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An accelerated kernel-independent fast multipole
method in one dimension

P.G. Martinsson and V. Rokhlin

1. INTRODUCTION

We consider the problem of rapidly evaluating the sum

N
(1.1) umz-ZK(a:m,xn)qn, form=1,...,N,
n=1
given a set of points (mn)f:’:l in R, a kernel K that is smooth away from
the diagonal, and a set of real or complex numbers (qn)ﬁ’:l. We refer to the
numbers g, as “sources”, the numbers u,, as “potentials”, and the points z,
as “source locations”.

The sum (1.1) can be straight-forwardly evaluated using O(N?) floating
point operations. In many applications, this cost is prohibitively large, and
a number of methods that reduce the cost to O(N) or O(N log”® N) have
been developed, [1, 8]. In this paper, we describe an O(N) method that is
a development of the fast multipole method (8, 9]. The changes introduced
enable the application of the method to a large class of kernels, and makes
the method significantly faster than existing methods for the case where
the sum (1.1) has to be evaluated several times for a fixed set of locations
{z,}N_, (see Section 6).

There are two principal differences between the method presented here
and the original fast multipole method of [8]. The first concerns the way
sources and potentials are represented. While the fast multipole method re-
lies on an analytic properties of the kernel, the method presented here relies
on a pre-computation step that adaptively constructs representations that
are optimized for the given kernel, and the given source locations. The sec-
ond difference concerns the treatment of the interactions between adjacent
sub-intervals on the finest level of sub-division. While the original fast mul-
tipole method evaluates such interactions directly, the representations used
by the method of this paper enables the compression of such interactions.

The method presented here is similar to the methods of (7, 14, 23] in
that they all rely on adaptively computed representations, and thus work
for a wide range of kernels. While the methods of [7, 23] rely on the singu-
lar value decomposition to compress the kernel, and [14] relies on the QR-
decomposition, this paper is based on a technique described in [4, 15, 16]
- that we refer to as “skeletonization”. Similar techniques were previously
used in [17, 18, 22].

This paper is structured as follows: Section 2 lists some results from nu-
merical linear algebra that will be of use. Section 3 describes the adaptive
technique for the representation of sources and potentials that the current
method relies on. Section 4 describes a fast summation scheme based on
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the same data structures as the original fast multipole method, but using
the representation described in Section 3. Section 5 describes an additional
acceleration of the method based on compressing interactions between all
‘boxes, including adjacent ones. Section 6 reports the results of several nu-
merical experiments, and Section 7 summarizes the results.

Remark 1. This paper deals with the one-dimensional case. Extensions of
the method to higher dimensions are under investigation and will be reported
at a later date.

2. PRELIMINARIES

The fast summation technique described in this paper achieves acceler-

ation by approximating off-diagonal blocks of the matrix [K(zp, a:n)]ﬁm=1

in (1.1) by low-rank matrices. The particular matrix factorization we use to
represent the low-rank matrix was described in [12] and [4]. The following
lemma summarizes the facts needed for our purposes.

Lemma 1. Let A be an M x N matriz of rank k with columns C1,...,CN
and rows Ry, ..., Ry, so that
R:
A=[CiOxl=|
Then
(2.1) A = Aco) 0 proj,

where proj is a k x N matriz that contains the k x k identity as a submatriz,
and where Aco is an M X k matriz consisting of k columns of A,

Acol = [O‘nla [ER) an]
Furthermore,
(2.2) A = eVal [e] Arow,

where eval is an M X k matriz that contains the k x k identity as a submatriz,
and where Arow s a k X N matriz consisting of k rows of A,

Ry
Arow =
R,

Moreover, no elements of eval or proj have magnitude larger than 1.
Remark 2. Since the matrix proj contains a k x k identity matrix it can be
applied to a vector using k x (N —k&) multiplications and additions. Similarly,

the matrix eval can be applied to a vector using k x (M — k) multiplications
and additions.
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Remark 3. As a direct consequence of Lemma 1, the condition number
of proj is bounded by /1 + k(N — k) and the condition number of eval is

bounded by /1 + k(M — k).

Remark 4. For simplicity, Lemma 1 is stated only for the case where the
matrix A has exact rank k. Similar factorizations can be constructed for
matrices of approximate rank k, see [4].

Remark 5. Methods for computing the factorizations in Lemma 1 are de-
scribed in [4, 12]. The computational cost is typically O(M Nk) but can in
rare cases be slightly higher.

3. REPRESENTATION OF FUNCTIONS VIA TABULATION

3.1. Outline. At the core of the original fast multipole method is a tech-
nique for compactly representing sources and potentials. A source distribu-
tion inside a box is represented by a multipole expansion about the center
of the box. From this expansion, the potential caused by the source dis-
tribution at distant target points can be evaluated. For a given accuracy,
only a small number of terms in the expansion are needed, regardless of
how many sources made up the original distribution. In the same way that
source distributions are efficiently represented via multipole expansions, po-
tentials are represented by giving the expansion coefficients in an expansion
in harmonic polynomials.

