Lifestreams: Organizing your Electronic Life

Eric Freeman and Scott Fertig
Research Report YALEU/DCS/RR-1083
August 1995

This report was published in the proceedings of the AAAI Fall 1995 Sym-
posium on AI Applications in Knowledge Navigation and Retrieval.




Lifestreams:
Organizing your Electronic Life*

Eric Freeman and Scott Fertig
Yale University
Department of Computer Science
New Haven, Connecticut, 06520

Abstract

The “Web,” an attempt to organize the elec-
tronic world, has become the focus of a wide
range of research activities from agents to
information retrieval to virtual reality sys-
tems, and is a central focus of work pre-
sented at this symposium. Our work consid-
ers a more humble task: that of organizing
our own electronic lives. We introduce a new
metaphor, Lifestreams, for dynamically orga-
nizing a user’s personal files, electronic mail,
schedules, rolodex and financial data. In this
paper we describe our prototype Lifestreams
system and in the process cover most of the
topics of this symposium, including indexing,
information retrieval, user interfaces, multi-
source integration and multimedia.

1 Introduction

The work of many participants in this symposium at-
tempts to help users navigate the thicket known as the
“Web”. By contrast, Lifestreams is first and foremost
an approach to organizing a user’s personal files. We
contend that today, just managing one’s own electronic
world can be a frustrating task for most computer users,
requiring too many separate applications, too many file
transfers and format translations, and the construction
of organizational hierarchies that too quickly become ob-
solete. What is needed is a metaphor and system for
organizing the electronic “bits of paper” we all so easily
collect, whether they come to us in the form of electronic
mail, downloaded images, pages gathered from the Web,
or scheduling reminders.

Lifestreams is such a system. It uses a simple organiza-
tional metaphor, a time-ordered stream of documents, to
replace conventional files and directories. Stream filters
and software agents are used to organize, locate, sum-
marize and monitor incoming information. Lifestreams

This work was partially supported by ASSERT grant
F49620-92-J-0240.

subsumes many separate desktop applications to accom-
plish the most common communication, scheduling, and
search and retrieval tasks; yet its machine-independent,
client-server architecture is open so that users can con-
tinue to use the document types and viewers/editors they
are accustomed to. In this paper we describe our ini-
tial efforts in defining and building Lifestreams; in the
process we touch on the majority of research issues of
the symposium including indexing, information retrieval,
user interfaces, multi-source integration and multimedia.
We begin by describing the Lifestreams metaphor and
then in section 3 describe the architecture and perfor-
mance of the current prototype. In section 4 we describe
the way several common computer tasks are performed
with Lifestreams. Section 5 discusses the search and in-
dexing choices we made for Lifestreams, and how these
relate to our current research.

2 What are Lifestreams?

Think of your lifestream as a diary of your electronic life;
every document you create is stored in your lifestream,
as are all the documents other people send you. Techni-
cally, a lifestream is a time-ordered stream of documents.
The tail of your stream contains documents from the
past, perhaps starting with your electronic birth certifi-
cate. Moving away from the tail, and toward the present,
your stream contains more recent documents such as
papers in progress or the latest electronic mail you’ve
received—other documents, such as pictures, correspon-
dence, bills, movies, voice mail, and possibly software,
are stored in between. Moving beyond the present, and
into the future, the stream contains documents you will
need: reminders, your meeting schedule, and todo lists.

Users interact with Lifestreams via five operations:
new, clone, transfer, find and summary. New and
clone are used to create documents. New creates a
unique document and adds it to your stream. Clone
takes an existing document and creates a duplicate that
is added to your stream. Transfer copies a docu-
ment from your stream to someone else’s stream. Find
prompts the user for a search query, such as “all email
I haven’t responded to,” or “all faxes I’ve sent to




Schwartz” and creates a substream.

Substreams, like virtual directories [Gifford et al.,
1991; Manber and Wu, 1993], present the user with
a “view” of a document collection. In our case, this
view contains all the documents that are relevant to our
search query. Substreams differ from conventional di-
rectory systems in that, rather than placing documents
into fixed, rigid directory structures, they create vir-
tual organizations of documents from the stream. That
is, documents aren’t actually stored in the substream,
rather, the substream is a temporary collection of doc-
uments that already exist on your stream. Given this,
the collection of documents in two substreams may over-
lap. Moreover, substreams can be created and destroyed
on the fly without affecting the organization provided
by the stream or any other substreams. Substreams are
also dynamic. If you allow a substream to persist, it
will collect new documents that match your search cri-
teria as they are added to your stream. For example,
a substream created with the query “find all documents
created by other people” would subsume your mailbox
and automatically collect mail as it arrives. Similarly,
a substream created from “all electronic mail I haven’t
responded to” would act as a special mailbox that only
contains unanswered mail.

