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Abstract

This article describes the formulation and implementation of the finite element
method on a data parallel computing system, such as the Connection Machine® sys-
tem. Data structures, storage requirements, communication and paralle] arithmetic
complexity are analyzed in detail for the cases when a processor is assigned to a
finite element, and when a processor is assigned to a nodal point per element. Data
parallel algorithms for grid generation, evaluation of the elemental stiffness matri-
ces, and for the iterative solution of the linear system are presented. An algorithm
for computing the elemental stiffness matrices concurrently, as well as computing
the matrix elements of a single elemental stiffness matrix concurrently without com-
munication is presented. A conjugate gradient solver with diagonal pre—conditioner
is used for the solution of the linear system. Results from an implementation of the
finite element method in three dimensions based on iso-parametric brick elements
are also presented. For single-precision floating-point operations the measured
peak performance is in the range 1.1 — 1.8 Gflops s~! for evaluating the elemental
stiffness matrices and 0.5 — 0.7 Gflops s™? for the conjugate gradient solver. The
time per conjugate gradient iteration for an application with ~ 400,000 degrees
of freedom is approximately 1.25 s for double—precision (software) floating—point
operations. With hardware support for double—precision floating—point operations,
the time per conjugate gradient iteration for a finite element with with ~ 400,000
degrees of freedom is projected to be ~ 0.15 s.

1 Introduction

The finite element method is frequently used for solving boundary and initial value prob-
lems that arise in stress analysis in computational solid mechanics. The finite element
method is also used in the analysis of flow of viscous fluids and steady-state field prob-
lems such as heat conduction, lubrication of bearings, seepage through porous media,
and electro-magnetic field problems. Data sets associated with scientific and engineer-
ing simulations are often very large. Consequently, there is a need for supercomputing.
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All current supercomputers are parallel architectures, and future supercomputers are
expected to have a large number of memory modules and processing units. Orders
of magnitude increased performance can no longer be achieved by improvements of
currently known technologies. The Connection Machine system offers supercomputer
performance, and has many characteristics that are expected in supercomputers with a
performance orders of magnitude higher than what is currently available. Thousands
to tens of thousands of operations can be performed concurrently. Architectures of this
kind are often referred to as data parallel to emphasize the massive parallelism, and
distinguish the architectures from control parallel architectures, which usually offer a
considerably lower degree of concurrency.

Almost all the existing general-purpose finite element programs have been developed
for sequential machines. It is necessary to re—evaluate the choice of data structures and
algorithms for data parallel computers. Important issues are load balance and data
motion across processors. In the data parallel formulation of the finite element method
presented in this article, the total storage requirement as well as storage requirement
per processor, processor utilization, computational and data motion requirements, uni-
formity of operations across the data structure, higher level programming primitives,
and programming complexity are considered.

Two model applications with a domain that can be mapped into a parallelepiped
are presented. The domain is subdivided into finite elements in the form of bricks, all
of the same order. The model problems are suitable for investigating;:

e the consequences of different choices of elementary objects and their representation
in the data parallel model of computation,

¢ algorithms for the computation of the elemental stiffness matrices given the dif-
ferent choices of elementary objects and their representation, and

e different techniques for solving the equilibrium equations,

without the added complexity of handling elements of different types and order, and
domains of arbitrary shapes. The first application is a square cantilever plate fixed at
one end and with a distributed load at the other end. The plate geometry is modeled by
a finite element mesh that has one element in the thickness direction, 10 elements in the
length direction and 400 elements in the width direction. This geometry and boundary
conditions are similar to one of the applications reported by Wagner and Swanson [27].
The second application fully utilizes the Connection Machine storage on a system with
32K physical processors.

The computations in applying the finite element method consists of three distinct
phases:



1. Decompose the physical domain into subdomains in the form of finite elements,
each represented by a number of nodal points.

2. Evaluate a set of local interaction equations for each finite element. There is a set
of equations associated with every node in each finite element. This phase is local
to a finite element.

3. Compute the desired field as a function of the governing equations and the applied
boundary conditions.

The equations corresponding to a nodal point are coupled to the equations for all other
nodes on the same element, and the set of nodes belonging to neighboring elements. In
the second step, the coupling to nodes in the same element is accounted for by computing
elemental stiffness matrices. The coupling to the nodes on adjacent elements is resolved
in the third phase. This coupling is often achieved through an assembly of the elemental
stiffness matrices into a global stiffness matriz. This matrix is sparse and often banded,
whereas the elemental stiffness matrices are dense.

Since data parallel computers with supercomputer performance have become avail-
able fairly recently, the next section of this article is devoted to a discussion of the
essential characteristics of the data parallel programming model, and its implementa-
tion on the Connection Machine system. The mathematical formulation to model the
response of a body in the presence of external loads and position constraints is outlined
in section 3, and the finite element implementation is briefly discussed in section 4. A
detailed discussion on the data structure relevant to the data parallel programming en-
vironment, an analysis of the storage requirements, parallel arithmetic complexity, and
communication complexity is given in section 5. This includes a discussion on a data
parallel, three dimensional grid generation algorithm based on the work by Steger and
Sorenson [25]. Two different approaches for the concurrent generation of the elemen-
tal stiffness matrices are described, and issues related to the solution of the equilibrium
equations are discussed in detail. Section 6 analyzes the performance of the data parallel
finite element implementation for the two sample applications.

2 The data parallel programming model

2.1 Overview

In a data parallel programming model, algorithms are designed based on the structure
and representation of the problem domain. An essential characteristic of data parallel
algorithms is the choice of elementary objects. These elementary objects are subject to
the same transformations (at least most of the time) concurrently. Different classes of



elementary objects are subject to different transformations, but may be operated upon
concurrently. An algorithm is expressed as a sequence of transformations of the state
of an elementary object, and interactions between elementary objects. For the finite
element method, the physical domain is discretized by a set of finite elements. In the
simplest case, all the elements are identical in shape and order of approximation. In two
dimensions, triangular and rectangular elements are most frequently used to construct
a finite element discretization of the geometry. For three dimensional geometries, brick,
prism, and pyramid elements are commonly used. In this article, only brick elements
are considered.

If finite elements are chosen as the elementary objects then the evaluation of the local
interactions of any finite element involves the same (or similar) sequence of operations
being applied to all the elements in the mesh. Each operation in the sequence can then
be performed concurrently for all the finite elements in the mesh. However, the series of
operations required to compute the local interaction of one finite element may themselves
be quite computationally intensive, especially for higher order three-dimensional finite
elements. Therefore, it may be more convenient to extend the degree of concurrency
further by choosing the elementary object as a node within a finite element. With
a nodal point of a finite element as the elementary object, the sequence of operations
required to compute the local interaction of a finite element can themselves be performed
concurrently. For three-dimensional elements, the degree of concurrency increases by a
factor proportional to the third power of the order of the element when the elementary
object is a node per finite element. Thus, the degree of concurrency may be one to
two orders of magnitude greater than the degree of concurrency obtained when a finite
element is chosen as the elementary object.

To achieve good performance it is necessary to understand how the operations avail-
able in a data parallel environment can be implemented effectively on real architectures.
This investigation uses the Connection Machine system as the model architecture.

2.2 The Connection Machine
2.2.1 Architecture

The Connection Machine system [14] model CM-2 [4], has a primary storage of 512
Mbytes (with 256 Kbit memory chips) expandable up to 2 Gbytes (with 1 Mbit chips)
distributed evenly among 64K 1-bit processors. There are 16 such processors to a
processor chip, and two such chips share an industry standard floating—point unit. The
processor chips are interconnected as a 12—-dimensional Boolean cube. The topology
of this network can efficiently emulate arbitrary lattices [15,2,3]. On the Connection
Machine system, the emulation of lattices with sides that are powers of two is supported
by an address mode and communication primitives that use a binary-reflected Gray code



[24,21,16] for each dimension of the lattice.

A key characteristic of a high performance architecture is the ability to move data
at a high rate. The primary storage on the Connection Machine has 64K ports, and
a bandwidth of approximately 50 Gbytes s™! at 8 MHz. The programming languages
provide a lattice addressing mode, and primitives for communication in such lattices.
Although the hardware allows for concurrent communication on all ports, the current
release of the lattice emulation software works on one dimension of the lattice at a
time. The peak data motion rate is 16 Gbytes s™! for two—dimensional lattices, and
10 Gbytes s™! for three-dimensional lattices. The primary reason for a decrease in the
peak rate as the dimensionality of the lattice increases is because of an increase in the
surface area for a given volume of data. Moreover, the fact that the current release of
the emulation software works on one lattice dimension at a time also contributes to the
degradation in the peak data motion rate with the dimensionality of the lattice. For
arbitrary communication patterns, the CM-2 is equipped with a “router”, which selects
the shortest paths between the source and the destination of a message.

