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1. Introduction

In this paper we consider two iterative methods for solving the
large sparse, symmetric, positive definite linear systems one usually
encounters in aﬁplying the finite difference or finite element method
to approximate the solutions of partial differentialvequations. In
particular, we discuss the conjugate gradient (CG) and the conjugate
gradient, strongly implicit factorization (CGSIP) iterative methods for
solving two model problems, the simplest finite difference approxima-
tions to Poisson's equation in a two dimensional square and a three
dimensional cube. Although these problems are very specialized, nearly
all our results are applicable to the solution of the linear systems
arising from the application of finite difference or finite element
methods to more general self-adjoint second order elliptic partial dif-
ferential equations in more general domains.

We present the algorithms and state theoretical and experimental
results which show the superiority of the second algorithm. Moreover,
the CGSIP algorithm is asymptotically more efficient with respect to
storage and work than the sparse symmetric Gaussian elimination algo-
rithm described in two companion papers in these proceedings, [7] and
[8]. However, for problems of modest size in two dimensions and small
problems in three dimensions the elimination algorithm éeems to be more
efficient.

In section 2, we present the two dimensional model problem in

detail, while in sections 3 and 4 we describe the two algorithms.



Finally, in section 5, we discuss extensions to the three dimensional

model problem.

2. The Two Dimensional Model Problem

In this section, we introduce a model problem, the five-point
difference approximation to the Poisson equation on a square. 1In
section 5, we give a generalization to the seven-point difference ap-
proximation to the Poiséon equation defined on a cube.

We consider the problem
- Aw(x,y) = f(x,y), (x,y) ¢ D= (0,1)x(0,1) (2.1)
with Dirichlet boundary conditions
w(x,y) =0, (x,y) e aD. (2.2)

To approximate the solution to this problem, we cover the doﬁain D
with a uniform mesh with mesh~-width h = 1/(n+l) and seek a mesh func-
tion W(i,j) which is an approximation to w(ih,jh) for each 1 < i,
j £ n.

If we replace the differential operator by the familiar five-point
difference approximation at each interior point, cf. [14], we obtain the

system of linear equations

WL, 1) - WL, 3-1) - W(L,3+1) - W(i-1,3) = W(iHL,3) = h2R(4,9),

1<4i, j<n, (2.3

where W(i,j) =0 if i =0 or ntl or if j =0 or mtl




and F(i,j) = £(ih,jh).
If the unknowns W(i,j) are ordered in the natural row-by-row
fashion, the system (2.3) is reduced to an nxn block tridiagonal sys-

tem of linear equations

AW

i

where T

and I 1is the nxn identity matrix. Equivalently

where N

0 41if 41 =¢tn, 1< t < n-1
-1 otherwise ,



and di = =1, 1< 1< N-n. The matrix A has five nonzero diagonals
and it 1s easy to verify that A 1is symmetric and positive definite, cf.

(14].

3. The Conjugate Gradient Method

In this section, we introduge and discuss the conjugate gra&ient
(CG) iterative method for solving a linear system with an arbitrary sym—
metric, positive definite coefficient matrix A. The CG method is easy
to program, cf. [12], relatively efficient, cf. [11], and doés not de-
pend on a critical choice of iteration parameters.

Given a linear system
Ax = k (3.1)

of N equations, whose coefficient matrix A 1is symmetric positive
definite, and an arbitrary initial guess X to x, we form the residual

vector

r, = k-Ax (3.2)

and the directional vector

Py = ro . (3.3)

Then for i =0, 1, 2, ... we define the vectors X0 ri+1’ and

pi+ly and the scalars ay and bi using the relations

ai = (risri)/(PiaApi) H] (3'4)



X4l ¢ X3 T3Py (-3

L z r, - aiApi y (3.6)

by 3 (rggppTyy)/(rpery) (3.7)
and

Pygp = Ty4q T PgPy (3.8)

Table 1 summarizes the storage and the number of multiplications/
iteration required by this algorithm for the model problem and also the
corresponding information for the linear system arising from the appli-
cation of the five-point finite difference approximation to any self-
adjoint second order elliptic partial differential equation with vari-
able coefficients in the unit square (referred to as the general prob-
lem). The qualitative and quantitative behavior of CG method is very

well understood, cf. [3], [4], [9], and [11]. If we define the norms

"YIA

it

(y,Ay)l/2 (3.9)

and

/2

(y.y)1 (3.10)

"ynz

and the eigenvalues of A 1lie in the interval [a,b], then

I=, - x||A < 2 —i——:—/’%)m on - x“A (3.11)
llxIll - x“2 < 2(i ; /’/::\)m ||x0 - x"z (3.12)

where o = a/b, cf. [3].



For the specific case of the model problem o = 0(h2), cf. [14],

and we have the following convergence result, cf. [2].

