If it becomes false, then repair is executed. If it’s still false, then a
failure occurs.®

The prop argument to PROTECTION is an S-expression that summarizes the “content” of the proposition
being protected. This S-expression goes into a global list of active protections, so that other plans can see
what commitments they have to respect. The Lisp procedure (MATCH-PROTECTIONS patiern) searches this
list for protections with props matching pattern. It returns a list of association lists, one for each matching
prop. Each association list specifies a binding for the variables in pattern (indicated with a “?”). For
example, if a PROTECTION with prop (HOLDING !:DESIG20) is active, then (MATCH-PROTECTIONS ’ (HOLDING
7X)) will return the list (((X !:DESIG20))).

6 It should be of type protection-violation, but currently it's a generic failure.

There are two ways, therefore, that one process P; can wait for another P,. P, might own a valve that
P; has requested; or some task in P; might be waiting for the beginning or end of some task in P,.4 A
blockage cycle exists among a sequence of processes if each is blocked, and each is waiting for the next in one
of these two ways. The interpreter checks for such cycles whenever a process becomes blocked, by tracing
blockages. If it finds a cycle, and the cycle involves a preemptible valve, then the valve is given to the process
in the cycle that requested it.

It is not always proper for a process to relinquish control when it suspends waiting for some event. For
example, a low-level motor controller might have to wait a millisecond for an acknowledgement from the
outside world, and we don’t want its process to become blocked during that millisecond. All RPL constructs
that wait can take an explicit :KEEP-CONTROL flag to indicate that during the wait the process will not be

pre-empted in order to break a blockage cycle. See Section 4.2.

1.5 Policies and Priorities

Many plans are executed solely to constrain the execution of other pléns. Such a “secondary” plan is
called a policy (McDermott 1978). For example, a robot might go from one place to another, but adopt the
policy that if its gripper should ever become empty, that it must stop and pick up the object it dropped.
We indicate such a control structure by writing (WITH-POLICY s a), where s is a secondary action (e.g.,
“whenever the gripper becomes empty, regrasp the object”), and a is the primary action it constrains (e.g.,
“go to the destination”).

Policies are constraints, but we model them as ordinary plans, rather than trying to provide a separate
constraint language. The reason is simple: the same sorts of construct appear in policies as elsewhere.’ In a
WHENEVER such as that alluded to in the previous paragraph, we may well want to include sofne sequentiality
once the triggering event has been detected. We adopt the convention that the constraint is declared violated
if the policy should FAIL, in which case the whole WITH-POLICY task fails. If the primary action succeeds,
the policy evaporates and the WITH-POLICY task succeeds. Normally it is not necessary for policy tasks to
finish, and it is natural to think of a WHENEVER as lasting forever unless beset by evaporation. But we take
it to be harmless/for a policy to finish; the result is that the constraint just goes away.

There is a further necessary stipulation. For a policy to do its job of constraining the execution of its
primary task, it must be the case that the primary can never run unless the policy is blocked. Policies must
be written so that they normally are blocked. When they wake up, they are guaranteed that their primaries

remain blocked while they take action in response to events. A policy can prevent its primary from running

4 There are other ways, too, of course, such as P; waiting for an event in the world that, as it happens, only Py can cause,
but such dependencies are harder to detect.

5 Put another way: Plans already are constraints — constraints on the course of history (McDermott 1985).

Finally, the flag :RIGID, :HARD, or :SOFT is a note to the planner telling it how many violations of this
protection we expect. :RIGID means that any violation would be bad; repairs are expected to be expensive
or impossible; the planner should work hard to forestall violations. :HARD means that the planner should
try to forestall a violation, but the interpreter should be able to cope with one. :SOFT means that violations

are routine, and the planner should treat projected violations as normal events. (See Section 1.8.)

1.7 Perception

Suppose a RPL plan is to guide a robot in its manipulation of an object outside itself. If the object is
permanently connected to some sort of input/output port, then we can manipulate the object by routines
that send signals to, and receive signals from, that port. (See Section 2.4.) But if the object is only
intermittently encountered by the agent, then the agent has the problem of recognizing it on each encounter.
Solving this problem will require a different sensory process for each application. My topic here is how to
connect such solutions to RPL plans.

The standard scenario goes like this: The robot scans its environment with its sensors, and picks up
signals indicating the presence of some objects of interest. The signals tell the robot two sorts of things: what
the objects are like, and where they are in robot-centered coordinates. Now suppose the robot is looking
for a particular object, fitting a certain description, and expected to be in this vicinity. What it must do is
check whether there is a single candidate among the recently scanned objects that matches the description
given. If so, it can assume that the sought object and the present object are identical.

I have provided the following simple support for this idea. There is a datatype desig (for “designator”)
that represents a perceived or expected object. A desig is basically just a property list and a printed
representation. Plans can pass desigs to subroutines to tell them what objects to manipulate. If a desig has
the right kind of information on its property list, the manipulation will suceed. E.g., a plan to PICKUP a desig
must move the gripper to the coordinates stored on the desig’s property list, and then close the gripper.