The Connection Machine system needs a host (front—end) computer. The Connec-
tion Machine system is mapped into the address space of the host. The host stores
the program and scalar data, and executes instructions on scalar data. Instructions for
data stored in the Connection Machine system are sent to a control unit that broad-
casts the instructions to all processors. Currently, three families of host architectures
are supported: the VAX family with the BI-bus, the Symbolics 3600 series, and the
SUN-4 series by SUN microsystems. The Connection Machine system can optionally be
equipped with a secondary storage system, known as the Data~Vault. There are eight
I/O channels, each with a peak data transfer rate of ~ 30 Mbytes s™!. The storage
system is expandable up to 640 Gbytes in 5 Gbyte increments.

Of particular interest for scientific visualization, is the framebuffer available with the
Connection Machine system. The framebuffer is an I/O device that is used to display
images computed in the Connection Machine system. User interface is provided to
display any two—dimensional grid set of processors.

2.2.2 Programming languages

High-level programming languages currently available on the Connection Machine sys-
tem are *Lisp, C*, and CM-Fortran. They are parallel extensions of Common Lisp,
C++, and Fortran—77, respectively. The most important extensions are the existence of
a parallel data type, and operations that can be performed concurrently on the parallel
variable. Other extensions that are very useful in many instances are the “reduction”
and “copy” operations. For example, a global summation which is extremely useful for
evaluating inner products, is a single instruction. “Scans” [1] and “spreads” are some



examples of parallel prefix operations included in the extended set of operations. The
elements of a parallel variable are operated upon concurrently by a single instruction.
It is also possible to operate concurrently on distinct subsets of a parallel variable.
Since no enumeration of the elements is required, one or several loop levels disappear
from the corresponding sequential code (see examples in the next section). The pro-
gramming languages for the Connection Machine system are extensions of conventional
languages. This makes the debugging process and the debugging tools very similar to
those available on conventional architectures.

Several sub-selection mechanisms are available in the parallel extensions of the high
level programming languages. Conditional statements can be used to make the sub-
selection based on variable values, or addresses of the processors. The Connection
Machine supports two different forms of addressing modes: cube-addressing and lattice-
addressing. Cube—-addressing makes use of the normal binary address mapping, whereas
the lattice mode factors the address space into disjoint subspaces, one for each dimension
of the lattice. The size of a subspace depends on the number of lattice nodes in that
dimension. The configuration of the lattice of processors in the lattice—addressing mode
is under program control. The assignment of lattice points to processors makes use of
the binary-reflected Gray code to preserve adjacency in the lattice when embedded in
the Connection Machine memory.

Algorithm design for data parallel architectures is often made based on a concep-
tual separation between the operations on the elementary objects, and the interaction
between elementary objects. In scientific and engineering applications, the interaction
between elementary objects has traditionally been represented as sparse matrices, which
may be emulated as vectors, or lists. In a data parallel environment, pointers are of-
ten used to define the immediate relationship between objects. However, if the objects
can be placed on a regular lattice then the pointers become unnecessary in a lattice
addressing mode.

A matrix representation for a collection of local data values is often very useful as
the elements of an elementary object. The Connection Machine programming languages
supports arrays local to an elementary object. For example, in the implementation of
the finite element method an elemental stiffness matrix is conceptually convenient and
computationally a very useful representation.

In a data parallel model each instance of an elementary object is assigned to a unique
processor. However, in simulations involving very large data sets, the number of ele-
mentary objects may far exceed the number of physical processors, but the application
may still fit in the primary storage of the computer. The Connection Machine program-
ming model supports the notion of virtual processors. Virtual processors are distributed
evenly among the physical processors. Virtual processors assigned to the same physical
processor time share it for execution, and are assigned distinct portions of its memory.
The number of virtual processors per physical processor is called the virtual processor
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ratio for the configuration and is under the control of the application program.

The next section introduces some essential features of the high level programming
languages available on the Connection Machine system CM-2. The programming lan-
guage, *Lisp, was used for the data parallel implementation of the the finite element
method on the Connection Machine system. Parallel versions of C and Fortran are also
available, and future scientific applications are likely to be implemented predominantly
in these languages.

2.2.3 *Lisp

The programming language *Lisp is a parallel extension of Common Lisp. There is one
additional data type: a parallel variable, called a pvar. In *Lisp, parallel variables (or
puars) are defined by a statement of the form

(*defvar pvar pvar-ezpression).

The current implementation of *Lisp allocates a pvar across the entire configuration of
the Connection Machine. The same section of the storage on every processor is assigned
to a given pvar. One particular element of the parallel variable can be referenced by
the statement

(pref pvar address),
which returns the element specified by address of the parallel variable pvar. The function
(*set pvar-1 pvar-2)

assigns elements of the parallel variable pvar-2 to the corresponding values of the el-
ements of the parallel variable pvar-1. This instruction is equivalent to the BLAS-1
subroutine SCOPY [22]. Similarly, individual elements of a parallel variable can be set
by using the Common Lisp function setf as

(setf (pref pvar address) var).

The programming language *Lisp defines parallel array variables as the parallel
equivalent of Common Lisp arrays. In the programming language *Lisp, pvar arrays
are parallel variables containing one array per processor. A variety of methods are
available for allocating parallel array variables.

The two global addressing schemes available on the Connection Machine system are
readily accessible from the programming language *Lisp. Addresses corresponding to
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the conventional binary addressing scheme are called cube-addresses and addresses in
multi-dimensional lattices are called grid-addresses. Further, references on the grid
addresses can be made with either absolute lattice coordinates or relative addresses.
The specific functions available in *Lisp are as follows

cube-address: (pref pvar address),

grid—address: (pref pvar (grid grid-address)),
and for concurrent access across all active processors

cube-address: (pref!! pvar-ezpression cube-address—pvar),
grid—-address: (pref!! pvar-ezpression (grid!! grid-address—pvar)),

relative—grid—address: (news!! pvar-ezpression relative-grid—address),
g g

where grid-address is the absolute lattice—address of a processor, relative-grid-address
is the relative lattice—address for a processor. The standard operators of Common Lisp
have been extended to the corresponding concurrent versions by the suffix !!. As an
example of some of the concurrent operation primitives available in *Lisp, the following
*Lisp statement implements a Jacobi iteration for the five—point stencil

(*set new—est
(*1

(" 0.25)

(+"
(news!! current—est -1 0)
(news!! current-est 0 -1)
(news!! current—est 0 1)
(news!! current—est 1 0)
right-hand-side

The operation *set is a local memory movement in all active processors. The cor-
responding operation used for inter—processor communication is *pset, which like pref
has several forms, depending on the addressing scheme being used by the application
program.

In general, concurrent operations available in *Lisp are performed on active proces-
sors only. Conditional statements are available in *Lisp to change the state of one or
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more processors. Some examples of the conditional statements arez*all, *when, *if,
and *cond. *Lisp also provides very useful global operators. Of particular interest
for numeric applications are *min, *max, *sum, and scan!!. The *min, *max, and
*sum operators compute the minimum, maximum, and the sum of the values for a
parallel variable in the currently selected set of processors. An example of the “scan”
function is

(scan!! pvar function :direction segment-pvar :include-self),

where the segment-pvar divides the address space into non—overlapping segments. A
segment consists of a sequence of processors in ascending cube-address order. A new
segment of processors begins at each processor in which segment-pvar is true. Even
if all segment—pvar components are nil, however, there is always at least one segment
beginning with the selected processor having the lowest cube address. The scan!!
operation is then concurrently applied to all segments. The scan!! argument function
is one of the following associative binary *Lisp functions : 4, and, or, logand, logior,
max, and min. In addition, the copy function is also supported as a scanning function,
even though there is no such *Lisp function. As an example, if “4-” were the function
every pvar location will contain the sum of the pvar elements in processors with lower
addresses in its segment (if the direction is increasing), including it’s own original pvar
value, if include—self is true.

2.2.4 C*

The programming language C* is an extension of C with a strong design influence
from C++. In the programming language C*, objects that are of the same nature are
members of the same domain. Conceptually a domain is similar to a class in C++.
In the data parallel model of computation, a processor is associated with every instance
of a domain. Every member of a domain has the same storage layout. Referencing a
domain implies a selection of processors. Only processors associated with an instance
of the referenced domain remain active. There are two new data types: mono and poly.
Data of type poly are allocated on the Connection Machine system. Data belonging to
any domain is by default of type poly. Data that is not of type poly is of type mono,
and resides in the storage of the host machine.

There are only very few new operators in C*. Most C operators are extended to
C* by the distinction between mono and poly. Communication between the host and
the Connection Machine is implicit. For example, broadcasting from the host occurs
if a mono value is assigned to a poly variable. Similarly, a reduction operation is
performed if the combined result of the elements of a poly variable is desired. The
result of the reduction is a mono value in the host. Interaction between the elements



of a single or several poly variables results in several communication patterns on the
Connection Machine system.