Our last operation, summary, takes a substream and
compresses it into an overview document. The content of
the overview document is dependent on the type of the
documents in the substream. For instance, if the sub-
stream contains the daily closing prices of all the stocks
and mutual funds in your investment portfolio, then the
overview document may contain a chart displaying the
historical performance of your securities along with your
net worth. On the other hand, if the substream contains
a list of tasks you need to complete, the overview docu-
ment might display a prioritized “to-do” list for you.

2.1 Why time-based ordering?

Given that we use substreams to organize our docu-
ments, why bother with the underlying time-based or-
dering? There are several reasons: the stream adds his-
torical context to our document collections as all docu-
ments eventually become read-only (in the past), set in
stone for history, as is the order and method in which
they were created. Like a diary of our electronic lives,
streams document our work, correspondence, and trans-
actions. This historical context can be crucial in an orga-
nizational setting [Cook, 1995] and notably, most current
software systems do little to track when, where, and why
documents are created and deleted, something that was
taken for granted in the paper-based world.

The present portion of the stream acts as a workspace,
holding “working documents”; this is also typically
where new documents are created and where incoming
documents are placed. Most newly created documents
hang around in the present for some time before they be-

come read-only and are pushed off into the past, being
automatically archived in the process.

The future portion of the stream allows documents to
be created in the future (unlike the paper-based world,
computers can defy space and time). Allowing future
creation gives us a natural method of posting reminders
and scheduling information. How? Our system allows
the user to dial to the future and deposit a new docu-
ment, let us say a reminder for your Mom’s birthday.
When your Mom’s birthday arrives the note appears in
the present and reminds you. We will see how this ac-
tually happens in the user interface shortly. There are
other uses for the future, for instance in maintaining a
workgroup meeting schedule and scheduling agents. We
will visit some of these, in passing, in later sections.

2.2 Embedded Computation: Agents

The term “agent” (personal agent, intelligent interface,
personal assistant, knowbot, guide, etc.) has recently re-
ceived a considerable amount of attention in the research
community as well as the commercial world. In our sys-
tem we use the term to describe any embedded compu-
tation that can be used to extend the functionality of
Lifestreams. Lifestreams uses three kinds of embedded
computations: personal agents, document agents and
stream agents. Personal agents are typically attached to
a user interface and can automate tasks or learn from the
user’s interactions with Lifestreams. Document agents
live on documents and are spawned by various events
(e.g., the first time a document is accessed). Stream
agents are attached to streams and execute whenever
the stream changes in some way (e.g., a new document
appears on the stream). We explore agents in succeeding
sections, seeing how they are implemented and how they
can be used.

3 Our Research Prototype

Our research prototype consists of a client/server archi-
tecture that runs over the Internet. Although one might
think a PC (and its file system) the natural place to
first develop Lifestreams, we expect access to the Inter-
net to be ubiquitous in the next decade and expect that
a person’s lifestream will be accessible from any compu-
tational platform capable of running Lifestreams clients,
(viewports). Our server currently runs on UNIX plat-
forms and is the workhorse of the Lifestreams system.
Each server handles one or more streams—storing all
stream documents, substreams, and agents. Each view-
port is a client of the server, providing the user with an
interface to the document collection. Viewports commu-
nicate with the server via remote procedure call and data
is passed between the viewport and server in a machine
independent form (with XDR). We believe the viewport
interface will differ radically over the range of computing
platforms, from set-top boxes to high-end workstations;
however each viewport should provide the functionality




of the basic operations. We have currently implemented
two client viewports on the opposite ends of the com-
putational spectrum: one for Sun workstations and one
for the Newton PDA. The workstation version provides
an interesting graphical interface and implements the
full-range of Lifestream functionalities, while the New-
ton version implements a minimal method of accessing
streams— given our lack of space, we concentrate on the
UNIX version in this paper (information on the Newton
version can be found in [Freeman, 1995].)

3.1 The Viewport

Our workstation viewport can be seen in figure 1. The
viewport is implemented in C and Tcl/Tk, extended
with our own command set. In the interface, we have
attempted to preserve the stream-based metaphor. The
user can browse his stream by scanning forward or back-
ward over the documents via the scroll bar in the lower
left-hand corner. Note that the scroll bar is annotated
with the dates of the current range of visible documents
on the top and the first and last dates in the stream
on the bottom end points. The user may also slide the
mouse pointer over the document representations to re-
ceive a “glance” view of the contents of each document.
The glance view displays a few descriptive attributes
such as the date and time of creation, a descriptive icon
that represents the document content type, a summary
line, who the message is to and from (if the document
is a mail message), and the first couple of lines of the
message. This last piece of information is currently sup-
ported only for text documents, although we plan to
support other types (for example, thumbnail sketches
for images).