If a desig does not contain the right kind of information, then a plan can invoke the strategy described
above for acquiring it. To wit: Scan the world for an object resembling the sought object. Arrange that
sensory operations return desigs representing the objects perceived. If a suitable candidate is found, apply
the operation EQUATE to the found desig and the expected desig. (EQUATE new old) links the two given
desigs. It declares new to be the “latest version” of old. Subsequent references to the property list of either
desig will start with the latest version and work backward chronologically until an entry is found. Hence if
the current pose of the object is stored on the new desig, that information will be attached to both the old

and new desigs.

This idea is due to Jim Firby. Consult (Firby 1989) for a more elaborate development.

1.8 Plan Projection and Transformation

A planner needs to be able to reason about plans in addition to executing them. This topic is treated
at greater length in (McDermott 1991), but a few words are appropriate here.

When a planner believes it has a good version of a plan, it can test that hypothesis by projecting the
plan (Wilensky 1983, Simmons 1988,Hanks 1990), that is, by “mentally executing” it to see if it succeeds
in achieving its goals. RPL supports this idea by being runnable in either real mode or projection mode. In
the latter mode, no actions are actually carried out. Instead, as simulated time passes, a timeline is built.
When projection is complete, a projection data structure is returned, which includes the timeline, the task

network, and bugs encountered, among other things. See Section 2.2 for a few more details.

2 Implementation

RPL is implemented as a Lisp program of about 6000 lines of code, on top of the Nisp (McDermott 1988)

macro package.

2.1 Internal Code Representation

When a RPL procedure is defined, its body is transformed into an internal form called “rpl-code.” This
is a tree of objects that correspond to the task network the procedure can generate, except that it is static.

As discussed in Section 1.2, nonprimitive tasks give rise to subtasks whose names depend on how their
actions were derived from the action of the supertask. For example, if task ¢ has action (SEQ a; a3 ... a,),
then it has n subtasks, the i’th having action a; and name (SUB STEP i t). The list (STEP i) is called the
name prefiz of the subtask.

In rpl-code trees, the same name-prefix system is used, except that even iterative constructs like LOOP
have only a finite number of subcodes. The code for (LOOP -body-) will have a single subcode for the body.
This subcode will have the name prefix (ITER *), which will be used to generate subtasks with name prefixes
(ITER 1), (ITER 2), etc. The interpreter does not have to reparse each code action, because the subcode
structure already captures how the task is to be broken into subtasks. The code is ‘cleaned up in various
other ways as well, most notably:

1 All macros are expanded away.
2 Tags are -collected and their definitions stored in “tag tables” at the appropriate levels in the rpl-code
tree. (See below.)

To refer to a chain of SUB relationships, it is often convenient to write (PATH-SUB path t), where path is
a list of name prefixes, as in (PATE-SUB ((STEP 3) (ITER 1)) TASK101), which abbreviates (SUB STEP 3
(SUB ITER 1 TASK101)). (The name prefixes are (STEP 3) and (ITER 1).) Normally, long chains of name
prefixes are a dangerous way to refer to a particular task, since transforming the plan will change what the
chain refers to. Tags enable you to skip over segments of such a chain. (TAGGED ! t) finds the subtask of ¢
tagged with label /. Tags can be used in paths, by treating (TAGGED /) as a name prefix.

10

SUB and PATH-SUB are Lisp macros that do not evaluate their first arguments. They are most useful as
explicit parts of plans. When writing a Lisp program to manipulate a plan, the procedure (PATH-PLACE-SUB
path task), which evaluates both its arguments, is often more useful. (TASK-NAME-PATH T') takes a task
argument and returns the name-prefix path for it, in order from lowest to highest. This is often more useful
than a pointer to the task itself, because it remains invariant from one execution of the plan to the next.
TASK-NAME-PATH returns paths containing TAGGED wherever it can.

However, there are occasions when you need to refer to subtasks by explicit name prefix. The standard
examples are the use of (ITER i) to refer to the i’th subtask of a LOOP (and similarly for other iterative
constructs); and the use of (PROC-BODY) to refer to the body of a called procedure. See Section 4.4 for a
table of all subtask name prefixes.

Tags are implemented by giving each rpl-code object a TAGTAB slot, which maps tags bound in it to
task-name paths. When an expression of the form (TAGGED ...) is evaluated, the path is followed and the

task at the end of it is returned, after being created if it does not already exist.

2.2 The Controller

RPL is designed to be a language for a programmable robot controller. Currently the controller is run as
a Lisp process, although in the long run it would be desirable to compile it to run on a lower-level dedicated
operating system (Stewart et al. 1990, Hendler and Agrawala 1990).

A RPL plan is run by creating a new top-level task and putting a thread of control to interpret it on
the agenda managed by the control process. The Lisp procedure (CONTROL-INTERP plan) does all this for
you (starting the process if it is not currently active, and evaporating any previously sent plan). During
debugging, it is sometimes more convenient to execute (INTERP-RUN plan) to start RPL’s controller and
let it work on plan. However, there are cases where INTERP-RUN returns before everything it started has
concluded. Calling (RUN) will let the agenda manager run a little more, emptying out queues.