2.2.5 CM-Fortran

The programming language CM-Fortran that is currently available on the Connection
Machine is similar to the proposed Fortran-8x standard [23]. This standard has array
constructs and operations on such constructs. The array extensions of the Fortran-8x
standard, available on CM-Fortran, permit application programs to exploit the data
parallel environment. The CM—-Fortran compiler generates code that makes direct calls
to the parallel instruction set of the Connection Machine system. The array variables
are allocated either on the Connection Machine system or on the host depending on
their use within an application program. A given array is allocated on the Connection
Machine system whenever the array is used in one or more Fortran 8x array operations
within the application program. Compiler directives are available to allow one or more
axes of a CM-based array to be stored on a single processor.

A typical applications program written in CM-Fortran contains several different
kinds of source constructs that are translated by the compiler into code that executes
on the host and operates on data residing on both the Connection Machine system and
the host. Statements that affect the flow of execution control within an application
program (for example the IF statement) always translate to code that is executed
entirely on the host. Operations that affect only scalar data are also executed on the
host, and scalar data is always allocated on the host. An array operation may execute
on the Connection Machine hardware depending on where the array data on which it
operates is allocated. As an example of a data parallel operation in CM—Fortran, the
five-point stencil for the Jacobi-iteration expressed above in *Lisp is now expressed in

CM-Fortran.

new — est = [eshift (4,1, —1) + cshift (4,1,+1) +
cshift (4,2, —1) + cshift (4,2, +1) + rhs]

The compiler translates the above CM—Fortran statement to generate calls to several
nearest neighbor communication primitives. The primary intent of the above example
is to illustrate the fact that the two loop levels typically seen in traditional Fortran
programs have vanished. Not only is the programming more elegant, it also follows the
logical operations that are typically used in the conceptual design stage of an algorithm,
and is easier to debug.
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3 Mathematical background

The deformation of a solid in response to external loads and constraints is governed
by the balance laws of continuum mechanics. The mathematical formulation described
below consists of four sections: kinematics, the balance laws of continuum mechanics,
the constitutive equations, and the boundary conditions. Details can be found in [9,12].

3.1 Kinematic relationships

Kinematics provides a set of equations which relate deformation quantities such as strain
to the displacements of the material at any arbitrary point within the body. Assuming
infinitesimal strains, the strain tensor, ¢, is defined as

¢ = Symm(Vu), (1)

where u is the displacement vector.

3.2 Balance laws

In the absence of body forces and neglecting inertia, the balance of linear momentum
states that
V.o =0, (2)

where o is the Cauchy stress tensor. The balance of angular momentum requires that
the stress tensor ¢ be symmetric.

3.3 Constitutive equations

Kinematics and balance laws do not provide enough mathematical relations to solve the
boundary value problem. Additional relationships are necessary to close the system of
equations. These equations come from constitutive laws which describe the material
response. The constitutive laws predict the behavior of the material in response to
external loads. Assuming isotropic material behavior, the stress required to achieve a
certain state of strain is given by the generalized Hookes law

o =2pe+ ATr(e)1, (3)

where 1 and A are material parameters frequently known as the Lamé constants. For
linearly elastic materials, p and A are constants.
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3.4 Boundary conditions

To solve the boundary value problem described by the system of equations above, bound-
ary conditions must be specified over the surface of the physical domain. In general

u=1donS, (4)

and

c-n=TonlS,, (5)
where S, is the portion of the surface of the body with displacement boundary conditions
(@), S, is the portion of the surface with traction boundary conditions (T), and n
is the surface normal at the point where the traction vector, T is applied. For the
resulting boundary value problem to be well-posed, the surface, S, of the body must

be decomposed such that
S.US, =S8 (6)

and

S.NS, =0. (7)

4 Numerical formulation

To solve the mathematical model described above numerically, it is necessary to reduce
the continuous (infinite) physical domain to a discrete (finite) computational domain.
This discretization can be accomplished by a variety of different methods, such as

¢ a finite difference method,

a finite volume method,

a finite element method,

a boundary element method, or

a spectral method.

The finite element method is the most popular approach used in structural and solid
mechanics. For areas of application where a variational principle is known (as in stress
analysis described in this article) the finite element method may be regarded as an
approximation technique that develops from the known variational principle. However,
in general, for most applications, only governing differential equations and the applied
boundary conditions are known. Therefore, it is more illustrative to regard the finite
element method as an approximation which results from a weighted residual method.
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The finite element approximation of the system of equations described in the previous
section is obtained from the variational principle which represents the statement of
virtual work as [31]

_ T
0= /V 8Tr(eo)dV + /Sc su’ TdS, (8)

where 6u is the virtual displacement field compatible with the virtual strain ée and o
is the Cauchy stress in equilibrium with the applied traction field T. By expressing the
symmetric tensors, o and € as vectors of length six so that

{0} = {o11 022 033 721 31 052} (9)

and
{6} = {611 €22 €33 2621 2631 2632}T (10)

respectively, the above functional may be restated in vector notation as
0=— /V §{}T{c}dV + [S S{UYT{T}ds, (11)

where {U} is a vector containing the components of the displacement field u.

The displacement field, {U}, and the corresponding strain field, {€}, at any arbitrary
point within the body are approximated from

{u} = [N{U}, (12)

and
{e} = [N{U}, (13)

respectively. The matrix [IV] comprises of a set of interpolation or shape functions and
[N'] is a matrix containing the derivatives of these interpolation functions. The stress
tensor in the variational statement (Equation (11)) may be replaced by a function of
the strain tensor, by using the constitutive equations expressed in vector-notation as

{0} = [C){e}, (14)

where [C] is the constitutive matriz containing the Lamé constants u and A. For the
forms of {¢} and {¢} defined by Equations (9) and (10) the resulting constitutive matrix
[C] is symmetric. The final system of equations that results from the above interpola-
tions is of the form

[KH{U} = {F}, (15)

where the stiffness matriz [K] is defined as

K] = [ INTICINav, (16)
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and the force vector {F'} may be expressed as
{F} = [ INP{T}ds. (17)

The stiffness matrix is obtained through the assembly of the elemental stiffness
matrices, [K(€D], where

|xh] = /‘,I[N’]T[C][N’]dV, (18)

and

_ el
(K] = %1: [K( >] . (19)

For the elemental stiffness matrix computation the interpolation functions are local
over the domain of a single finite element, and the order of the matrix of interpolation
functions, [N], is n X u, where n is the number of nodes on the finite element, and u is
the number of degrees of freedom per node.

5 A data parallel implementation

Some of the important design issues that arise for the implementation of the finite
element method in a data parallel environment are

e parallel grid generation for transforming the physical domain to a discretized com-
putational domain,

e a data structure for representing this computational domain,
o generation of the elemental stiffness matrices concurrently, and

e concurrent solution of the system of linear equations.

For each of these issues, several factors need to be considered. Some of the more
important issues are as follows

e storage requirements,
e communication complexity,

e parallel arithmetic complexity,

uniformity of computations, and

e programming complexity.
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5.1 Parallel grid generation

For the model problem elliptic partial differential equations can be used to generate a
smooth grid that permits a one-to—one mapping so that the mesh lines do not cross.
In this article, all finite element meshes have been generated by the solution of Laplace
equations [26]:

V=0
Vip =0, (20)
Vi =0

where {¢ n ¢}¥ are the coordinates of the nodal points in the regular computational
domain. The global coordinates ({:c yz }T) of the nodal points in the physical domain
are evaluated by first transforming the above governing equations (Equations (20)) to
the global coordinate space. The resulting transformed equations, which are coupled
and non-linear, are of the form:

{a1 a2 a5 a4 a5 ag}” {Tet Ton T¢ Ten Tee T} =0, (21)

where the coefficients a, - --ag are functions of the local derivatives contained in the
Jacobian matrix
Te Ye =
=12y yp 24 (22)
e Y =z
The transformed equations are solved together with the boundary information to eval-
uate the global coordinates of the nodal points. The transformation in two—dimensions
are given in [25].

The implementation of the above algorithm on the Connection Machine system
CM-2 uses the grid addressing mode. The computational domain is first mapped on to
the three-dimensional lattice of processors, assuming that each processor represents one
nodal point of the computational domain. Equations of the form given by Equation (21)
are solved to evaluate the global coordinates (z, y, and z) of the nodal points by Jacobi’s
method. A second-order interpolation for the partial derivatives yields a nineteen point
stencil. This scheme is inherently parallelizable, and requires communication between
lattice points that differ by one in at most two of the indices, as seen by the discretized
form of Equation (21)

ay [ Xivje — 2Xie + Xio1je) +
az [Xijrie — 2 X + Xijoe] +

as [ Xijier1 — 2Xije + Xije—1] + (23)

2 [ Xigrjrre + Xicrjore — Xicajene — Xigrj-10] +
B [ Xip1jerr + Xictje-1 — Xicijiers — Xiprje—1] +
vy [ Xijrrerr + Xijo1k-1 — Xijo1ket1 — Xijr1e—1] = 0.
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Figure 1: Normalized ¢,-norm of the residual for the Jacobi method for square grids
and random initial state; J is the Jacobi iteration number and R is the logarithm (base
10) of the normalized global residual.