In this section, we describe an alternative technique for representing
sources and potentials. In order to describe the technique, we consider a sim-
ple model problem: Assume that we are given N source locations (y,)2_; in
aset b, M target locations (,,)M_, in a set a, an interaction kernel K(z, y),
and that for a given vector of sources ¢® = (g»))_;, we wish to determine
the vector of potentials u® = (um)M_, given by

(3.1) u® = direct(a, b) ¢°,

where direct(a, b) is the M x N matrix with entries K(zm,y,). We demon-
strate that if the matrix direct(a,b) has rank k (to within some precision
€), then it is possible to choose a subset of k source locations (yn, );-;1 with
the property that the potential u® can be replicated at all source points by
placing some “proxy” sources on the points y,;. These proxy sources form
the representation of the original source distribution. Similarly, it is possible
to choose a subset of k target locations (zm,)¥_; with the property that if
the potential is known at these k points, then it can be interpolated to all
the remaining points. The potentials (umi)f=1 form the representation for
the potential u®.

The representation technique described in this section has two principal
advantages over techniques based on analytic methods, such as multipole
expansions: (1) It is cheaper to construct the proxy sources that represent
a source distribution than it is to compute the corresponding multipole
expansion (or any other similar representation). (2) The operator that maps
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FIGURE 1. The computational domain described in Section 3.2.

a representation for a source distribution to a representation for a potential
(sometimes called a “translation operator”) is a submatrix of the original
matrix of interaction direct(a,b). As a result, this operator need never be
separately constructed or stored.

3.2. Notation. We assume that we are given a computational domain €2,
containing a number of source locations. For a given subset b C 2, we let
(yn)I_, denote the locations inside b, and we let ¢® = (gn))_, denote a set
of sources located at the points (y»)2_,. We let a denote the set of all points
z that are well-separated from b, meaning that dist(z,b) > diam(b), where
diam(b) = sup, ,ep [y — /|- We let (zm)M_, denote the locations inside a,
and let u® = (u,)M_; denote the potential on a induced by the charges ¢
(so that u® and g¢® satisfy (3.1)). See Figure 1.

3.3. Construction of the representation. We first consider the task of
evaluating a potential in a caused by a set of charges in b. To this end,
we form the M x N matrix A = direct(a,b) with entries K(Zm,yn), We
determine its e-rank k, and form a k x N matrix proj(b), and an index
vector (nj);?zl such that, c¢f. (2.1),

A = Acol © proj(b) + O(e),

where Ao is the M x k matrix whose j'th column is the n;’th column of
A. Then given any charge distribution ¢® on b, we form the vector

(3.2) ¥° = proj(b) ¢* € CF.

The vector ¥ has the property that the potential in a caused by the charge
distribution qb can to within precision ¢ be reconstructed from P, since

(3.3)  u®=Aq" = (Acel 0 proj(b) + O(e)) ¢® = Acar ¥* + O(e).

We say that v° is the outgoing representation of ¢°, and that the points
(Yn; )f=1 form the outgoing skeleton of b.

We next consider the task of evaluating a potential in b caused by a charge
distribution in a. To this end, we form the N x M matrix B = direct(b, a)
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‘with entries K (yn, Zm), we determine its e-rank k, and form an N x k matrix
eval(b), and an index vector (n;)%_; such that

B = eval(b) o Brow + O(e),

where Biow is the k x M matrix whose i’th row is the n;’th row of B. Then
given any distribution ¢* of charges on a, we form the vector

(3.4) #® = Biow q* € CF.

The vector ¢® has the property that the potential on b can to within precision
e be reconstructed from ¢° only, since

(3.5) u = Bg® = (eval(h) o Brow + O(g)) g7 = eval(b) ¢* + O(e).

We say that ¢® is the incoming representation of u, and that the points
(Yn,; ),__1 form the incoming skeleton of b.

Remark 6. The numbers in the vectors %° and ¢® admit simple heuristic
interpretations: Writing out equation (3.3) componentwise, we find that

k
(3.6) ufn=ZK(xm,ynj)¢;?+O(e), m=1,...,M.
j=1
In other words, the numbers 1 can be interpreted as charges that replicate
the potential u® when placed at the skeleton points y,;. Analogously, writing
out equation (3.4) componentwise, we find that

M
B7) = K@n,tm)aa+0(E) = +0(), i=1,..,k

m=1

In other words, the number qbf is simply the potential at the point y,,.

Remark 7. For many kernels it is possible to prove that when two sets
a and b are separated by some finite distance, there exist basis functions
{fi}Y;=1 and {g;};_, such that

P

(3.8) sup  |K(z,y) = > fi()g;(v)| < e,
(z,y)€Eaxb j=1

where p tends to scale as a small power of |loge| as € — 0. When (3.8)
holds, the number p provides an upper bound on the numerical rank of the
matrix of interaction direct(a,b), regardless of the number of target and
source points and their locations. Moreover, when a formula like (3.8) can
be constructed using analytical properties of the kernel, it can be used to
accelerate the computation of proj and eval, ¢f. Section 3.6.

Remark 8. In most environments, it is possible to construct the represen-
tations (3.3) and (3.5) in such a manner that the outgoing and the incoming
skeletons are identical, see [4]. This causes only a minor increase in the
number p.
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3.4. Converting outgoing to incoming representations. In this sec-
tion, we construct a matrix that converts the outgoing representation for a
set of charges in one box, to an incoming representation for the potential
induced by this set of charges in a different box.