There is a similar procedure (PROJECT-RUN plan) that runs the interpreter in projection mode. (Sec-
tion 1.8) It returns a projection, a data structure including a timeline, a task network, and a record of
bugs found. The user should never call PROJECT-RUN directly, because it depends on a few global variable
bindings that I’'m not telling you about. Instead, call (PROJECT plan), which returns a “lazy list” (McDer-
mott 1988) of projections, each obtained by calling PROJECT-RUN. A planner can ask for as many elements of
this list as it has time to contemplate, and the projector will keep generating them, in Monte Carlo fashion.
Of course, when you call PROJECT, you have to have provided mechanisms for projecting low-level actions.
That is, you have to tell it how to project an arm movement without actually moving the robot’s arm. See
McDermott 1991 for that and other details.

The controller’s behavior is influenced by the settings of the following dynamic Lisp variables (most of

which are not user-settable):

11

CONTROL-PROCESS* The Lisp process running the controller.

PROJECTING* Normally #F. Bound to #T when the interpreter is running in projection mode.
See Section 1.8.

SUBPROCESSES-BLOCK# If #T (the default), then when a subprocess takes a valve from a superprocess,
the superprocess can no longer run. If #F, then subprocesses do not block
their superprocesses. (User-settable)

AGENT-REPORT* If non-#F, must be bound to a function of two arguments, a task and an
outcome (either a faildescrip or the value it returned when it finished). The
projector binds this to a procedure that adds to its bug list. (User-settable)

SUBTASKS-GC#* If #T, then when a task is finished (or evaporated or failed), pointers from it
to its subtasks are dropped, allowing their storage to be reclaimed. Bound to
#F in the projector, so that entire task networks persist until the projection
is concluded. (User-settable)

CURRENT-TIME* Bound to a procedure of no arguments that returns the current time in sec-
‘ onds from some zero point. The system rebinds it inside the projector to a
procedure that returns the duration of the timeline so far.

SENSE-QUEUE* A queue of events set up by the SENSORY-INPUT macro. (See Section 2.4.)

PENDING*
UNBLOCKED=*
ENABLED# Internal interpreter thread queues. Rebound by projector.

CONTROLLER-RUNS-FOREVER# If #T, the controller sleeps when there is nothing for it to do. This is reasonable
behavior when the interpreter is running as a separate process. If it’s #F, the
controller quits when there is nothing for it to do.

NEXT-TIME* The next time something interesting is scheduled to happen, or #F if nothing
is. Rebound by the projector, or any other incarnation of the interpreter.

2.3 Lisp and RPL

Any Lisp procedure can be called from RPL. The arguments to a Lisp function must be RPL expressions
(not commands).

Some Lisp procedures have different definitions in RPL. E.g., NOT checks its argument to see if it’s a
fluent and if so returns a new fluent. There are analogous definitions for AND, OR, >, <, >=, =<, EQ, +, and -.
In each case, the system tries hard to “uniquify” the new fluent. That is, if there is already a fluent produced
from (+ I 1), a later evaluation of this expression will return the same fluent again. In general, you should
never try to SETF the value of a derived fluent, except for the derived fluents (NOT f) and (- f). Setting
one of them will set f to the proper inverse value. E.g., setting the value of (NOT 4) to #T will set A to #F.

These fluent constructors are available from inside Lisp, but are not currently documented.

12

2.4 Running and Connecting RPL

At some point RPL code must bottom out in links to the outside world, in the form of effector commands
and sensor readings. Effector commands should be implemented as nonblocking Lisp programs that send
signals to output ports. Sensor readings are a little more complex. Suppose an input port can cause a
hardware or software interrupt. We need to arrange to bring that to the attention of the CONTROL-PROCESS*.
We do that by supplying a Lisp program that handles the low-level interrupt, and executes

(SENSORY-INPUT -Lisp-code-).

The effect is to cause Lisp-code to be executed inside the control process on its next cycle. The Lisp code
will typically set the value of one or more fluents. IMPORTANT: Do not use set the value of a fluent outside
the control process, except inside the body of a SENSORY-INPUT. If a RPL thread is waiting for a fluent to
get a value, setting its value will cause an attempt to run that thread, which only the control process should

do. This stricture applies to SET-VALUE, (SETF (FLUENT-VALUE ...) ...), CONCLUDE, and PULSE.

3 Examples

This section presents a few fragments from an evolving system for planning in a simulated robot world.
The plans make use of interface code written in Nisp (McDermott 1988), a portable macro package with
compile-time typing. Nisp looks like Common Lisp, with a few oddities:

e Variables are declared when bound. A type declaration is a hyphen followed by a type designator. Type
designators are either type names (in lower case, by convention), or more complex constructs such as
(LST t), which refers to the type of lists of objects of type t. When a list is used as a record, with fixed
fields, it is of type (LRCD ¢; t5 ... t,), where the t; are the types of the fields.

¢ DEFFUNC and DEFPROC are used to define Nisp procedures (without and wide side-effects, respectively).
The result type of the defined procedure appears after the procedure’s name, preceded by a hyphen.

e If z is declared to be of type t, the expression (!_slot z) refers to the given slot of it. The syntax
1>z . slot is also permitted. .

e A new object of type ¢ is made by executing (MAKE ¢ -args-).