Though the Jacobi iterative scheme has a poor rate of convergence the number of iter-
ations required for the physical domains of the two applications reported in this article
are small because of very good initial guesses. The domains for the two applications
reported in this article are regular and the normalized residual obtained after the first
iteration was sufficiently small (< 1.0 x 10~*). The speed—up in the data level imple-
mentation of the Jacobi iteration process is proportional to the number of processors,
up to the number of processors being equal to the number of lattice points. For a gen-
eral case, where a good initial guess is not readily known, a numerical algorithm with
a convergence rate better than the Jacobi method may be required. The convergence
rate of the Jacobi iteration process is proportional to the number of grid points [30] as
shown in Figures (1) and (2) where a random initial guess was used. The CPU time per
Jacobi iteration, at a virtual processor ratio of one, is ~ 0.0135 s for two—dimensional
meshes and ~ 0.075 s for three-dimensional meshes.
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Figure 2: The number of Jacobi iterations for convergence (normalized £;-norm less
than < 1.0 x 1073); N is the total number of grid points in the finite element mesh and
J is the number of Jacobi iterations required for convergence.

5.2 Data structure

Computations for all elementary objects can be performed concurrently on the Connec-
tion Machine system. For the two applications described later, it is natural to chose the
lattice addressing mode. There are two possible choices of elementary objects:

e one processor of the Connection Machine representing a finite element, or

e one processor representing one nodal point per finite element, that is, nodal points
which are shared between elements are replicated on separate processors.

With a processor assigned to a nodal point, the processor performs all computations
associated with that nodal point, both in the computation of the elemental stiffness
matrix and during the solution phase. In assembled form some nodal points are shared
by more elements than others for higher order elements. Consequently, some nodal
points have to perform more computation than others. By having a processor represent
one nodal point per finite element, the computational effort required for all nodal points
is identical, regardless of where on the element the node is located, and regardless of
whether the element is an interior element or on the boundary. The only distinguishing
feature is the element order. With a processor per node per finite element the elemental
stiffness matrix is distributed over the processors representing the nodes of a finite
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element. The computation of the elemental stiffness matrix can be organized such that
no communication is required (section 5.5).

When the elementary object is chosen to be one finite element, and the region con-
sists of a mesh of elements, the mapping between the elements and a lattice of processors
is obvious. In the case of elementary objects in the form of one nodal point per finite el-
ement a suitable data structure may be obtained by a split lattice, i.e., each surface (line
in two—dimensions) representing a boundary between two brick (rectangular) elements
is duplicated.

The two possible schemes of choosing an elementary object discussed above are com-
- pared in detail on the basis of storage requirements, parallel arithmetic complexity, and
communication complexity for both Lagrange and Serendipity elements. In addition,
for direct solvers, an explicit assembly of the global stiffness matrix is required. How-
ever, when an iterative solver is used, the global stiffness matrix need not be explicitly
formed. Therefore, the assembled and unassembled cases have been analyzed separately.

5.3 Storage requirements
5.3.1 Lagrange elements

One processor per finite element: The unassembled elemental stiffness matrix for
an element is stored on the processor representing the element. The elemental stiffness
matrix stored on the processor has (p + 1)? rows and columns in two dimensions and
(p+1)® rows and columns in three dimensions, where p is the order of the finite element
(p =1 for linear elements, p = 2 for quadratic elements, and so on). Symmetry of the
stiffness matrix is easily exploited because the entire elemental stiffness matrix resides
locally on the processor. The storage and computational requirements are uniform
among all processors when the mesh is composed of similar finite elements.

If the stiffness matrix is assembled most processors store the rows (or columns)
corresponding to p* assembled nodes in two dimensions and p® assembled rows in three
dimensions. However, processors representing elements on the boundary of the physical
domain need to store (p + 1)? and (p + 1)® rows (or columns), respectively. Processors
representing finite elements that are not on the boundary are assigned one corner node,
2(p — 1) nodes along the two edges and (p — 1)? interior nodes in two dimensions. For
a three-dimensional finite element mesh, this assignment is one corner node, 3(p — 1)
nodes along three edges, 3(p— 1) nodes on three faces, and (p—1)® interior nodes. The
assembled stiffness matrix may be stored in either a dense representation or a sparse
representation for each element. The non-uniform data allocation reduces the storage
utilization by a factor of ~ (54—’:?)4 in two-dimensions and by a factor of ~ (£1)° in
three—dimensions, assuming that most elements in the lattice are interior elements. An
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implementation with some redundant operations can make the computations uniform
over all processors.

One processor per nodal point: The storage of the elemental stiffness matrix
is shared equally by n processors, where n is the number of nodal points per element
(n = (p+1)? in two dimensions and n = (p+1)* in three dimensions). Without assembly
of the global stiffness matrix each processor stores the u (v = 2 in two dimensions
and u = 3 in three dimensions) unassembled rows (columns) corresponding to the
nodal point represented by the processor. The summation required in computing the
product of the stiffness matrix with the displacement vector requires no communication.
However, the displacement vector has to be accumulated by the communication of the
nodal displacements from all processors that make up the finite element. Every processor
broadcasts its displacement values to every other processor on the element (all-to-all
broadcasting [20]). In contrast, when the columns of the stiffness matrix corresponding to
a nodal point are stored on the processor representing the nodal point, only partial inner
products can be computed concurrently. An all-to-all reduction among the processors
representing the nodal points on an element is required to accumulate the partial inner
products.

When the elemental stiffness matrices have to be assembled into a global stiffness
matrix, two storage assignment schemes are possible. Either a row (column) of the
assembled stiffness matrix may be stored per processor, or each row (column) of the
assembled matrix may be shared among the processors from which it is assembled. For
‘the latter case, in two dimensions, the sharing is between four processors for a corner
node, two processors for an edge node. Nodes lying in the interior of a finite element
require no sharing. Similarly, in three dimensions, the sharing is made between eight
processors for a corner node, four processors for edge nodes, two processors for face
nodes, and again no sharing is needed for interior nodes.

If the rows (columns) of the assembled stiffness matrix corresponding to a nodal
point are not shared among the processors over which the assembly is performed then the
effective processor utilization decreases, with an increase in the the maximum processor
load. The fraction of the total number of processors being utilized after assembly is
~ (:#7)? in two dimensions and ~ (;27)° in three dimensions. In three dimensions
the number of active processors is about 50% for p = 5, but only 12.5% for first order
elements. Moreover, the number of matrix elements for a processor representing a
corner node is (2p + 1)% as compared with (p + 1)® matrix elements for a processor
representing an interior node. This ratio is approximately 6 for p = 5. Hence, when
the elementary object represents one processor per node per element, assembling the
stiffness matrix and assigning its rows (columns) corresponding to the nodal point to
one of the processors from which the assembly was performed results in a very poor
processor utilization. Sharing of an assembled row (column) among the processors from

19



which it is assembled results in a significant decrease in the computational efficiency.

Comparison of storage and arithmetic requirements. The unassembled stiffness
matrix requires the same amount of overall storage for the two possible choices of the
elementary object, but it is easy to exploit symmetry of the elemental stiffness matrix
with a processor representing a finite element.

The savings in the used storage due to assembly is the same for the two choices of
elementary objects. However, with the current storage allocation scheme of the Connec-
tion Machine system, no savings of allocated storage is realized when finite elements are
chosen as the elementary objects because of the storage requirements of the processors
representing elements on the boundary. When a nodal point of a finite element is the
elementary object, the allocated storage actually increases after the assembly process,
if the assembled rows (columns) are not shared. Sharing therefore becomes necessary
for an efficient storage utilization.

Representing the element-wise assembled stiffness matrices as dense matrices simpli-
fies the local data structure significantly, but as the order of the finite elements increases,
the density of this matrix decreases appreciably. In two dimensions, the density is 100%
for p =1 and ~ 25% for p = 5, and in three dimensions the corresponding densities of
the stiffness matrices are 100% and ~ 15% respectively.

The assembly process results in nonuniformity of the data structures. In the case
of one nodal point per processor, processors representing internal nodes have storage
requirements that are different from all other processors. There are also different storage
requirements for processors representing nodes on the faces, edges, and corners of an
element. Moreover, the storage requirements also depend on the location of the nodal
point in the physical domain. With one processor per finite element, only a distinction
between internal elements and elements on the boundary is required. To realize any
storage and computational advantages, when the elementary object is a nodal point
per finite element, the programming complexity of the assembly process is considerably
increased. When the elementary object is a finite element, the added programming
complexity is significantly less. The data parallel implementation of the finite element
method discussed later does not assemble the elemental stiffness matrices.

The total number of arithmetic operations is the same regardless of whether a pro-
cessor represents a finite element, or a nodal point per element. However, the degree of
concurrency in the latter case is (p+ 1) times greater than the degree of concurrency in
the former case, and the solution time correspondingly smaller with a sufficiently large
number of physical processors (so that the virtual processor ratio is one).