Given two well-separated boxes a and b in 2, suppose that we are given the
outgoing representation ¢® = (z,bj);?b:l for a charge distribution ¢® in b, and
that we wish to determine the incoming representation ¢ for the potential
u® induced by ¢gb. We let (zm)M_, and (y,)]_, denote the locations in a and
b, and we let (mmi)fgl and (Yn, fﬁ’__l denote the corresponding skeletons. Then
equation (3.7) implies that ¢¢ = ug, +O(e), and equation (3.6) implies that
Uy, = Z?’;l K(Zmy, Yn;) 1,!);? + O(¢). In other words, letting oi(a, b) denote
the ko X kp matrix with entries K(zm,, yn;), we find that

(3.9) #° = oi(a,b) ¥° + O(e).

We refer to the matrix oi(a,b) as an outgoing-to-incoming translation op-
erator. This operator is a submatrix of direct(a,b). One ramification of
this fact is that oi(a, b) need not be explicitly constructed. Since the kernel
K(z,y) is known, oi(a, b) is uniquely defined by the incoming and outgoing
skeletons of a and b.

Remark 9. The matrix direct(a, b) is related to the matrices eval(a), oi(a, b),
and proj(b) via the relation

(3.10) direct(a, b) = eval(a) o 0i(a, b) o proj(b) + O(e).

To prove (3.10), we first note that direct(a, b) is defined by the relation
(3.11) u® = direct(a, b) ¢°.

Moreover, (3.5), (3.9), and (3.2), imply that

(3.12) u® = eval(a) ¢* + O(e),

(3.13) ¢* = oi(a,b) ¥® + O(e),

(3.14) 9? = proj(b) ¢*,

respectively. Since (3.11) must hold for every ¢°, the equations (3.11), (3.12),
(3.13), and (3.14) together imply (3.10). (We remark that equation (3.10)
is analogous to equation (3.1) in [4].)

3.5. Merging the representations of two boxes. In this section we
describe a procedure for the construction of the outgoing representation of
a set b if the outgoing representations are known for two sets b; and by such
that b= by U bs.

We let a denote the set of points that are well-separated from b, and for
J = 1,2, we similarly let a; denote the set of points that are well-separated
from b;. It follows that a C a;. Typically, a is strictly smaller than a;.

We let u® denote the potential induced on the locations (z,)Y_; C a by
two given charge distributions in b; and by with outgoing representations (1)
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and (. Furthermore, we let ) and y(® be the corresponding outgoing
skeletons. (We recall that y®) and y(® are subsets of the original sets
of locations in b; and by.) Merging these two pairs of vectors, we form
¥ = [0, 9®], and § = [y, y?). Since a is wholly contained in a; N as,
equation (3.6) implies that

k1+k2
(3.15) ul, = Y K(@m, i) +0(), form=1,..,M,
j=1

where k; and k; are the lengths of /(1) and ¢(?). We rewrite equation (3.15)
as a matrix-multiplication by introducing the M X (k; + k2) matrix A with
entries Apj = K(Tm,95),

(3.16) u® = A¢ + O(e).

Equation (3.15) says that ¥ is a valid outgoing representation for b with
an associated outgoing skeleton §. However, when a contains fewer target
locations than a; U ag (which is typically the case), this representation is
likely to be longer than necessary. To be precise, the length of an optimal
representation equals the e-rank of the matrix A in (3.16), which we denote
by k. To obtain an optimal representation, we factor A as in (2.1),

A=A 0 Z+ 0(e),

where Z is a k X (k1 + k2) matrix, and Ao consists of k columns of A. We
denote the indices of these by (j;)¥_;. An optimal outgoing representation
is then the vector ¢ = Z 1,5; it is associated with the outgoing skeleton
(9;.)%_,. Letting oo(b, b;) denote the matrix formed by the first k1 columns
of Z, and letting the remaining columns form oo(b, b3), we find that

¥ = 00(b, b1) ¥ M + 00(b, by) 2.

Analogously, we construct matrices ii(b,b) and ii(bg,b) that construct
the incoming representations ¢(!) and ¢(®) for b; and by from the incoming
representation of b via the formulas

(3.17) oM =ii(by,b)¢*, and ¢ = ii(bg, b) ¢°.

We refer to the matrix oo(b,b;) as an outgoing-to-outgoing translation
operator, while the matrix ii(b;, b) is referred to as an incoming-to-incoming
translation operator.

3.6. Efficient construction of translation operators. The techniques
for constructing translation operators that were given in Sections 3.3, 3.4,
and 3.5 could potentially be quite expensive. For instance, when computing
the operator proj(b) in Section 3.3, we considered the interaction between
the set of locations in b, and the set of all locations in ) that are well-
separated from b. The second set is typically very large. However, in most
instances of practical interest, the process can be accelerated by replacing
this very large set, by a small set of pre-determined locations in a that act
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as proxies for the actual charge locations. This acceleration technique works
for kernels satisfying the following:

Assumption I: Let b denote a subset of a computational domain Q, and let
a denote the set of points in Q0 that are well-separated from b. We assume
that for any positive number €, there exist interpolation points (z)0_; C a
and functions (p;)t_; such that

P

(3.18) supsup |K (z,9) = ), ¢i(2)K (z1,9)| <.

z€a yeb i=1

The number of terms required, p, is assumed to satisfy
p < C|loge|,

as € — 0. For non-symmetric kernels, we also assume that there ezist points
(wi)2_; C a and functions (y;)}_; such hat

P
(3.19) SIéPSthK (v,2) = > K(y, wi)vi(z)| <e.
zEa y

i=1
Remark 10. It is shown in [16] that Assumption I holds for any kernel that
is separable in the sense described in Remark 7.