¢ The macro != is a synonym for SETF, except that any occurrence of *—* on the right-hand side is replaced
by a copy of the left-hand side.

e In the examples, occurrences of A were actually typed in as \\. (X ...) is an abbreviation for (FUNCTION
(LAMBDA ...)).)

e The macros <#, <!, <&, and <V are abbreviations of MAPCAR, MAPCAN, EVERY, and SOME, except that their
first arguments do not have to have FUNCTION wrapped around them. The macro (<? pred list) collects
all the elements .of list that satisfy pred. The macro (</ f i 1) is an abbreviation for (REDUCE #° i
¢:INITIAL-VALUE 7).

¢ The booleans are #T and #F. We avoid using NIL, which is usually better written as *() or *#F. The
constant T is used only to mean “else” in CONDs

¢ An expression of type (~ 1) is either of type ¢ or is identically #F.

A few words about the robot’s world. The robot moves around on a grid of locations. At each location,
it can call (LOOK-FOR-PROPS property-list) to run its “vision system.” After a delay, the system will report
back by pulsing the fluent VISUAL-INPUT* (setting it to #T for an instant), and putting into 0B-POSITIONS*

a list of local coordinates of objects matching the property-list. There are similar actions for inspecting an

13

object at a particular local coordinate, moving a hand to a local coordinate, closing or opening a hand, and
so forth.

The robot moves by executing (0BJ-START-MOVING ROBOT* v z y), where v is the speed, and (z, y) is
either (1,0), (0,1), (—1,0), or (0,—1). When the move is complete, the fluent ROBOT-MOVED* is pulsed.

Here are some plans for finding an object:

(DEF-INTERP-PROC LOOK-FOR (PL)
(LOOK-FOR-PROPS PL)
(WAIT-FOR VISUAL-INPUT*)
(SEEN-0B-DESIGS PL))

; Returns a list of desigs (Section 1.7), one for every object seen.
(DEFFUNC SEEN-O0B-DESIGS - (LST desig) (PL - (LST (LRCD symbol obj)))
(FOR (I IN OB-POSITIONS*)
(SAVE (CREATE-DESIG "Perceived object"
; Desig will print like: !:|Perceived object203]
(CONs (LIST ’LOC I)
(<# (X (X) (LIST (CAR X) (CADR X)))
PL))
; Destig property list
NN

; Like LOOK-FOR, but return just one
(DEF-INTERP-PROC LOOK-FOR-ONE (PL)
(LET* ((L (LOOK-FOR PL)))
(IF (JUST-ONE L) (CAR L) (FAIL) »N)
; (It really should return a faildescrip describing “perceptual confusion. ?)

At a higher level, the robot needs plans for finding and transporting objects. An important construct

is (AT-LOCATION z y -body-), which goes to z,y on the map, then remains there while it carries out body.

(DEF-INTERP-MACRO (AT-LOCATION ?X ?Y . ?BODY)
(LET (BODTAG - symbol)
(COND ((MATCHQ ((:TAG ?BODTAG . ?())) BODY)
('= BODY (CAR #-%)))
(T
(!'= BODTAG (SYMBOL ACTIVITY-THERE (++ ACTIVITY-NO%*)))
('= BODY ‘(:TAG ,BODTAG ,(IMPLICIT-SEQ BODY)))))
i Most of the hair is just to set up a tag for the body, to be used by WITH-TASK-BLOCKED:
‘(LET ((DEST-X ,X) (DEST-Y ,Y))
(GO DEST-X DEST-Y)
(WITH-POLICY (LOOP
(WAIT-WITH-TIMEOUT ROBOT-MOVED* 60 :ALLOW-INTERRUPTS)
. (WITH-TASK-BLOCKED ,BODTAG (GO-NEAR DEST-X DEST-Y 2)))
,BODY))))

14

The construct (SYMBOL ACTIVITY-THERE (++ ACTIVITY-NO*)) creates a new symbol, with name ACTIVITY-
THEREk, where k is obtained by incrementing a global counter ACTIVITY-NO*. Half the code of the macro is
Just to wrap a :TAG around the body so it may be blocked by the policy using WITH-TASK-BLOCKED.

An example will perhaps be clearer:

(AT-LOCATION (+ U 1) (- V 1)
(ACQUIRE D33))

expands into

(LET ((DEST-X (+ U 1))
(DEST-Y (- V 1)))
(GO DEST-X DEST-Y)
(WITH-POLICY (LOOP
(WAIT-WITH-TIMEOUT ROBOT-MOVED* 60 :ALLOW-INTERRUPTS)
(WITH-TASK-BLOCKED ACTIVITY-THERE666
(GO-NEAR DEST-X DEST-Y 2)))
(:TAG ACTIVITY-THERE666 (ACQUIRE D33))))

GO takes the robot to a destination; GO-NEAR does, too, but only to within a tolerance. Hence if the ACQUIRE
does not succeed right away, and starts to move the robot away from ((+ U 1),(- V 1)), the policy v'vill
bring it back.

ACQUIRE takes a desig as argument, and finds it in the world. It searches until it finds an object that
resembles the one sought, and equates the desigs for the two. The desig for the object just found will have

enough information to enable the robot to manipulate it.