Theorem 3.1. For the model problem, the CG method requires 0(n log s—l)
iterations and 0(n3log e_l) multiplications to reduce the initial
error by a factor of €.

Computational results demonstrating the conclusions of this The-
orem for the model problem are given in Table 3 and for the general prob-
lem in Table 4. The solution vector x was chosen to be a vector of
N random numbers and the right hand side of (3.1) was obtained by
taking its product with the matrix A. The initiéi guess XO was

taken to be the zero vector and the error was computed as

error = (%i— "xj - xlzz)l/z.

The iteration process was terminated when the error was reduced to
107¢.

From (3.11) and (3.12) it is clear, cf. [1], [2], and [10] for
the details, that one way to modify the CG method to get better asymp-
totic convergence is to scale the linear system (3.1) by ﬁeans of a

symetric, positive definite matrix B—l, i.e., to consider in place

of (3.1)
BAx = B k, (3.13)

where B 1is chosen so that the eigenvalues of B_lA lie in [a',b']

and a'/b' > a/b. We then apply the CG method (with respect to the




inner-product (x,y)B = (x,By) 4instead of (x,y)) to (3.13) as before.
There is an extra vector ii+1 introduced in this variant of the

CG method and the only additional work involved is the solution of a

linear system

Br = ¥ . (3.14)

for each iteration. In practice, we recommend choosing B = (LLT)
where L 18 lower triangular, and LLT is an "approximate factoriza-
tion" of A, 1i.e. LLT = A+ R and R is small. With this form of
B, (3.14) is equivalent to solving a linear system of equations whose
coefficient matrix is given in factored form. As we shall see in the
next section, this can lead to a significant reduction in the number of

iterations.

4. The Conjugate Gradient Strongly Implicit Factorization Methods

In this section, we present and study the conjugate gradient strongly
implicit factorization (CGSIP) methods for solving the model problem.
As with the CG method, the CGSIP method is easy to program, very effi-
cient, and does not depend on a critical choice of iteration parameters.
We will show that it comparee favorably with other methods for the mo-
del problem.

In particular, instead of considering

Ax = k (4.1)

we consider



ah™ax = ahtx (4.2)

where LLT i1s an appropriate approximate factorization of A. Several
procedures for constructing appropriate matrices L have apbeared in
the literature, cf. [6], [10], and [13]. We will discuss only the first
of these due to Dupont, Kendall, and Rachford.

The matrix L is defined to have the same zero structure as the
lower triangle of A‘ and in practice, for computational efficiency,

~ o~

we actually factor the matrix LLT as L U, where

e
o
//
o

N
. 0
U \g“'“ ,
0 tn-1
1
L. -

and the vectors c¢ and d appear in the original matrix A. For

reasons of efficiency, we compute and store the reciprocals %i of the

v,'s using the relations

i

. 2 . . . . -l
by o= Q4 -ey ) Vgt eyt ey Vi T Vi (4.3)

where 31 =cy = 0 for 1 <1 and the a; are positive parameters.

For the model problem, the coefficients of each of the 91'3 in (4.3) are



either 0 or 1 and the computation of L is partiéularly simple.
Moreover, the vectors t and g needed to define U can be directly

recovered from v as follows:

- 0 if 1 =sn, s = 1, 2, +..5 n-1
ti - {;Vi otherwise (4.4)
and
gy = vy (4.5)

In the case of an arbitrary self-adjoint, second order elliptic partial
differentlal equation with variable coefficients; the analogous factoriza-
tion algorithm is somewhat more complicated, cf. [6]. Work estimates for
the factorization algorithm are given in Table 1.

Once we have computed the factorization, we solve (4.2) by the
CG method (with respect to the inner product (x,LLTy)). This reduces
to the following algorithm which is a variant of (3.2) - (3.8). Start-

ing with an arbitrary initial guess X form

io = k- Ax ' (4.6)
solve

LUz, = % (4.7)
and set

Pp = Yo (4.8)

Then for 1 =0, 1, 2, ... form the vectors X410 ri+1, Tie1? and

Pit1 and the scalars a, and bi by means of

a; = (ii,ri)/(pi,Api) , (4.9)



lo.

X1 - X T a4Py o
I T T
L Ty = Ty
by = (FpygaTyag)/ Fpory)
and
Piqp = Tibn T PsPy

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

The storage and the number of multiplications/iteration required

for this algorithm are given in Table 1. Moreover, we can prove the

following result on the rate of convergence, cf. [2].

Theorem 4.1. Let a, = khz, 1< 1< N, where k 1is a positive

constant independent of h. For the model problem, the CGSIP method

requires O(nllzlog e_l) iterations and 0(115/2

tions to reduce the initial error by a factor of €.

iog e-l) multiplica-

Computational results verifying the conclusions of this Theorem

for a variety of values of n are given for the CGSIP method applied to

the model problem in Table 3 and for general problems in Table 4.