Color and animation are used to indicate important
features of documents. The borders of unread documents
are colored red (or any user defined color), the borders
of writable documents are made thicker, and open doc-
uments are offset to the side to indicate they are being
edited. Incoming documents slide in from the left side
of the user interface to alert the user and newly created
documents pop down from the top of the interface and
push the stream backwards by one document.

The user can view (or edit) a document by clicking
on its representation in the stream. Rather than com-
mitting to a document model (e.g., ATK, PDF, ASCII,
HTML, Microsoft Word, etc.) we have instead chosen an
open architecture based on MIME types [Borenstein and
Freed, 1992]. Like many Web browsers, we rely on exter-
nal helper applications to view and edit documents; this
lessens the learning curve significantly for Lifestreams
users, as they can continue to use the applications they
are familiar with (such as emacs, xv, and ghostview)
when working with documents, while at the same time
using Lifestreams for its organization and communica-
tion capabilities.

The interface prominently displays the primary system

Figure 1: The UNIX Viewport.

operations - New, Clone, Freeze, Xfer (i.e., transfer),
Find and Summary, in addition to a few other pragmatic
operations we commonly use (such as Print and Freeze)
- as buttons and menus. The New button creates a new
document and places it on the stream. The Clone button
duplicates an existing document and places the copy on
the stream. Documents are selected through a mouse
button. The Freeze button is a convenient method for
making a writable document read-only. The Xfer button
first prompts the user for Lifestreams or Internet mail
addresses and then forwards a copy of the document.
Print copies a selected document to a printer!. Find
is supported through a text entry box that allows the
user to enter a boolean search query; it results in a new
substream being created and displayed?.

Menus are used to select from streams or existing sub-
streams, create summaries, initiate personal agents, and
to change the “time” of the viewport. The Streams
menu allows the user to select from a list of locally avail-
able streams. Figure 2 shows the Substreams menu;
the menu is divided into three sections. The first sec-
tion contains a list of operations that can be performed
on substreams (such as remove). The next section con-
tains one menu entry labeled “Your Lifestream,” and
focuses the display on your entire Lifestream (i.e., all of
your documents). The last section lists all of your sub-
streams. Note that substreams can be created in an in-
cremental fashion that result in a nested set of menus. In
this example the nested menus displayed were created by
first creating a substream “lifestreams and david” from
the main stream and then creating two substreams from

!This can easily be implemented by transferring all doc-
uments to a printer stream, where a stream agent forwards
each new document to the appropriate printer. Our imple-
mentation, however, uses conventional methods of transfer-
ring documents to the printer.

2A new version, in the works, uses a more sophisticated
dialog box to allow for searches on particular document fields.




Figure 2: Selecting a Substream.

this substream called “scenarios” and “ben.” Likewise
the substream “scott” was created from the “scenarios”
substream. Semantically this incremental substreaming
amounts to a boolean and of each new query with the
previous substream’s query (and so on recursively).

In figure 3, we find a list of possible summary types
for this substream. Choosing any of these menu options
creates a summary of the substream and a new docu-
ment containing the summary is placed on the stream.
Similarly the Personal Agents menu lists a number of
agent types that can be executed. We will give examples
of both summaries and agents in section 4.

Figure 3: The summary menu item.

Finally, Lifestreams always displays the time in the
upper right hand corner of the interface. This time dis-
play also acts as a menu, which allows the user to set the
viewport time to the future or past via a calendar-based
dialog box. To understand the effect of setting the time,
imagine a pointer that always points to the position in
the stream such that all documents towards the head of
the stream have a future timestamp and all documents
towards the tail have a timestamp from the past. As
time progresses this pointer is moved towards the head.

The effect of setting the time to the future or past
is to reset the pointer temporarily to a fixed position
designated by the user. Normally the user interface dis-
plays all documents from the past up to the pointer.
Setting the pointer to the future allows the user to see
documents in the future part of the stream. Likewise,
creating a document in this mode (i.e., with the pointer
in the future) will result in a document with a future

timestamp. Once the user is finished in the future or the
past, he can reset to the present by selecting the “Set
time to present” menu option in the time menu.

3.2 Supporting Agents

As we have discussed, Lifestreams supports three types
of agents: personal agents, document agents and stream
agents. All three agent types are specified in Tcl/Tk
and have access to Lifestreams through our extended
command set. Personal agents “live” in the user inter-
face; users can define their own arbitrary personal agents
and attach them to the user interface. Document agents
are loosely based on enabled-mail [Borenstein and Rose,
1993] and are stored in a document attribute until they
are spawned. Document agents can be spawned on three
different events: (1) a document’s arrival at a stream, (2)
when it is read for the first time, and (3) any time it is
read. Stream agents are attached to the stream data
structure in the server and are spawned any time a doc-
ument is added to the stream. We have chosen these
initial events for document and stream agents; of course
others are possible. We will return to agents in the next
section and show an example of each type.