Table (1) summarizes the storage requirements and effective processor utilization for
Lagrange elements in two and three dimensions. No symmetry assumptions have been
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Two dimensions

Three dimensions

Order p p
Degrees of freedom per nodal point, u 2 3
Number of nodes per element, n (p+1)* (p+1)°
Nodal points per processor 1 1
Unassembled stiffness matrix nu X u nuXx u
Assembled stiffness matrix
Corner node (2p + 1)%u? (2p + 1)3u?
Processor | Side node (p > 1) (2p+ 1)(p+1)u? (2p+ 1)%(p+ 1)u®
Interior node (p > 1) nu? nu?
per node | Face node (p > 1) (2p+ 1)(p + 1)%4?
(8m® + ¢+
Average® (p > 1) (P + 4p + 4)u® 12¢m?+
6¢>m]u®
Processor spatial utilization® ~ () ~(%)?
Processor temporal utilization ~ (.‘,;,4_-""'—11)2 ~(EE)?
Nodal points per processor n n
Unassembled stiffness matrix nu X nu nu X nu
Assembled stiffness matrix
{ Processor p*u?[8m3 + ¢°
per Sparse representation (n—1)%u? 12gm?+
element 6¢°m)
Dense representation (max) (2p+1)ux(p+1)2%u | (2p+1)3ux(p+1)3%u
Average per processor® (2p+ 1)%? (2p+ 1)3u
Processor spatial utilization 1 1
Processor temporal utilization ~ (F1)? ~ (GEr)°

Table 1: Storage requirements and processor utilization for Lagrange finite
elements in two and three dimensions.

sg=p—1and m= 22l

p+1 -

*When assembled rows are not shared.

“In dense representation.
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made for the elemental stiffness matrices.

5.3.2 Serendipity elements

Two dimensional Serendipity elements of order p have 4p nodal points on the edges. In
addition, a interior nodes are required in order that all the terms of a complete p-th
order expansion are available. The number of interior nodes necessary are summarized
in Table (2). For three-dimensional Serendipity elements there are 4(3p — 1) nodal
points on the edges, 8 of which are corner nodes. This yields a total of 4(3p — 1) + a
nodal points per finite element.

One processor per element: The number of matrix elements in the elemental stiff-
ness matrices is nu X nu, where n is the number of nodal points per finite element
(n = 4p + a in two-dimensions and 4(3p — 1) + a in three-dimensions) and u is the
number of degrees of freedom per nodal point. The number of matrix elements can be
reduced to %nu X (nu+1) after accounting for symmetry. When these elemental stiffness
matrices are assembled into a global stiffness matrix, rows (columns) associated with
nodes shared between elements can be assigned to processors using the scheme described
for Lagrange elements. The assembled stiffness matrix is assigned to processors by row
partitioning. In the row partitioned representation, the multiplication of the stiffness
matrix by a vector? requires communication to assemble the vector, but no communi-
cation is needed for a row summation. Processors representing elements lying in the
interior of the physical domain store 3p — 2 + a rows (columns). A subset of processors
representing elements lying on the boundary of the physical domain store 4(3p—1) + a
rows (columns). For higher order elements, the density of the sub-matrix of the global
stiffness matrix, stored on every processor is approximately 60%.

One processor per nodal point per finite element: Each processor stores the
rows corresponding to the nodal point represented by the processor. Therefore, a matrix
of size u X nu is stored on each processor.

When the stiffness matrix is assembled, the number of elements in a row (or column)
depends upon the nodal point corresponding to the row. For example, a corner node
couples to all nodes in four elements (a total of 12p — 3 + 4a nodes) in two~dimensions
and eight elements in three-dimensions (a total of 54p — 27 + 8a nodes). Similarly, a
node on the edge is shared by two elements in two—dimensions and four elements in
three-dimensions, thus coupling with 7p —1 + 2a and 33p — 15 + 4a nodes respectively.
Assembling the global stiffness matrix without sharing the assembled rows (columns)
yields a very nonuniform storage requirement. Sharing is essential for an effective use

2For example, in an iterative solver.
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of the Connection Machine system, both for load balance and an efficient memory
utilization.

Comparison of storage and arithmetic requirements. The storage requirements
per processor is O(n?) for one finite element per processor, and O(n) for one nodal point
per finite element per processor. Table (2) summarizes the storage requirements for two
and three dimensional Serendipity elements. As before, it is straightforward to exploit
symmetry when the elementary object is a finite element and quite complex when the
elementary object is a nodal point per finite element. For a nodal point per finite element
per processor, there is the additional complexity of making allocated storage correspond
to required storage. If a three—dimensional lattice of processors is used directly, then
only % processors (and consequently storage) do useful work, where n, is the number
of nodal points in a Serendipity element of order p and n; is the number of nodal points
in a Lagrange element of order p. For p = 5, this processor (storage) utilization is ~ 1
A more efficient mapping of the nodes of Serendipity elements to processors is required
both with respect to storage management and computational efficiency for the current
storage allocation scheme, and the scheduling of virtual processors. Embeddings of the

type described in [15,2,3] may be used.

Assembly leads to uneven storage requirements for both types of elementary objects.
Further, for the case when the elementary object is a node per finite element, it is
necessary to share the assembled rows (columns) between the processors from which
they are assembled. As before, this assembly process adds significantly to programming
complexity.

The degree of concurrency when a processor represents a nodal point per finite ele-
ment is a factor of n greater than the degree of concurrency when a processor represents
a finite element. The total number of arithmetic operations and storage requirements
are approximately the same for the two choices of the elementary objects.

Table (2) summarizes the storage requirements for Serendipity elements. No sym-
metry assumptions are made for the elemental stiffness matrices.

5.4 Communication complexity

This section discusses the communication needs for Lagrange and Serendipity elements.
The two elementary objects are analyzed in the context of an iterative solver for which
the dominating communication requirements occur in the sparse matrix—vector multi-
plication. These communications are all short range. A direct solver requires long range
(global) communication in the lattice. Some types of pre-conditioners for the conjugate
gradient method make use of direct solvers, but an analysis of such pre—conditioners is
beyond the scope of this investigation.
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Two dimensions

Three dimensions

Order

p

p

Degrees of freedom per node, u

2

3

Additional nodes, a, (p > 3)

Lp-2)(p-3)

3p—-2)(p-3)
+ip(p~1)(p-2)

Processor
per node

-3(p-3)—-1
Number of nodes per element, n dp+a 4(3p—1)+a
Average number of nodes per element, 2p—-1+a 3p—2+a
Nodal Points / lattice nodes L D
Unassembled stiffness matrix u X nu U X nu

Assembled stiffness matrix
Corner node, n,

Side node (p > 1), n,
Interior node (p > 3), n;
Average (p > 1), n,

[3(4p — 1) + 4a]u?
(Tp—-1) ;i— 2a)u?

[27(2p — 1) + 8a]u?
[3(11p - 5)2 + 4a]u?

2(p—=1n,+nc+n;_ 2
Y (/3

3(p—1)ne+netn; 2
) u

Processor
per
element

Unassembled stiffness matrix nu X nu nu X nu
Assembled stiffness matrix:

Matrix elements corresponding to

(a). Corner nodes, 7, 1 1
(b). Side nodes (p > 1), r, (2p-2) (5p - 5)
(c). Interior nodes (p > 3), r, Ng ng

in assembled stiffness on
all processors.

Sparse representation
Dense representation

NePe + NPy + NN,
(Pe + 74 + ri)nc

Nele + Ny + NiN,
(rc +r,+ ri)nc

Average per processor® N ne
Processor spatial utilization 1 1
Processor temporal utilization ~ (%ﬁ'—g) ~ (1(33%11%)

Table 2: Storage requirements and processor utilization for Serendipity

finite elements in two and three dimensions.

%In dense representation.
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Type of communication | Two dimensions | Three dimensions
Processor | Intra-element 2(n—1)u 2(n—-1)u
per node | Inter—element 4u 6u
Processor | Lagrange elements 4(p+ l)u 6(p +1)°u
per element | Serendipity element 4(p+1)u 24pu

Table 3: Element transfers per processor for brick elements in two and three
dimensions.

One processor per finite element: For this elementary object only inter—element
communication is required. Without assembly of the global stiffness matrix, communica-
tion is required for the assembly of the residual vector after a local sparse matrix—vector
multiplication. For Serendipity elements of order p, 4(p + 1)u and 6 x 4pu communica-
tions per processor are required in two and three dimensions respectively. The corre-
sponding numbers for Lagrange elements of order p are 4(p+ 1)u and 6(p+ 1)*u in two
and three dimensions respectively.

One processor per nodal point per finite element Both intra—element and
inter—element communication are required to compute a matrix—vector product. Intra—
‘element communication of nodal values is an all-to-all broadcasting [20] among the
processors representing nodes on the same element. This operation can be performed
concurrently within an element, as well as for different elements. Assuming that commu-
nication is performed one dimension at a time, it is easily shown that the total number
of element transfers in sequence is 2 X (n — 1)u. With bidirectional communication,
these numbers reduce by a factor of 2. With concurrent communication on all ports
the communication time is further reduced by the number of Boolean cube dimensions
required for embedding a finite element [20].