‘Suppose now that the kernel K satisfies Assumption I. Then for for any
given set b C (2, one can quite inexpensively construct an outgoing represen-
tation that is valid for evaluating potentials at the points z;. Assumption I
then assures us that this representation is also valid at any other point that
is well-separated from b, since the potential there can be interpolated locally
from the potential at the 2;’s. Incoming representations can be constructed
analogously.

Remark 11. In general, the cost of constructing the matrix proj(b) and
determining the outgoing skeleton (yy, );?=1, is O(kNM) where k is the e-
rank of interaction, N is the number of points in b, and M is the number
of locations that are well-separated from b. When the kernel K satisfies
Assumption I, this cost can be reduced to O(kNp), with no dependence on
M.

3.7. Representations with extended domains of validity. For a given
box b, we have so far constructed outgoing and incoming representations
that are valid with respect to locations in the computational domain that
are separated from a box b by at least the diameter of b. This require-
ment of a “buffer” zone is a standard feature of fast summation techniques.
However, the particular technique for representing functions described in
Section 3.3 can also be used to compress the interaction between adjacent
boxes. The resulting representations are very similar to the ones constructed
for the interactions between separated boxes. However, the expansions are
longer, and should not be used unless necessary. We call such unbuffered
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representations “rich representations”, and denote the outgoing and the in-
coming rich representations by ¥®, and ®°, respectively. The corresponding
projection and evaluation operators are called Proj, and Eval (capitalized),
respectively, so that for a given box b

(3.20) ¥ = Proj(b) ¢,
(3.21) u® = Eval(b) &°.

The representation ¥° in (3.20) can be used to compute the potential in-
duced by ¢° at any location outside b, while the representation ®° may be
used to reconstruct any potential u® induced by a distribution of charges at
any of the locations outside b. '

Remark 12. In the original FMM, and its variants, the existence of a buffer
between source and target boxes was necessary to assure that the classical
representations (multipole series, etc.) are valid, and have controlled con-
vergence rates. Here, we eliminate the need for the buffers by constructing
the representations via numerical techniques (as opposed to using analytic
properties of the kernel). Such representations are possible because they are
not required to be valid everywhere in the boxes, but only at a finite number
of source and target points.

Remark 13. If for a given box b, we wish to compute both its rich and its
regular outgoing representations, the most efficient way for doing so is to
first compute the rich representation ¥’ and then compute the regular one,
Y®, from it. '

In order to construct the matrix that maps WP to 4®, we first construct
the matrix A with entries A, = K(zm,y;), where (yj)]K=1 are the points
in the rich skeleton, and (xm)%___l is a set of well-separated target points.
Letting k denote the e-rank of A, we factor A as in (2.1),

A = Ao o proj(b) + O(e),

where Ag) is the M x k matrix consisting of the columns of A with indices
(ji)%_,, and proj(b) is a k x K matrix. If U? is an outgoing representation
associated with the rich outgoing skeleton (yj)§(=1, then

* = proj(b) ¥

is a regular outgoing representation for b associated with the outgoing skele-

k
ton (yji)izl'
Analogously, we construct an operator eval(b) that constructs a rich in-
coming representation from a regular one:

(3.22) 3° = eval(b) 4°.

Other types of translation operators involving rich representations can be
constructed, but are not needed for the purposes of this paper.
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4. A KERNEL-INDEPENDENT FAST SUMMATION TECHNIQUE

4.1. Problem formulation. In this section, we consider the problem of
evaluating the sum

N
(4.1) u,-zZK(a:,—, x;) ¢, i1=1,...,N,

Jj=1

given a set of real numbers (z;)} ;, a set of real or complex numbers (g;) f_’__l,

and a kernel K(z,y). We call the numbers z; “locations”, the numbers
g; “charges”, and the numbers u; “potentials”. The numbers z; are all
contained in an interval 2 called the “computational domain”.

We focus on the situation where the potentials (u;)Y; are to be evaluated
for a sequence of charge distributions (g;)¥, associated with a single set
of locations (z;)X;. In this environment, we spend a moderate amount
of computational effort on optimizing the representations and the various
translation operators used for the given set of locations. Once this has been
done, each potential evaluation can be performed rapidly.

The summation technique presented in this section follows the same tem-
plate as earlier versions of the fast multipole method, [8, 10, 7, 5]. The only
difference between these methods, and the method presented in this section
is that a different representation for potentials and sources is used. In Sec-
tion 5, a further acceleration of the method is described. This acceleration
is obtained by compressing the interactions between adjacent regions.