(DEF-INTERP-PROC ACQUIRE (OB)
(LET ((PL (PERCEPTUAL-PROPS OB)))
(WITH-POLICY ‘
; Move through grid systematically, delaying
; between moves to allow activity to take place:
(EXPLORE)
; FIND is like LOOK-FOR, but it keeps
; looking until it finds something:
(LET* ((DOPPEL (FIND PL)))
(IF (JUST-ONE DOPPEL)
(EQUATE (CAR DOPPEL) OB)
(FAIL))))))

;3 Return the visible properties of an object.
(DEFFUNC PERCEPTUAL-PROPS - (LST (LRCD symbol obj)) (OB - desig)
(<? (X (P) (MEMQ (CAR P) ’(CATEGORY COLOR TEXTURE FINISH)))
(!_PROPS 0B)))

15

The next plan gets an object into a hand:

(DEF-INTERP-PROC ACHIEVE-IN-HARD (OB HAND)
; First, check to see if you believe the object is already there:
(IF (NOT (OBJ-IN-HAND OB HAND))
(SEQ
; If not, find it and pick it up
(ACQUIRE 0B)
(IF (NOT (EMPTY HAND))
(UNHAND HAND))
(PICKUP OB HAND))))

Finally I present the plan for transporting an object from one place to another. It’s a longer plan,
and shows more of the flavor of the language than the smaller examples. The idea is to pick the object up
(step TAKE-IT), then go to the destination and release it (step RELEASE-IT). However, the object might be
dropped along the way (possibly because of interrupts to handle other tasks). Should this occur, the robot
is to remember where it was when the object was dropped, and go back and get it when it has a chance.
Typically its next chance will be when it gets control of the valve WHEELS* again. This valve controls which

plan gets to steer the robot somewhere, and must be requested by any plan that needs to do that.

(DEF-INTERP-PROC TRANSPORT (OB X1 Y1 X2 Y2)
(LET ((HAKD ’#F)
(DROPPED-IT (STATE ‘(DROPPED ,0B)))
(DROP-X 0) (DROP-Y 0))
(WITH-POLICY (SCOPE (END-TASK TAKE-IT)
(BEGIN-TASK LET-GO)
(WHENEVER (NOT DROPPED-IT)
(SEQ (WAIT-FOR (EMPTY HAND))
; This part is executed outside the
; WITH-VALVE, so it does not have to
; wait for WHEELS* to be free
(!= < DROP-X DROP-Y >
(COORDS-HERE)) _
(CONCLUDE DROPPED-IT))))
(WITH-VALVE WHEELS*

(PLAN ((:TAG CARRIER
) ; The core of the plan is here:
(SEQ (:TAG TAKE-IT
(AT-LOCATION X1 Y1
(SEQ (!'= HAND (FREE-HAND))
(CONCLUDE (IN-USE HAKD))

(ACHIEVE-IN-HAND OB HAND))))
(:TAG RELEASE-IT

(AT-LOCATION X2 Y2
(SEQ
(:TAG LET-GO (UNHAND HAND))
(CONCLUDE (NOT (IN-USE HAND)))))))))

16

(SCOPE (END-TASK TAKE-IT)
(BEGIN-TASK LET-GO)
(PROTECTION :HARD
‘(TAKING ,0B)
; What gets protected is the negation of
; the DROPPED-IT fluent, set to #F above
(NOT DROPPED-IT)
; Make sure the main plan waits for
; the repair to finish:
(WITH-TASK-BLOCKED CARRIER
; You don’t have to use the same hand
; after dropping the object:
(!= HAND (FREE-HAND))
(CONCLUDE (IN-USE HAND))
(AT-LOCATION DROP-X DROP-Y
(ACHIEVE-IN-HAND OB HAND))
; Make sure the repair resets the
; fluent value:
(CONCLUDE (NOT DROPPED-IT))))))))))

4 A RPL Manual

4.1 Macros

RPL macros can be defined using (DEF-INTERP-MACRO patiern —body-). The body is a piece of Lisp
code that explains what to transform patiern to when it occurs in RPL. The patiern should start with an

atom, and have variable parts marked with question marks. E.g., here is the definition of TEST:

(DEF-INTERP-MACRO (TEST ?TEST ?IFTRUE ?IFFALSE)
‘(LET* ((TEST-OUTCOME ,TEST))
(IF TEST-OUTCOME ,IFTRUE ,IFFALSE)))

Macros are expanded out of plans when they are handed to the cpu manager. They are expanded out

of procedure bodies when the procedures are defined. Hence code walkers should expect never to see them.

4.2 RPL Commands

(t= v ¢): Execute ¢, and set plan variable v to the result. To set multiple values, write
(l=<wv; ... v, >¢).
If a fluent occurs on the left-hand side of a !=, then its value is set. So if I is bound to a fluent, (!=
I (+ I 1)) setsI‘svalue to the valueof (+ I 1), which is itself a fluent.
(ESTABLISE-CONTEXT p m b e): Do b. If fluent p becomes false, do m to make it true again. If m fails or
doesn’t make p true, evaporate b and do e. If p is false ihitially, do m first, and if it fail or doesn’t

make p true, just do e.

17

(FAIL [|:KEEP-PROJECTING] [fd | [|:IMPOSSIBLE|:BACKTRACKING] ,
[l :CLASS fail-class-name] --args-—-]):

Fail, transmitting a failure description to supertasks. Most of them will just fail themselves and pass
the description along. Some will attempt alternative strategies. If a single argument fd is provided,
it is assumed to be a failure description. Otherwise, a failure description is built with the material
provided. If :CLASS c is present, then a call to MAKE-INSTANCE is generated that takes the subsequent
args as arguments. Otherwise, the args are used to make a generic faildescrip. If there are no args at
all, a faildescrip with DESCRIP=GENERIC is produced.