Inter—element communication is required for assembling the residual for an iterative
solver, or in the explicit assembly of the global stiffness matrix. All nodal points shared
between elements participate in the inter—element communication. For this elementary
object representation, the inter—element communication requires at most 4u and 6u
nearest neighbor communications in two and three dimensions respectively. Table (3)
gives the number of data element transfers needed for a processor in two and three
dimensions.

5.4.1 Comparing Lagrange and Serendipity elements
For both Lagrange and Serendipity elements, an unassembled stiffness matrix formula-

tion is the simplest to implement. This implementation results in no loss of performance
or storage efficiency, if there are sufficiently many physical processors to allow for a vir-
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order | virtual | maximum
p processor | deg. of
ratio freedom
1 8 786444
Processor per node 2 4 294921
3 1 147504
4 1 61575
Processor per element, unsym. 1 2 393216
Processor per element, sym. 1 4 786432

Table 4: The maximum number of degrees of freedom that fits in 512
Mbytes of storage as a function of the order of three dimensional Lagrange
elements.

tual processor ratio of one. A nodal point per finite element per processor allows for
the use of higher order elements in the construction of the finite element mesh. Due
to the limited amount of storage per processor, the current version of the Connection
Machine system can only store elemental stiffness matrices for elements of order one
when the elementary object is a finite element. Symmetry is difficult to exploit with
one nodal point per finite element per processor, and not doing so increases the storage
requirements for the stiffness matrix by a factor of ~ 2. The concurrency with one
nodal point per finite element per processor is one to two orders of magnitude greater
than the degree of concurrency obtained when there is a finite element per processor.
In addition, the communication bandwidth required between a pair of processors is up
to one order of magnitude lower for one processor per nodal point compared to one
processor per element.

The data parallel implementation of the finite element method described here uses
one nodal point per finite element as the elementary object. No explicit assembly of the
global stiffness matrix is performed. The primary intent for this selection is to study
the influence of higher order finite elements on the performance of the data parallel
implementation. Lagrange elements were chosen for this investigation because of the
existence of the lattice emulation capability on the Connection Machine system. A more
complex data structure [15,2,3] is required to realize any benefits from using Serendipity
elements. The maximum order of the elements, the number of virtual processors per
physical processor for this element order, and the total number of degrees of freedom are
summarized in Table 4 for three-dimensional Lagrange elements. The numbers reported
in this table correspond to a primary storage of 512 Mbytes. With the use of auxiliary
storage system, the number of degrees of freedom can be increased substantially.
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5.5 Stiffness matrix generation

The global stiffness matrix is obtained as the sum of the elemental stiffness matrices.
Contributions to a matrix element of the global stiffness matrix is obtained from all
elemental stiffness matrices that share nodal points. The elemental stiffness matrix
is evaluated by integrating over the volume® of the finite element. This integration
is performed by Gauss quadrature, wherein the finite element is first mapped onto a
standard element of regular shape.

The computation of an elemental stiffness matrix can be summarized by the following
Gauss quadrature rule:

KD = T[N (%)) [C (xa)] [N (Xa)] T (%) @ (%a) (24)

where the summation is over all quadrature points X,, J (X,) is the determinant of the
transformation Jacobian evaluated at the quadrature point, and w(x,) is the weight
corresponding to the quadrature point. Two possible methods for computing the ele-
mental stiffness matrices have been investigated for the case where each processor of
the Connection Machine system represents one nodal point per finite element. The two
approaches are

¢ Each processor is assigned a unique quadrature point. The contribution of all the
quadrature points to the elemental stiffness matrix are evaluated concurrently.
Finally the volume integral is evaluated through a reduction operation on each
element, concurrently.

e Quadrature is performed sequentially on each processor. The matrix-matrix prod-
uct in Equation (24) is performed concurrently.

On a sequential computing system, the pseudo—code for evaluating an elemental stiffness
matrix has the following structure:

loop over all quadrature points
evaluate Jacobian and shape function
derivatives for all quadrature points

loop over rows in elemental stiffness matrix

loop over columns in elemental stiffness matrix
evaluate contribution to entry (row, column)
of the elemental stiffness matrix

end loop

end loop

3area in two-dimensions.
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end loop

Of the two algorithmic approaches introduced above, the former approach assigns a
unique quadrature point to each processor. This corresponds to performing the quadra-
ture loop concurrently. The latter approach corresponds to performing one of the two
inner loops concurrently.

5.5.1 Concurrent quadrature

The first algorithm for computing the elemental stiffness matrices concurrently performs
Gauss quadrature (represented by summation in Equation (24)) in parallel. Whenever
the integral is estimated by complete Gauss quadrature, that is, the number of Gauss
quadrature points is equal to the number of nodal points per finite element full processor
utilization is achieved. The same interpolation function is evaluated concurrently at
the different quadrature points in a step of the algorithm, and all other operations
required for the evaluation of the function subject to quadrature are also uniform across
processors. The contribution of all quadrature points to one matrix element of the
elemental stiffness matrix is computed concurrently on all processors forming the finite
element. A ‘4’-reduction is then required to complete the quadrature, and store the
result at the appropriate processor. This method can be summarized by the following
code fragment:

do concurrently over all quadrature points for all finite elements
evaluate Jacobian and shape function
derivatives for all quadrature points
loop over rows in elemental stiffness matrix
loop over columns in elemental stiffness matrix
evaluate contribution of all quadrature
points to entry (row, column)
‘4’ reduction over all quadrature points
store on processor containing the row of
the elemental stiffness matrix
end loop
end loop
end do

By performing several evaluations before performing the ‘+’-reduction, the com-
munication efficiency can be increased by replacing the ‘+’~reduction by an all-to—all

28



reduction on the set of processors representing the finite element. The above algorithm
for generating the elemental stiffness matrices for the finite element mesh requires O(n?)
parallel arithmetic operations to be performed on every processor, where n is the number
of nodes in one finite element. In addition, u?n? reductions, or u?n all-to—all reduc-
tions, have to be performed over each finite element. Each of these reduction operations

requires O(log(p + 1)) communications [20].

5.5.2 Sequential quadrature

As the order of the finite element (p) increases, the communication time in the algorithm
outlined above begins to dominate the time required to generate the elemental stiffness
matrices. The number of data elements that need to be communicated per processor
(O(n?)). The second algorithm for the concurrent generation of the elemental stiffness
matrices alleviates the communication problem by performing the Gauss quadrature
sequentially on all processors and generating the rows (or columns) of the elemental
stiffness matrix concurrently as follows:

do concurrently over all rows of the elemental stiffness matrix
loop over all quadrature points
evaluate Jacobian and shape function derivatives
loop over columns in elemental stiffness matrix
evaluate contribution to entry (row, column)
end loop
end loop
end do

No communication is required for the above algorithm. In addition, the parallel
arithmetic complexity of this scheme is also O(n?). However, since this algorithm per-
forms the Gauss quadrature sequentially every processor representing a node of the
finite element has to compute the Jacobian and the shape function derivatives for all
quadrature points on the element. This implies that some redundant computations are
performed by every processor. The overhead from the redundant computations is of or-
der O(1) and reduces rapidly as the order of the finite element increases. For example,
for a three dimensional finite element mesh composed of linear elements, the overhead
due to redundant computations is approximately 10 %. This overhead reduces to less
than 4 % for quadratic elements and less than 2 % for cubic elements.
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Conc. quad. Seq. quad.
Arithmetic O(n%) O(n?)
Data communication u?n? x O(log(p + 1)) 0
Redundant computations 0 O(n)

Table 5: Arithmetic and communication complexity for elemental stiffness
matrix generation by concurrent and sequential quadrature.

5.5.3 Comparison and discussion of elemental stiffness matrix generation

Table (5) summarizes the arithmetic and data communication involved for the two
stiffness generation algorithms outlined above. The redundant computations reported
in Table (5) assume that the number of quadrature points used to estimate the volume
integral is the same as the number of nodal points per finite element. As the order
of the finite elements increases, the number of quadrature points needed to evaluate
the volume integral exactly is typically less than the number of nodal points per finite
element. In general, a polynomial of degree 27 —1 in one direction requires » quadrature
points in that direction for exact integration. For example, a polynomial of order five
(p = 5) requires only nine quadrature points in two—dimensions (3 x 3 quadrature
rule) and twenty-seven quadrature points in three—dimensions (3 x 3 x 3 quadrature
rule). Therefore, the amount of redundant computational effort performed by the second
algorithm is really a fraction of n.

The storage requirement for the two algorithms discussed above is the same. Both
algorithms require temporary matrices of size u X n to store the shape function deriva-
tives and the global coordinates of the nodal points. In addition, two u x u matrices
are required on every processor to compute the Jacobian and its inverse.