4.2. Tree structure. Given a computational domain Q = [Zief;, Tright) C
R, and a set of locations (mn)ﬁ’:l C , we construct an adaptive partitioning
of the domain into subintervals in such a way that no interval contains more
than Ny locations, for some given (small) integer No. We do this via a
hierarchical subdivision process in which any interval holding more than Ny
points is split into two halves, and then the process is continued with each
half that in turn contains more than No points. If a = [z}g, Zhgy) Is an
interval resulting from this. process, then

2l = Tiete + (7 — 1) 27 (Tright — Tret)

c -1
Tyight = Tleft +J 2 (Tright — Tiett)

for some number [ = 0,1,2,..., and some number j = 1,2,...,2". The
number [ is called the “level” of the box a and denotes how many times €2
has been cut in half to reach a.
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For every box a, we construct the following lists of other boxes:
Lchildren(a): For a non-leaf box a, this is a list of all boxes b that are
contained in a, and that are separated from a by one level only.
If b € Lehildren(a), we say that b is a “child” of a, and that a is
a “parent” of b. For a leaf box, Lehidren (@) is empty.

Lejose(a): For a leaf-box a, this is a list of all leaf boxes b that are not
well-separated from a. For a non-leaf box, Lcjose(a) is empty.
Lo(a): The list of all boxes b on the same level as a that are well-separated

from a, but whose parents are not separated from the parent of a.
(This list is known as the “interaction list” in the original FMM.)

4.3. Outgoing and incoming representations. For any box a, we let
the vector of charges inside the box be denoted by g%, and with proj(a) the ;
matrix defined in Section 3.3, we let the vector |

(4.2) ¥* = proj(a) ¢%,
denote the outgoing representation of a. Similarly, we let uf  denote the

potential on a caused by all charges that are well-separated from a. An
incoming representation for a is a vector ¢* such that

(43) uf, = eval(a) ¢ + O(e),
where the operator eval(a) is defined in Section 3.3.

Remark 14. In the original fast multipole method, the function of the
vector 1* was performed by a vector of multipole coefficients representing
g%, and the function of ¢* was performed by a vector of expansion coefficients
for u, in a basis of harmonic polynomials. '

4.4. Hierarchical construction of representations. Both the incoming
and the outgoing representations can be computed recursively. Specifically,
if a is any non-leaf box a, its outgoing representation can be computed from '
the outgoing representations of its children via the formula

(4.4) = > oo(a,b)¢’,

bELchildren(a) I
where the matrices 0o(a, b) are defined in Section 3.5. Similarly, if a is any ‘
box other than the root box, the incoming representation ¢ (representing
the potential uf, . caused by charges in all boxes that are well-separated from
a) can be constructed by combining the incoming potential of its parent b
with the outgoing potentials of all boxes in the interaction list of a via the
formula

(4.5) ¢ =1ii(a,b) "+ > oi(a,c) 95,
cGLg(a.)

where the list L2(a) is defined in Section 4.2, the matrix ii(a, b) is defined in
Section 3.5, and the matrices oi(a, c¢) are defined in Section 3.4.
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4.5. Pre-computation. Given a set of locations (z,)_; and a kernel func-
tion K (z,y), the pre-computation stage consists of the following steps:

(1) Divide the computational domain into a tree structure, as described
in Section 4.2.

(2) Construct the lists described in Section 4.2.

(3) Loop over all leaf boxes. For each box a, construct the regular outgo-
ing and incoming skeletons. Simultaneously, determine the matrices
proj(a) and eval(a), described in Section 3.3.

(4) Loop over all non-leaf boxes, going from finer to coarser levels. For
each box a, construct the regular outgoing and incoming skeletons by
merging the skeletons of its children b;. Simultaneously, determine
the matrices oo(a, b;), and ii(b;, a), as described in Section 3.5.

(5) Loop over all boxes a, and then over all elements b in the list Lo(a).
For each such pair (a,b), construct the translation operator oi(a, b),
as described in Section 5.3.

The total cost of the steps described above depends on the kernel and on
the charge distribution. If the kernel satisfies Assumption I in Section 3.6,
then the computational cost is typically either O(N), or O(Nlog N), and
the amount of storage required is typically O(N), cf. Remark 15.

4.6. A general fast multipole method. We have now assembled the tools
for computing the sum (4.1) through two passes through the hierarchical
tree; one upwards, and one downwards.

(1) Sweep over all leaf boxes a. For each box, construct its outgoing
representation from the values of the charges inside it, cf. (4.2):

¥ = proj(a) ¢°.

(2) Sweep over all non-leaf boxes a, going from finer to coarser levels.
For each box a, construct its outgoing representation by merging the
outgoing representations of its children, cf. (4.4):

Y= > oo(a,b)y’.

bELcnildren (@)

(3) Set ¢" = 0 for the root box r. Then loop over all boxes (including the
root box), going from coarser to finer levels. For each box a, form its
incoming representation by combining the incoming representation
of its parent, box b, with the contributions from the boxes in Lo (a)
(its “interaction list”), cf. (4.5):

¢* =ii(a,b)¢° + D oi(a,c) 9"
ceLlia(a)

(4) Sweep over all leaf nodes a. For each node, form the potential u®
' by evaluating the incoming representation and directly adding the
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contributions from the charges inside a and in all boxes that are not
well-separated from a, cf. (4.3):

u® = eval(a) ¢* + direct(a, a) ¢* + Z direct(a, c) ¢°.
c€Lclose(a)

For kernels satisfying Assumption I, the computational cost of the steps
described in this subsection is typically O(N).