The three flags : KEEP-PROJECTING, : IMPOSSIBLE, and : BACKTRACKING are handled specially. The last
two are turned into :SEVERITY arguments, of values 10 and 0 respectively, for the faildescrip builder.
The :KEEP-PROJECTING argument causes the failure to be handled specially if the RPL interpreter is
running in projection mode. In this mode, AGENT-REPORT* will be called immediately (see TOP-LEVEL,
below), but execution will continue. The intent is to report the failure, but see if worse problems will
follow, even assuming that this one is repaired.

(FILTER p -body-): Do body but if p (a fluent) becomes false, evaporate.

(IF p a1 az): Evaluate p. If true, do ay, else a;. (If p evaluates to a fluent, test its value.)

(LET ((z; €1) ... (zk €r)) c1 ... cn): Thee; are expressions, not commands. They are evaluated, then
the z; are bound to the results. z; is either a single variable, or a segment of the form < v; ... v, >,
which binds the v; to multiple values returned as e;. Once the z; are bound, the ¢y, ..., ¢, are executed
in order as subcommands. (Just as if they appeared in a SEQ, with identical name-prefix conventions.)

(LET* ((x1 ¢1) ... (k Ck)) Cky1 ... Cn): C1,...,cn are executed in order as subcommands. (Just as
if they appeared in a SEQ, with identical name-prefix conventions.) However, the variable bindings
during the execution of each c¢; are augmented by binding the preceding z,,...,z;—; appropriately.
z; is either a single variable, or a segment of the form < v, ... vi; >, which binds the v; to multiple
values returned as e;.

(LOOP -body-): Do actions in body in sequence, then repeat. The body may contain tests of the form
WHILE e
UNTIL e
If e evaluates to the right boolean value, the loop exits.

The atom NEXT-ITERATION in the body indicates that the next iteration should begin at that point,
concurrently with the rest of the current iteration. (Cf. Lyons 1990a.) When a WHILE or UNTIL test
causes the loop to end on some iteration, all concurrent iterations evaporate.

(NO-0P): Succeed. That is, do nothing.

(N-TIMES n -loop-body-): Like LOOP, but quits after n iterations if no other test has caused it to exit.

(PAR a; a3 ... ay): Do actions in parallel. Succeed if they all succeed; fail if one fails.

18

(PARTIAL-ORDER (-steps—) -orderings-): Do the steps in parallel, as in PAR, except as constrained by the
orderings, each of the form (:ORDER s; s;). Each s; and s2 must evaluate to a descendant (in the
subtask hierarchy) of the PARTIAL-ORDER task. |

(PERIODICALLY ¢ [| :KEEP-CONTROL | :ALLOW-INTERRUPTS] a): Do a every t seconds. More precisely,
every t seconds begin a new occurrence of a, whether or not the previous one has finished. The :KEEP-
CONTROL/ : ALLOW-INTERRUPTS flag determines whether the thread blocks between occurrences of a.
(See WAIT-FOR.)

(PLAN (-steps—) -constraints-): A macro that combines WITH-POLICY, PARTIAL-ORDER, and REDUCTION.
Each constraint is either of the form (:ORDER s; s,), or of the form (: REDUCTION reducees r [tagl),
or is a command. The first form gives rise to PARTIAL-ORDER orderings; the second form gives rise to
REDUCTIONs; and the third gives rise to policies. Except as constrained, the steps are simply executed
in parallel. '

(PRIORITY n -body-): Execute body with priority n. Lower numbers are more urgent. “Normal” priority
is 10. Top priority is 1.

(PROCESS v -body-): Create a new process and bind v to it. Execute body inside that process, then flush
the process and the binding of v.

(PROTECTION [:RIGID | :HARD | :SOFT] prop f repair): Whenever fluent f becomes false, then execute
repair. If it’s still false after that, FAIL. The prop is an S-expression that is accessible using MATCH-
PROTECTIONS. The first argument to PROTECTION is a flag for the planner. See Section 1.6.

(PURSUE a; a3 ... a,): Do actions in parallel. Succeed if one succeeds (the others evaporate); fail if one
fails.

(REDUCE cmd method [tagl): Do cmd by doing method. Equivalent to method, but serves as an annotation
to the planner that the intent is to do cmd. Actually sets up a subtask for ¢md, but hangs a reducing
subtask off it with action method. The tag (default: #F) serves to pick out this reduction in the name
prefix for the reducing subtask.

(REDUCTION cmd reducees r [tagl): The cmd is executed, but with the subtasks specified by reducees
reduced to a new task with action r. (The reducees must evaluate to a list of descendants of this task.)
The tag (default: #F) serves to pick out this reduction in the name prefix for the reducing subtask.
When the interpreter has begun all of the reducees, it then begins the reducing task, with action r.
When this task finishes, each of the reducees finishes, too (in the same way, through completion, failure,
or evaporation). A task may be reduced in more than one way; the alternative ways act as if they
were executed combined in a PURSUE — when one succeeds or fails, the others evaporate.