3.3 Performance

Our current prototype runs on a Sparcstation 10 and
can handle three to four simultaneous users with a few
thousand documents per stream. As of this writing, we
are making architecture changes to the server and are
also in the process of porting it to run on a faster IBM
PowerPC workstation. When done, we expect the server
to be able to support five to eight users with five to
ten thousand documents per stream. The next logical
step will involve load balancing users across a network
of workstations, each workstation supporting the request
of one or more users at a given time.

4 Common Tasks: Using Lifestreams

We have claimed that Lifestreams helps to simplify the
most common computer tasks, such as communication,
creating reminders, managing scheduling, tracking con-
tacts, and managing personal finances (to name a few),
and subsumes many separate, incompatible applications
in the process. While a detailed description of how
Lifestreams accomplishes this feat could fill a paper in
itself, we will attempt to convey a sense of how the sys-
tem is used through a handful of examples. Additional
motivation for our claim can be found in the concluding
remarks.

4.1 Sending and receiving Email; Automatic
reminders

Using Email in Lifestreams is simple and not much differ-
ent from what users are already accustomed to. To send
a message, the user creates a new document (by clicking




on the New button) and then composes the message us-
ing a favorite editor. The message can then be sent with
a push of the Xfer button. Similarly, existing documents
are easily forwarded to other users, or documents can be
cloned and replied to. While all mail messages (incoming
and outgoing) are intermixed with other documents in
the stream, the user can easily create a mailbox by sub-
streaming on documents created by other users; or, users
can take this one step further and create substreams that
contain a subset of the mailbox substream, such as “all
mail from Bob,” or “all mail I haven’t responded to.”

We have already mentioned how users can dial to the
future, depositing documents that act as reminders. A
user can also send mail that will arrive in the future. If
he “dials” to the future before writing a message, then
when the message is transferred it won’t appear on re-
cipients’ streams until either that time arrives or they
happen to dial their viewports to the set creation date.
In the present, the document will be in the stream data
structure but the viewport won’t show it. We use this
ability to send mail to the future to post reminders to
others about important meetings, department talks, etc.
By appearing “just-in-time” and not requiring the user
to switch to yet another application, these reminders are
more effective than those included in a separate calendar
or scheduling utility program.

4.2 Tracking contacts, Making a phone call

There are a number of contact managers on the market
that store electronic business cards, the date and time
of contacts, and time spent on tasks for billing purposes.
Our research prototype currently supports an electronic
business card document type as well as a “phone call
record” document for noting the date and time of phone
contacts. In addition we have automated much of the
task of creating a phone call record through a personal
agent. The personal agent is automatically attached to
the personal agent menu, so anytime we want to make
a call we choose “Make Phonecall” from the personal
agent menu. The agent is spawned and the dialog box
in figure 4 appears.

Figure 4: The phone call agent.

The user types in the name of the callee; the agent
then searches the current stream for a business card with
that name and, if found, creates and fills in the appro-

Figure 5: Phone record, automatically filled in by the
agent.

priate entries of a phone call record as seen in figure 5
(this functionality is similar to the use of the personal
assistant on the Newton platform).

The user can then later use the Lifestreams summary
operation to summarize over the phone calls. This re-
sults in a report as shown below:

WHO ox¥ AT ABOUT

Scott Fertig
Ward Hullins
Beth Freeman

Tue dug 1 12:05
Tue Aug 1 11:57
Tue Aug 1 10:22

EDT 1995 432-6433 Port to PPC

EDT 1995 432-1287 insurance

This could be extended to subsume the functionality of
a time manager (and we are in the process of doing this).
Time managers generally track the billable hours a pro-
fessional spends on one or more projects. In Lifestreams
this is easily accomplished by creating a timecard that
marks the starting and ending time of each task (these
timecards are just thrown onto the stream as they are
used). Then, before each billing period, the stream is
summarized by the timecards, resulting in a detailed
billing statement for each contract.

4.3 Personal Finances

While online commerce will become commonplace in
the next decade, millions already track their checking
accounts, savings, investments, and budgets with their
computers, with applications such as Quicken. The types
of records and documents used in applications such as
Quicken — electronic checks, deposits, securities trans-
actions, reports — can be conveniently stored and gen-
erated by Lifestreams. We have just begun to explore
using Lifestreams to manage personal finances, having
implemented a fictional service that forwards the daily
closing prices of a fictional portfolio to our Lifestreams
at the end of every business day. These documents are
simple ASCII documents as shown below.

Quote-0-Matic Stock Service for 5/16/95

GVIL 14.00
LMASX 20.84
ODWA 18.50
SPLS 27.12
TSA 19.25
lmvtx 21.41

EDT 1995 415 224-1912 Tcl/Jave discussion