Remark 15. It is possible to construct (highly non-uniform) charge distri-
butions for which the computational cost of the steps described in Sections
4.5 and 4.6 exceed O(N). A discussion of this phenomenon, and a mod-
ification to the scheme that makes it always retain O(N) complexity, are
described in [19].

5. AN ACCELERATED KERNEL INDEPENDENT FAST MULTIPOLE METHOD

5.1. Outline. In this section, we again consider the problem of rapidly eval-
uating the sum (4.1). We describe a technique for doing so that is similar
to the technique described in Section 4, but with the difference that even
interactions between adjacent boxes are compressed. To enable this addi-
tional compression, we keep track of four representations for each leaf box;
the regular outgoing and incoming ones described in Section 3.3, and also
the rich outgoing and incoming representations described in Section 3.7.
The rich representations are used exclusively for the purpose of evaluating
interactions involving at least one leaf box.

The asymptotic cost for the algorithm described in this section scales in
the same way with N as the cost for the algorithm described in Section
4.6 (typically, O(N log N) for pre-computation, and O(N) for evaluation).
However, the constants involved are smaller.

5.2. Tree structure. The accelerated algorithm uses the same tree struc-
ture that was described in Section 4.2. In addition to the lists described in
that section, the accelerated algorithm also uses the following three lists:

Li(a): For a leaf box a, this is a list of the leaf boxes that directly
border a. For a non-leaf box, Lj(a) is empty.

L3(a): For a leaf box a, this is a list of all boxes on finer levels than a
that are separated from a but whose parents are not separated
from the parent of a. For a non-leaf box a, Lg(a) is empty.

Ls(a): The dual of Ls. In other words, b € Ly(a) if and only if a € L3(b).

5.3. Translation operators. The algorithm described in Section 4.6 uti-
lizes a single type of outgoing-to-incoming translation operator. This op-
erator maps a regular outgoing representation ¥%® to a regular incoming
representation ¢ for all pairs (a,b) such that a € Lg(b). This translation
operator is also used in the accelerated algorithm described in this section,
we label it oip(a,b). The accelerated algorithm requires three additional
outgoing-to-incoming translation operators: For each pair (a,b) such that
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b € Li(a), the operator oij(a,b) maps a rich representation to a rich rep-
resentation. For each pair (a,b) such that b € L3(a), the operator oiz(a, b)
maps a regular representation to a rich representation. For each pair (a, b)
such that b € Ly(a), the operator oig(a,b) maps a rich representation to a
regular representation. Each matrix oi;(a, b) is the restriction of the origi-
nal matrix of interaction direct(a, b) to the relevant outgoing and incoming
skeletons for a and b, respectively.

5.4. Pre-computation. The pre-computation for the accelerated algorithm
is very similar to the pre-computation described in Section 4.5. The differ-
ence is that for all leaf nodes, we compute both the regular and the rich
skeletons (and the corresponding operators eval and proj). We also de-
termine the additional lists Lj, L3, and L4, as well as the corresponding
" translation operators oij, oi3, and oig.

5.5. Potential evaluations. After the particle locations (z,))_,, and the
kernel K (z,y) have been fixed, and the pre-computation described in Sec-
tion 5.4 has been completed, the following steps will compute the vector of
potentials (u,))_; from a vector of charges (g,)2_,, (cf. (4.1)), to within a
precision of computations €:

(1) Loop over all leaf boxes. For each box a, compute ¥® and then ¢*:
U?® = Proj(a) ¢®*, and then ® = proj(a) ¥*.

(2) Loop over all non-leaf boxes, going from finer levels to coarser. For
each box a, compute 1* by combining the outgoing representations
of its children, '

Pt = Z o0o(a, b) ¥°.
b€Lchildren(a)
(3) Loop over all leaf boxes. For each box a, add up the contributions
from the boxes in L;(a),
B¢ = D oiy(a, b))’
bng(a)

(4) Loop over all boxes. For each box a, add up the contributions from
the boxes in Lg(a),

¢3= ) ois(a, by,
beLa(a)

(5) Loop over all leaf boxes. For each box a, add up the contributions
from the boxes in L3(a),

o§= ) ois(a,b)p":

beLs(a)
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(6) Loop over all boxes. For each box a, add up the contributions from
the boxes in Ly(a),

¢5= > ois(a,b)T.
beLy(a)
(7) Set ¢" = 0 for the root box r. Then loop over all non-leaf boxes
(including the root box), from coarser levels to finer. For each box

a, and for each child b of a, construct the incoming regular represen-
tations for b:
¢ = ¢ + ¢l +ii(b, a) 9.
(8) Loop over all leaf boxes. For each box a, construct its rich incoming
representation by adding the various contributions:

% = &% + @5 + eval(a) ¢*.
(9) Loop over all leaf boxes. For each box a, construct u® by interpolat-
ing ®* and adding the contributions from ¢%:
u® = Eval(a) ®* + direct(a, a)q®.

Remark 16. The vectors ¢4, ¢3, ®¢, and ®§ are never stored; they are
added directly to either ¢* or ®° as they are computed.