(SCOPE b e p): Defined by macro to be exactly equivalent to:

(SEQ (WAIT-FOR b)
(PAR (WAIT-FOR e)
P))

19

It can succeed or fail only if b is true or becomes true. After that, it succeeds if and only if p succeeds
or e is true or becomes true before p fails. In the usual case, p is “policy-like,” that is, either fails or
goes on forever, and the SCOPE construct allows p to constrain only the interval from when b becomes
true to when e becomes true.

(SEQ a; ay ... a,): Do each action in order.

(:TAG ! a): This is not an executable form. It’s equivalent to a, but if it occurs in a top-level plan or
procedure body, then ! (a symbol) will be bound to the task for a at the highest level in the text where
there is a single task for a, i.e., the highest noniterative context, or the whole text.

(TEST p a; az): Execute p, then use value as in IF.

(TOP-LEVEL a; a3 ... ap): Do the actions in parallel. Succeed when each has failed or succeeded. When
one fails, however, if the value of the Lisp variable AGERT-REPORT#* is non-#F, then it is a procedure
which is called with two arguments: the task for the a; that failed, and a description of the failure as
generated by the FAIL that initiated it. AGENT-REPORT* is also called when one of the a; succeeds. In
this case, the second argument is the value of a;.

(TRY-ALL a@; a3 ... a,): Do actions in parallel. Succeed if one succeeds (the others evaporate); fail if all
fail. The failure description in this case will be a composite-failure whose COMPONENTS is a list of
all the nontrivial faildescrips for the subtasks.

(TRY-IN-ORDER a; a3 ... a,): Try a;. If it fails, try a,, etc. Succeed when one succeeds; fail if they all
fail. The faildescrip is as for TRY-ALL.

(TRY-ONE (c; a1) ... (eny an)): Evaluate ¢’s. Pick randomly from those that come up true and do the
corresponding action a;. If none true, fail. The default action can have ¢ = ELSE.

A Firbyesque RAP (Firby 1989) can be defined thus (roughly);

(DEF-INTERP-PROC RAP (...)
(N-TIMES 2
UNTIL success
(TRY-ONE -tests and methods-)))

(VALUES €; €2 ... e;): Evaluates the e; and returns the resulting values. These can be intercepted by
using multiple variables in != and LET*.

(VALVE-RELEASE p v): Declare that process p no longer owns valve v. If p is #F, the innermost process at
the point of execution releases the valve. VALVE-REQUEST/VALVE-RELEASE pairs must match up. If the
same process requests a valve twice, it must be released twice. When the process ends, however, an
unconditional release of all its valves occurs.

(VALVE-REQUEST p v [f]): Process p seizes valve v, or waits if another process already has it. If p is #F,

then the innermost process at the point of execution makes the request. If f is present and non-#F,

20

then it is a fluent that is set to #F whenever p loses control of v through pre-emption before it is
officially released.

(WAIT-FOR p [| :KEEP-CONTROL | V:ALLOU—INTERRUPTS]): p should evaluate to a fluent. Wait until p be-
comes true. If :KEEP-CONTROL is present, then the waiting is “active.” That is, while this thread is
waiting it still keeps control (as if it were implemented by virtual threads). If : ALLOW-INTERRUPTS is
present, or there is no flag, then the WAIT-FOR thread is considered blocked. If all a processes’ threads
block, it is a candidate for pre-emption. If p is true initially, then no interruption occurs, even for an
instant.

(WAIT-TIME ¢ [| :KEEP-CONTROL | :ALLOW-INTERRUPTS]): Wait for ¢ seconds. The :KEEP-CONTROL/~
:ALLOW-INTERRUPTS flag behaves as for WAIT-FOR.

(WAIT-WITH-TIMEOUT p ¢ [| :KEEP-CONTROL | :ALLOW-INTERRUPTS]): A combination of WAIT-FOR and
WAIT-TIME. Proceeds as soon as p is true or ¢ seconds have passed. The :KEEP-CONTROL/:ALLOW-
INTERRUPTS flag behaves as for WAIT-FOR.

(WHENEVER p [| :KEEP-CONTROL | :ALLOW-INTERRUPTS] ~body-): Do body once for every time p goes from
false to true (including once if it’s true when the WHENEVER starts). The :KEEP-CONTROL/:ALLOW-
INTERRUPTS flag determines whether the thread blocks between occasions when p is true. WHENEVER
never finishes, so it should be used a top-level monitor, or used inside a context that can evaporate,
such as a WITH-POLICY.

(WITH-POLICY p -body-): Do body, but also do p, never allowing body to run unless p is blocked. Fail if
either body or p fails; succeed if body succeeds.

(WITH-TASK-BLOCKED t -body-): Do body, making task ¢ and all its subtasks wait until body is done.

(WITH-VALVE v -body-): Create a new process with a task to execute body. This process will request v, and

hence own it during the execution of body.

4.3 Useful Lisp Functions

The following Lisp functions are especially useful in RPL plans:

(BEGIN-TASK t): A Boolean fluent that gets value #T when task ¢ becomes active.

(CEANGED-FLUENT f compare-fcn): A fluent that is momentarily set to #T (as if PULSEd) whenever the value
of fluent f changes. The compare-fcn is an equality tester that is used to tell whether the value has
changed.