The computational effort spent in the generation of the elemental stiffness matrices
becomes significant when the stiffness has to be computed several times during the
analysis. This is the case for a non-linear analysis where typically more than half
the computational effort is spent in evaluating the elemental stiffness matrices. In
addition, an implicit dynamic analysis also requires the computation of the elemental
stiffness matrices repeatedly. On the Connection Machine system, with several thousand
processors, the time spent in generating the elemental stiffness matrices using the above
algorithm is reduced significantly and is virtually independent of the number of finite
elements composing the finite element mesh.

5.6 Solving the system of linear equations

The system of linear equations that results after accounting for the global interaction
between the finite elements is sparse in a matrix representation. The sparsity reflects
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the structure of the model, and in the two applications labeling all the nodal points
along one dimension before any point in the next dimension (natural ordering) yields
a matrix with non-zero u X u blocks along some of the diagonals. Traditionally the
system of equations is solved using a band matrix solver. Parallel band matrix solvers
based on a nested dissection ordering [10] are described in [17,19,5]. The solution time
is proportional to the bandwidth and the logarithm of the size of the system. For an
arbitrary sparse system finding a good elimination ordering is a very hard problem. A
previous investigation [6] concluded that a nested dissection ordering often yields an
ordering that has a higher degree of concurrency, but results in a higher fill-in than a
minimum degree ordering.

A direct solver requires global communication, at least in some of the steps. If a
multi—frontal method [7,8] (based on minimum degree or nested dissection ordering),
is used for the solution of the system of equations, then the first step involves local
interactions, but as the elimination process proceeds the interactions extend over a
larger domain. The more balanced the elimination tree, the further apart in the initial
ordering are the data elements involved in the final elimination stages. For a regular
lattice the distance in the linear ordering is v/N for two—dimensional problems, and N 3
in three—dimensions. A systolic algorithm making uniform use of the processors laid
out as a two—dimensional lattice for a two—dimensional application is described in [29].

Recently, the development of pre—conditioning techniques for the conjugate gradient
method has resulted in an increased use of iterative techniques. For an iterative tech-
nique, there is no fill-in, and the data structure created for the representation of the
problem can also be used in the solution process. In the context of the finite element
method, this implies that an explicit assembly of the elemental stiffness matrices into a
global stiffness matrix is not necessary.

For both iterative and direct-solution techniques, the most important issue involved
is the interaction between two finite elements sharing a node. In iterative schemes this
interaction appears as a sparse matrix—vector multiplication, which can be evaluated as
a summation over all finite elements in the mesh

[K{U} = SIKOHUDY, (25)

where [K()] is the elemental stiffness matrix and {U(} is the displacement vector cor-
responding to the i—th finite element. Assembly of the global stiffness matrix is avoided
by the use of Equation (25). Clearly, communication between elementary objects is
required to accumulate the inner-product necessary for most iterative solvers. The im-
plementation of the finite element method described in this article uses the conjugate
gradient method [13] with a diagonal pre—conditioner to solve the linear system. A de-
scription of the algorithm can be found in [11]. One of the main reasons for restricting
attention to a diagonal pre—conditioner was an effort to gain experience with the es-
sential characteristics of data parallel programming in the context of the finite element
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method. A detailed study of the influence of pre—conditioners to the conjugate gradient
method in a data parallel environment is in progress. Briefly, the computations of the
conjugate gradient method are

initialize {U}

repeat until convergence
compute residual : {r} = {F} — [K]{U}
apply boundary conditions
compute acceleration parameters
evaluate new estimate for {U}

end loop

For the implementation described in this article, one processor of the Connection
Machine system represents one nodal point per finite element. The rows of the elemental
stiffness matrix corresponding to a nodal point were stored on the processor representing
the nodal point. The evaluation of the sparse matrix—vector product requires all-to-all
broadcasting for subsets of processors representing nodal points on a finite element, and
reduction over shared nodes since the elemental stiffness matrices are not assembled into
a global stiffness matrix. In addition, the conjugate gradient method requires global
communication during each iteration for the evaluation and broadcast of the acceleration
parameters [18].

¢ all-to—all broadcasting: With the above choice for the elementary object and
the storage scheme, the evaluation of the sparse matrix—vector product in each
conjugate gradient iteration requires that every processor representing a nodal
point on a finite element receives the values of the displacements from all other
nodal points on that finite element. This operation is termed “all-to—all” broad-
casting and can be performed concurrently for all finite elements, and concurrently
within each finite element. The displacement values are accumulated into a vector
in each processor. The vector length is n X u, the same as the size of the elemen-
tal stiffness matrix. Once the vector containing the elemental displacements has
been accumulated, every processor in the lattice performs a simple “on-processor”
matrix—vector multiplication. The final result on every processor in the lattice is
the contribution of one finite element to the local residual corresponding to the
nodal point represented by the processor.

¢ assembly—of-shared—nodes: To obtain the global residual, the local residuals
from elements that share a node must be added together. This is analogous to
the assembly of small right hand side vectors to obtain the global right hand
side vector. Since the assembly procedure (‘+’ reduction) is required only for
faces/edges that are shared; only nearest neighbor communication is required for
this primitive.
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Processor Processor -

per node per element
Vector length u nu
Number of SAXPY operations nu nu

Number of floating-point operations | (2nu —1) X u | (2nu— 1) X nu

Table 6: Floating—point operations for matrix-vector multiplication on two
and three dimensional Lagrange elements when no explicit assembly of the
global stiffness matrix is performed.

When one processor represents one finite element, each processor performs a nu x nu
matrix-vector multiplication. In the one processor per nodal point per finite element
data representation, each processor performs a u X nu matrix—vector multiplication.
Table (6) shows the arithmetic complexity for the two possible choices of the elementary
object when no symmetry assumptions are made.

6 Applications

The three—dimensional finite element method implemented on the Connection Machine
system was used to analyze two applications:

1. A square cantilever plate, fixed on one end and with a distributed force applied
to the free end.

2. A long block with a square cross section. The boundary conditions for this appli-
cation simulated a plane strain uniaxial loading. The discretization of the physical
domain ensured that a Connection Machine system with 32K physical processors
was completely utilized.

The schematic and the boundary conditions of the set—up of the first application are
summarized in Figure (3). The plate dimensions were assumed to be 10 units long, 1
unit thick, and 400 units wide and discretized by first order (eight—node) iso—parametric
elements, yielding a total of 4000 finite elements, 8822 nodal points, and 26466 degrees
of freedom. The above schematic and loading conditions are similar to one of the Ansys
benchmarks reported by Wagner and Swanson [28].

A Connection Machine system (CM-2) with 16K physical processors was used for
the simulation. The processors were configured as a 32 x 2 x 1024 lattice. The split
finite element mesh yields a virtual processor ratio of 4.
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Fixed face

Distributed load on face

Figure 3: A square cantilever plate — geometry and boundary conditions.

6.1 Generation of elemental stiffness matrices

The elemental stiffness matrices were generated concurrently using the algorithm per-
forming the quadrature for a matrix element of the elemental stiffness matrix sequen-
tially. Table (7) shows the CPU timings as a function of the virtual processor ratio and
the floating—point rate for a Connection Machine system with 64K physical processors.
Measurements were made on a 16K configuration with 32-bit floating—point hardware
option operating at a clock rate of 7.0 MHz. As the virtual processor ratio increases
from one to eight, the projected rate increases from ~ 1.1 Gflops s™* to ~ 1.8 Gflops s~*.
This rate is close to the peak performance attainable from the current version of *Lisp.
As the order of the finite element increases, the computational effort required to evalu-

Virtual processor ratio | CPU time (s) | Projected GFlops s T
1 0.334 1.135
2 0.514 1.475
4 0.890 1.704
8 1.675 1.810

Table 7: Measured performance for single—precision stiffness matrix gener-
ation for linear three dimensional iso-parametric elements.
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Order of finite elements | CPU time (s) | Projected GFlops s™*
1 0.33 1.12
2 3.57 1.12
3 19.58 1.13

Table 8: Measured performance for single-precision stiffness matrix gener-
ation for three dimensional iso~parametric elements of different orders at a
virtual processor ratio of one.

ate the elemental stiffness matrices increases as O(n?). Table (8) summarizes the CPU
times recorded for the generation of the elemental stiffness matrices for different order
of the finite elements.

6.2 The conjugate gradient solver

The global stiffness matrix that results from the finite element method is often ill-
conditioned. The condition number of the stiffness matrix increases as the number of
nodal points increase. Therefore, to preclude the possibility of increasing the num-
ber of iterations required for convergence because of round-off, the loading situations
described above were simulated using double—precision floating-point operations. A
double—precision floating-point hardware option is not yet available (projected deliv-

. ery early 1989). Double—precision floating-point operations are performed in software
and therefore are quite slow compared to the single—precision floating—point operations,
which use hardware.