6. NUMERICAL EXAMPLES

The numerical algorithm described in Section 5 has been implement in
FORTRAN 77 and tested on several model problems. In this section, we
summarize the results from tests involving three different kernels:

Example 1: This example involves the evaluation of the sum

N
(6.1) U = Z(logla:m—mnl)qn, form=1,...,N,

n=1
n#Em

where the points (a:n)f:’=1 were drawn from a uniform random distribution
on the interval [0, 1].

Ezample 2: This example involves the evaluation of the sum

qn,
Tm — Tn

N
(62) U = Z pk+1($m)pk($n) "pk(l'm)pkﬂ—l(-’l?n) form=1,...,N,
n=1

where p; is the k’th Legendre polynomial, and the points (:z:n),]:;1 are the
Gaussian nodes on the interval [—1, 1]. The sum (6.2) arises in evaluating
orthogonal projections onto the space of order k polynomials in L?([-1,1]),
see [13]. Similar sums are encountered in the construction of fast algorithms
for the harmonic expansions on the sphere, in the FMM for the Helmholtz
and Maxwell equations, etc., see [3, 20]. In the numerical examples reported,
k was one third of N (rounded to the nearest integer).
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Matrix elements Matrix elements
computed on the fly | pre-computed

Example 1 11 52
Example 2 20 60
Example 3 14 94

TABLE 1. Breakeven points extrapolated from Figure 2.

Ezample 3: This example involves the evaluation of the sum

N .
) (a(zm — zn))

T — T

(6.3) U, = dn, form=1,...,N,

n=1

where (z,)]_, are equispaced nodes in the interval [-1,1]. Such sums occur
frequently in signal processing and many other areas, see [2, 6, 21]. The
parameter a was chosen so that there were 5 nodes per wavelength, i.e.

a=7N/5.

The CPU times required for the accelerated matrix-vector multiplication
in the three examples are given in Figure 2. The experiments were carried
out on a 3.2GHz Pentium IV desktop with 2Gb of RAM. All calculations
shown were carried out with a requested accuracy of ¢ = 10719, Detailed
CPU time requirements are given in Tables 2, 3, and 4 in Appendix A.
These tables also report the memory requirements of the algorithm, as well
as the time required for the pre-computing step.

For comparison, Figure 2 also reports the CPU times required for un-
compressed matrix-vector multiplies, both for the case where the matrix
elements are pre-computed and stored, and the case where the matrix ele-
ments are computed on the fly. The break-even points obtained by extrap-
olating the lines in Figure 2 are given in Table 1. Finally, Figure 2 reports
the CPU time requirement for an FFT of length N (with equispaced nodes).
We note that for large problems, the matrix-vector multiply reported here
is about 5 — 10 times slower than an FFT.

In order to investigate the dependence of the CPU time requirement on
the requested accuracy, the matrix-vector multiplication in Example 1 was
carried out for ¢ = 10735, 10~7, and 10714, The resulting CPU times are
reported in Figure 3. This table also specifies the CPU times required for
the pre-computational stage. We remark that no attempt whatsoever was
made to optimize this part of the code, and its CPU time requirements can
be reduced dramatically.

7. CONCLUSIONS

This paper describes a fast multipole method for the rapid evaluation
of sums of the form (1.1). In one and two dimensions, the computational
complexity of this method is O(N).
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FIGURE 2. The CPU times (in seconds) required for evalu-
ating the sums (6.1), (6.2), and (6.3) versus problem size, N.
The markers 'x’, ’+’, and ’o’ label the three cases. The dot-
ted lines mark the times required for uncompressed matrix-
vector multiplies, the solid lines mark the times required for
the algorithm of Section 5. The times for a matrix-vector
multiply with a stored matrix are marked with 'o’ and the
times for an FFT are marked '/’.

The method does not use any analytic expansions of the kernel; instead,
it numerically compresses the kernel in a pre-processing stage whose com-
putational cost is O(N log N). The combined cost of the pre-computation,
and a single potential evaluation using the present scheme is larger than
the cost of a single evaluation using some existing pre-computation free fast
summation techniques. However, if the evaluation is to be performed for
a sequence of different charge distributions (on a fixed set of charge loca-
tions), then the current method outperforms most existing methods, with
the important exception of convolutional sums that can be evaluated using
the FFT. Moreover, since the current scheme does not explicitly rely on
analytical properties of the kernel, it is applicable in many environments in
which pre-computation free methods are not available.

One application that seems particularly well suited for the fast summation
technique of this paper concerns the rapid computation of the singular value
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O
10' b o A ;
o +
O +
10° | Lo x .

10° 10 10

FI1GURE 3. The CPU time required for evaluating the sum in
(6.1) with e = 10735, 107, and 104, using the algorithm
of Section 5, plotted against problem size, N. The solid lines
give the time for a matrix-vector multiply, while the dotted
lines give the time required for pre-computation.

decomposition of a matrix. A very fast algorithm for this task based on a
divide-and-conquer technique is described in [11]. A core observation of [11]
is that the seemingly expensive task of updating a unitary matrix can -
surprisingly — be accelerated using the fast multipole method. However, the
break-even point of previous versions of the fast multipole method made the
algorithm of [11] competitive only for very large matrices. Research into
combining the fast summation technique of this paper with the algorithm
of [11] is currently under way.