The

error was computed as in section 3 and the same termination criterion

was used. These results should be compared with the corresponding

results for the CG method and for other methods.



5. Three Dimensional Problems

The algorithms and results of the previous sections can be gener-
alized to apply to the solution of self-adjoint, second order elliptic
partial differential equations in three (or higher) dimensions. We
put an nxnxn grid on the unit cube and use arseven-péint finite dif-
ference approximation to the differential operator. This yields an

n3xn3 linear system

Ax = k, (5.1)

where A 1s symmetric, positive definite and has its nonzeroes res-
tricted to seven diagonals at distances zero (the main diagonal), 1,
n+l, and n2+1 from the main diagonal.

For the case of the Poisson equation we have

where the Bi's are nZXn matrices of the form
’ — -

/)

11.



12.

and D 1s an nxn tridiagonal matrix with -1's on the sub- and
superdiagonals and 6's on the diagonal. The 1I's denote identity
matrices of suitable order.

Proceeding in an ahalogous way to the two dimensional case, we
can use the CG and CGSIP methods, cf. [5]. Likewise one obtains the

following convergence result, cf. [2] and [6].

Theorem 5.1. For the model problem in the cube, the CG method requires

-.1 -
O(n log € ~) iterations and O(nalog € 1) multiplications to reduce
the error by a factor of € and the CGSIP method requires

/2

O(nl/zlog enl) iterations and O(n7 log e_l) multiplications to re-
duce the error by a factor of €.

A summary of the storage and multiplications/iteration required
for both methods applied to the model and general problems is given in
Table 2. Numerical results for both methods on the model problem are
reported in Table 5 and numerical results for both methods on the
general problem are reported in Table 6. The error was computed as in
sections 3 and 4 and the same termination criterion was used. These

results compare quite favorably with the corresponding results for

other methods.
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Two Dimensional Problems

Equation Vectors stored Storage No. of mults./ Mults. for
required iteration factorization
Poisson:
ce r, X, p, AP 4N 6N + 2 0
CGSIP r, X, p, Ap, V 5N 8N + 1 2N
General:
cG r, X, p, Ap, b, 7N - 2n 10N - 4n + 2 0
c, d »
CGSIP r, X, p, Ap, b, 10N = 4n 15N = 8n + 2 5N = 4n
c, d, v, t, g
Table 1: Storage requirements and multiplication counts for NxN

(N =vn2)bsystems.

N

Three Dimensional Problems

Equation Vectors stored Storage No. of mults./ Mults. for
required iteration factorization

Poisson:
CG r, X, P, Ap 4N 6N + 2 0
CGSIP r, X, p, Ap, V 5N 8N + 1 2N
General:
CG r, X, p, Ap, b, B8N - 3n2 12N - 6n2 + 2 0

c, £, d .

2 2 : 2

CGSIP r, X, p, Ap, b, 12N - 6n 19N - 12n~ + 2 N - 6n

c, £, d, v, t,

g, 8
Table 2: Storage requirements and multiplication counts for NxN

(N = n3) systems.
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CG CGSIP
n No. of No. of mults./ Total no. No. of No. of mults./ Total no.
iterations iteration of mults. | iterations iteration of mults.
16 45 1538 69722 14 2049 29965
32 89 6146 549042 22 8193 185365
48 131 13826 1815814 26 18433 490777
64 175 24578 4309342 31 32769 1036318

Table 3: Work required to reduce the error to 1E-6 for the Poisson equation
on nxn mesh.

W

—

CG CGSIP
n No. of No. of mults./ Total no. No. of No. of mults./ Total no.
iterations iteration of mults. |iterations iteration of mults.
16 45 2498 113882 14 3714 55644
32 89 10114 906162 22 15106 347308
48 131 22850 3006982 26 34178 922612
64 175 40706 7147870 31 60930 1949502

Table 4: Work required to reduce the error to 1E-6 for the General Equation
on nxn mesh.

CG CGSIP
n No. of No. of mults./ Total no. No. of No. of mults./ Total no.
iterations iteration of mults. |iterations iteration of mults.
14 386 5532 8 513 4423
8 29 3074 90170 12 4097 51723
12 42 10370 438996 15 13825 216014
16 54 24578 1335404 18 32769 610321

Table 5: Work required to reduce the error to 1E-6 for the Poisson Equation
on nxnxn mesh.



15.

CG CGSIP
n No. of No. of mults./ Total no. No. of No. of mults./ Total no.
iterations iteration of mults.| iterations iteration of mults.
14 674 9852 8 1026 9264
29 5762 170810 12 v 8962 117144
12 42 19874 847668 15 31106 500286
16 54 47618 2602604 18 74754 1426980

Table 6: Work required to reduce the error to 1E-6 for the General Equation
on nxnXn mesh.
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