The rate of convergence of the conjugate gradient solver with a diagonal pre-
conditioner is shown in Figure 4. This figure shows two sets of simulations, one cor-
responding to a Poisson ratio of 0.3 and the other corresponding to a Poisson ratio of
0.0. The non—zero Poisson ratio in the first simulation results in a three-dimensional
displacement field. The second simulation reduces to a series of two—dimensional prob-
lems, that is, the component of the displacement field in the width direction is very
small as compared to the other two displacement components. For both simulations,
nearly 2500 iterations are required for the £;-norm of the normalized residual to reach
a value of 1.0 x 1073, ~ 4000 iterations for a normalized residual of 1.0 x 10~°, and
~ 4500 iterations for a normalized residual of 1.0 x 10~® for the square cantilever plate
with 26466 degrees of freedom.

To investigate the influence of discretization on the convergence rate of the conjugate
gradient iteration, the geometry of the square plate and its discretization in the x-y
plane (length—thickness plane) was kept fixed. The number of elements in the z direction
(width dimension) were varied from 1 to 400. Figure (5) shows the number of iterations
required for a residual of 1 x 1078, With a simple diagonal pre—conditioner the number
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Poisson ratio = 0.3

4000.

Poisson ratio =

Figure 4: The £,-norm of the normalized residual as a function of the conjugate gradient
iteration for the square cantilever plate (Mesh discretization : 10 x 1 x 400); I is the
conjugate gradient iteration number and R is the logarithm (base 10) of the normalized
global residual.

I

4000 .+
3000.4 Log (Residual) = ~8.0
2000.4 Log(Residual) = -4.0

1000.4

106. 200. 200. 400.

Figure 5: Number of conjugate gradient iterations (I) required for the normalized global
residual to reach a value less than 1 x 10™* and 1 x 10~2 as a function of the number of
linear brick elements (N) in a 10 X 1 x N discretization.
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Figure 6: Number of conjugate gradient iterations (I) required for the normalized global
residual to reach a value < 1.0 for various discretizations (N) in the width dimension.

of iterations required for convergence grow faster than linearly as the number of degrees
of freedom increase in the width dimension. From Figure (4) it is also clear that the
normalized residual is > 1.0 for a significant portion of the iteration process. Figure (6)
shows the number of conjugate gradient iterations required for the normalized residual
to achieve a value of than < 1.0 as a function of the width discretization. The number
of conjugate gradient iterations required for the normalized residual to fall below 1.0 is
linearly dependent on the number of elements in the width dimension. The need for a
better pre-conditioner is obvious.

The CPU time taken by the iterative solver for each conjugate gradient iteration
can be divided into three parts:

titeration = tall-to-all +ktassembly + tcomputation:

where t,]]_to-ajl is the communication time for a segmented “all-to-all” broadcasting,
tassembly is the time spent in assembling the residual vector, and tcomputation is the
time spent in computing the sparse matrix—vector product, the acceleration parameters
and updating the solution. Table (9) shows the CPU time for the three main sections
of the solver during one iteration of the conjugate gradient method. The timings re-
ported in this table are for double—precision floating—point operations. Consequently,
the communication timings reported are also for 64-bit words.

Based on the timings obtained for the generation of the elemental stiffness matrices,
the time taken on a Connection Machine system with double-precision floating—point
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Virtual Total for
processor | “all-to—all” | Assembly | Computations one
ratio broadcasting iteration
1 0.013 0.015 0.292 0.320
2 0.022 0.027 0.573 0.622
4 0.042 0.050 1.130 1.222

Table 9: CPU time (in s) for the three main sections of the conjugate gra-
dient solver using double—precision (software) for three—dimensional eight
node iso—parametric finite elements.

Virtual processor ratio | “Speed-up” factor
1 12.7
2 16.4
4 18.8

Table 10: Estimated “speed—up” factor for the conjugate gradient method
on a Connection Machine system equipped with double—precision float-
ing-point hardware.

hardware is estimated by defining a speed-up factor

tdp
2tsp

speed—up =

where tdp is the CPU time for stiffness matrix generation in double—precision with
no floating-point hardware and tsp is the CPU time for stiffness generation in single—
precision with floating-point hardware. The CPU times for the stiffness generation are
particularly useful for estimating the speed—up factor because there is no communication
in this segment of the formulation. Moreover, the computations that are needed to
evaluate the elemental stiffness matrices are sufficiently intensive so that the initial
set up do not influence the timings. The estimated speed—up factors as a function
of the virtual processor ratio are shown in Table(10). Therefore, the CPU time for a
conjugate gradient solver with double—precision floating—point hardware, and a virtual
processor ratio of one, is expected to be in the range of 0.04-0.05 s per iteration. These
numbers predict that the total CPU time required by the conjugate gradient solver with
a diagonal pre-conditioner, for the finite element mesh described above, is in the range
250-300 s, which compares very favorably with the CPU times reported by Wagner and
Swanson (28], despite the poor convergence with the diagonal pre-conditioner.

The physical domain for the second application was chosen such that the primary
storage of Connection Machine system was fully utilized. A finite element mesh with
1 element in the x—direction, 1-element in the y-direction, and 16384 elements in the
z—direction was constructed so that the total number of degrees of freedom were 196620.
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This geometry was used to simulate plane strain uniaxial stress loading on a Connection
Machine system with 32K physical processors. To accommodate the “split” version of
the finite element mesh, the Connection Machine system was configured as a 2 x 2 x
32768 lattice of physical processors. This machine configuration corresponds to a virtual
processor ratio of four. The CPU times recorded for the generation of the elemental
stiffness matrices and the time per iteration for the conjugate gradient solver are very
close to the timings reported above for the 10 x 1 x 400 discretization of the square
cantilever plate.

7 Conclusions

The domain discretization, the evaluation of the elemental stiffness matrices and the
solution of the linear system of equations can be performed with a high degree of con-
currency. From the analysis of data parallel algorithms for the finite element method,
and its implementation on the Connection Machine system the following conclusions
can be made:

e The degree of concurrency obtained with a processor assigned to a nodal point
per finite element is a factor of ~ (p + 1) greater than the degree of concurrency
obtained when a processor corresponds to a finite element, for three-dimensional
brick elements. For first order elements (p = 1), the degree of concurrency is a
factor of 8 greater in the three dimensional case and a factor of 216 greater for
fifth order elements.

e The storage requirement per processor is a factor of ~ (p + 1)® higher for a pro-
cessor per finite element compared to one processor per nodal point per element.
Symmetry of the stiffness matrix is more easily exploited with one processor per
finite element. With a local storage of 8K bytes per processor the maximum order
of brick elements that can be used when one processor represents one nodal point
per element is four, but only one when a processor represents a finite element.
The total storage requirement is the same for the two choices of the elementary
objects.

e The maximum number of degrees of freedom that can be represented in the pri-
mary storage of the Connection Machine system model CM-2 with 512 Mbytes
of storage is ~ 780,000 with three-dimensional first order brick elements, and
~ 60,000 for fourth order elements.

e When the elemental stiffness matrices are not explicitly assembled into a global
stiffness matrix the computations for all nodes are the same for all elements of the
same order.
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e Lagrange type elements can make effective use of the lattice emulation capability.
Serendipity elements require a more complex mapping for good processor and
storage utilization.

e When one processor is assigned to a nodal point per finite element, data elements
of the elemental stiffness matrices can be computed concurrently without commu-
nication by performing the quadrature for a single matrix element sequentially,
but the quadrature for different matrix elements concurrently. For the higher level
languages the peak arithmetic speed of 1.1 — 1.8 Gflops s™! is achieved at a clock
rate of 7T MHz.

The two applications described in this article assume that one processor represents
one nodal point per finite element. The domain for the two applications were discretized
by brick elements. The discretization was computed using an algorithm by Steger and
Sorensen and Jacobi iteration. The poor convergence rate of the Jacobi method was of
no consequence because of extremely good initial guesses for the nodal coordinates.

For the solution of the linear system, a conjugate gradient method with a diagonal
pre—conditioner was used. In the context of a data parallel environment an iterative
solver has several advantages, namely

e the data structure used for the evaluation of the elemental stiffness matrices can
also be used by the solver. There is no fill-in.

e the solution algorithm is highly concurrent.

e the sparse matrix-vector product only involves local interactions in the physical
domain.

With Lagrange type elements, the lattice address mode and lattice communication
primitives of the Connection Machine system the time per conjugate gradient iteration
for linear brick elements for a finite element mesh with ~ 400,000 degrees of freedom is
1.25 s when the double-precision floating—point operations are performed in software.
The corresponding time per conjugate gradient iteration is projected to be about 0.15 s
with double-precision floating-point hardware (currently only single-precision floating-
point hardware is available). The elemental stiffness matrices were not assembled into
a global stiffness matrix. Instead the residuals were assembled during each step of the
iteration process. The performance for the stiffness matrix computation was in the
range 1.1 - 1.8 Gflops s™!, and for the iterative solver the performance was in the range
0.5 - 0.7 Gflops s™* for single-precision, hardware supported floating-point arithmetic.

Further research is currently directed towards finding optimal pre—conditioners for
the system of equations in a data parallel environment. Research is also directed for
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implementing direct solvers to be used in the pre—conditioning phase, or for the com-
plete solution. The ability to efficiently handle multiple right hand sides is yet another
motivation for a careful study of direct solvers.
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