Acknowledgments: The authors wish to thank M. Tygert for constructive
discussions.

APPENDIX A. COMPUTATIONAL RESULTS

This appendix contains detailed statistics for the computational experi-
ments summarized in Section 6. The numbers upon which Figure 2 is based
can be found in Tables 2, 3, and 4. The numbers upon which Figure 3 is
based can be found in Table 5. Table 6 provides the CPU times required
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for an uncompressed matrix-vector multiply, and a length-N FFT. The im-
plementation of the FFT is the one found in FFTPACK.
The following numbers are given for each experiment:

N Problem size.

€ Requested accuracy.

Enax  Maximum error (see Remark 17).

Eims Root mean square error (see Remark 17).

tpre CPU time required for pre-computation.

teval CPU time required for an accelerated matrix-vector multiply.
Myeep Amount of memory required to store the compressed operator.
Mpre  Amount of memory required for pre-computation.

CPU time required for an uncompressed matrix-vector multiply.
tmatvee CPU time required for multiplying a stored matrix by a vector.
ta CPU time required for a length-N (equispaced) FFT.

All CPU times are given in seconds, and all memory requirements are given
in terms of storage for double precision reals. The memory required for
applying the operator to a vector is not reported since it is far smaller than
Myeep (asymptotically, it is a couple of reals per node).

tuncomp

Remark 17. We report both the maximum error Ey.x and the root mean
square error Epns. Letting (un)f:’:l denote the result of an uncompressed
matrix-vector multiply, and letting (u;),1¥=1 denote the result of an acceler-
ated matrix-vector multiply, we have

— N VEY
(A1) Epax = maXlSnSNIIV’un unl’ and B = \/ Z"=5§“" u;) .
(/M) X ol o

In each of the experiments reported, the charges g, were drawn from a
uniform random distribution on [—1, 1].
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N tpre / N Emax Erms teval/ N Mkeep / N Mpre / N tuncomp / N
1000 | 1.8E-04 2.3E-10 3.0E-11 5.0E-07 9.9E+01 1.4E+03 7.0E-05
2500 | 2.6E-04 2.5E-10 2.6E-11 6.8E-07 1.0E+02 7.5E+02 1.6E-04
5000 | 2.5E-04 3.9E-10 3.1E-11 7.0E-07 1.0E+02 4.9E+02 3.1E-04

10000 | 3.2E-04 2.4E-10 29E-11 7.1E-07 1.0E4+02 3.3E+02 6.2E-04
25000 | 3.0E-04 2.4E-10 2.7E-11 7.1E-07 1.1E+02 2.1E+402 1.5E-03
50000 | 3.6E-04 3.0E-10 2.5E-11 7.1E-07 1.1E+02 1.7E+402 3.1E-03
100000 | 3.4E-04 2.0E-10 2.4E-11 7.1E-07 1.1E+02 1.4E+402 6.2E-03

TABLE 2. Computational results for Example 1, with ¢ = 10710

Erms

N tpte / N Emax leval / N M, keep / N Mpre/ N tuncomp / N
1000 | 2.2E-04 1.5E-10 8.9E-13 6.0E-07 1.1E+02 1.3E+03 4.0E-05
2500 | 2.9E-04 1.6E-09 3.6E-12 7.6E-07 1.1E4+02 8.0E-+02 9.2E-05
5000 | 2.6E-04 1.5E-09 1.6E-12 7.6E-07 1.2E+4+02 5.4E+02 1.8E-04

10000 | 2.9E-04 2.0E-09 1.0E-12 7.5E-07 1.2E+02 3.7E+02 3.6E-04
25000 | 3.9E-04 4.6E-09 1.4E-12 7.7E-07 1.1E+02 2.4E+02 9.1E-04
50000 | 4.3E-04 2.4E-09 5.5E-13 7.7E-07 1.1E+402 1.8E+02 1.9E-03
100000 | 5.5E-04 6.4E-08 25E-12 7.7E-07 1.1E+02 1.5E+402 3.7E-03

TABLE 3. Computational results for Example 2, with ¢ = 10710

N tpre / N Emax Erms teval / N Mkeep/ N Mpre / N tuncomp / N
1000 | 7.0E-04 9.1E-10 1.6E-10 1.1E-06 1.9E+02 1.4E+03 9.0E-05
2500 | 8.3E-04 2.6E-09 1.9E-10 1.2E-06 1.9E+02 8.0E+02 2.2E-04
5000 | 1.1E-03 3.6E-09 3.7E-10 1.3E-06 2.0E4+02 5.7E+02 4.3E-04

10000 | 1.2E-03 4.6E-09 2.0E-10 1.3E-06 2.0E+02 4.2E+402 8.6E-04
25000 | 1.4E-03 5.8E-09 4.6E-10 1.2E-06 2.0E+02 3.0E+402 2.2E-03
50000 | 1.4E-03 4.7E-09 1.2E-10 1.2E-06 2.0E+02 2.6E+02 4.3E-03
100000 | 1.7E-03 2.2E-09 6.8E-11 1.2E-06 2.0E+02 2.3E+02 8.7E-03

TABLE 4. Computational results for Example 3, with ¢ = 10710,
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