(CONCLUDE f): Short for (SETF (FLUENT-VALUE) #7).

(CREATE-DESIG string property-pairs): Create a new desig, which will print thus: !:stringK, where K is
an identifying numerical tag.

(CREATE-FLUENT pat v): Create a new fluent, with initial value v. The pat is for mnemonic purposes in

printing the fluent.

21

(CREATE-VALVE name pj: Create a new valve, pre-emptible if p =#T.

(DBG-FORMAT s control —args-): Just like Common Lisp’s FORMAT for producing output to stream s. How-
ever, the output is suppressed during a run unless the global variable INTERP-DBG# is #T. It’s suppressed
during projection unless the variable PROJECT-DBG* is #T.

(DESIG-GET d p): Retrieve the value of property p from the property list of desig d. The search starts
with the latest version of d, and, if no entry is found on the property list there, continues with earlier
versions. If no entry is found for any version, then #F is returned. (SETF (DESIG-GET d ...) ...)
alters the property list of the latest version of d.

(DRIVE f e): Connect fluent f to fluent e so that from now on the value of f tracks the value of e. Note
the difference between (DRIVE f e) and (!= f e). The latter transfers the current value of e to f.
DRIVE links the two together so that future changes to e are transmitted to f. (This locution is lifted
from Gat 1991.)

(FLUENT-VALUE f): The value stored in fluent f. Changeable using SETF.

(END-TASK t): A Boolean fluent that gets value #T when task ¢ becomes finished, evaporated, or failed.

(EQUATE new-desig old-desig): Make new-desig be the most recent version of old-desig. All later requests
for properties of old-desig or its earlier versions will start with the property list of new-desig and work
its way back.

(MATCH-PROTECTIONS pattern): Scan list of currently active PROTECTION tasks for one with a prop matching
pattern. Return a list of association lists, one for each match found. The entries in the list specify the
values for variables in pattern.

(PATH-SUB ‘(-name-prefizes-) task): The syntactic sub-sub-.. -task of task arrived at by using the elements
of (name-prefizes) in reverse order.

(PULSE fluent): Set fluent to #T and then immediately to #F. Any thread waiting for fluent to be true will
be triggered.

(SET-VALUE f v): Sets value of fluent f to v. Equivalent to (SETF (FLUENT-VALUE f) v). In RPL code,
this can be abbreviated (!= f v), but not within Lisp code, where != is Jjust an abbreviation for SETF.

(SETF f e): Change the value of expression f to the value of expression e (not a RPL command). Currently
J must be an expression, not a plan variable; using SETF on a symbol will set the global Lisp value of
that symbol, not its local RPL value.

(STATE pat): Short for (CREATE-FLUENT pat ’#F).

(SUB -name-prefiz— task): The syntactic subtask of task with the given name-prefiz. Only the task argument
is evaluated. (It typically is the label of a :TAG, which is bound to the task so tagged.)

(TAGGED label task): The sub-.. -task of task :TAGged with the given label.

22

4.4 Subtask Naming Conventions

This section contains a list of all subtask name prefixes. In the following table, if a construct says it is
“Defined by macro,” that means its subtasks’ names depend on how the macro expands. It is a good idea
to use tags to avoid having to know what the macro expansions are.

If a construct has a —body- in the listing of Section 4.2, then there will be exactly one subtask corre-
sponding to the sequence body. If it has more than one element, then a SEQ is wrapped around it internally,
and an extra layer of (STEP ¢) name prefixes will be needed to get at the subtasks.

(REDUCE cmd ...) and (REDUCTION cmd ...) have just one subtask, corresponding to the cmd argu-
ment, with name prefix (DOIT). However, they set up task reductions for the cmd task or a group of its
subtasks. If R is a reducing subtask of T, then it may be referred to as if it were a syntactic subtask of
T with name prefix (REDUCTION [tag]), where the fag is obtained from the corresponding REDUCTION or

REDUCE command. The tag is optional if no ambiguity is possible, i.e., if T' has Jjust one reduction.

Command

I=
ESTABLISH-CONTEXT
FAIL

Subtask Name Prefizes

(SETTER-VAL)
Defined by macro
No subtasks

FILTER (FILTER-DO)

IF (IF-ARM TRUE), (IF-ARM FALSE)
RPL-procedure body (PROC-BODY)

LET) (STEP 1)

LET* (STEP i)

LOOP (ITER i)

Loop body (STEP j)

NO-OP No subtasks
N-TIMES As for LOOP

PAR (BRANCH 1)
PARTIAL-ORDER (STEPNODE :)
PERIODICALLY (occ i)

PLAN Defined by macro
PRIORITY (REPRIORITIZED)
PROCESS (PROCESS-BODY)
PROTECTION Defined by macro
PURSUE (PURSUIT 3)
REDUCE (DOIT)

REDUCTION (DOIT)

Reduced task (REDUCTION [tag])
SCOPE Defined by macro
SEQ (STEP 1)

TEST Defined as a macro
TOP-LEVEL (COMMAND i)
TRY-ALL (ALT i)
TRY-IN-ORDER (ATTEMPT)
TRY-ONE (CLAUSE 1)
VALUES No subtasks

VALVE-RELEASE
VALVE-REQUEST
WAIT-FOR

No subtasks
No subtasks
No subtasks

23

