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Abstract

The Gofer system is a functional programming en-
vironment for a small, Haskell-like language. Sup-
porting a wide range of different machines, including
home computers, the system is widely used, both for
teaching and research.

This report describes the main ideas and techniques
used in the implementation of Gofer. This informa-
tion will be particularly useful for work using Gofer as
a platform to explore the use of new language features
or primitives. It should also be of interest to those cu-
rious to see how the general techniques of functional
programming language compilation are adapted to a
simple, but practical, implementation.

Introduction

The Gofer system is a functional programming envi-
ronment for a small, Haskell-like language. The lan-
guage can be characterized by its support for lazy
evaluation and higher-order functions, and a static
type system that includes both polymorphism and
overloading. First released in September 1991, Gofer
is widely used, both for education and research. Judg-
ing from comments from its users, there are two main
reasons for Gofer’s popularity. First, that it runs on
a wide range of machines, including small home com-
puters. Second, particularly on more powerful sys-
tems, the interpreter provides a fast, interactive de-
velopment environment, avoiding the need for lengthy
recompilation.

While the user documentation [24] and C source code
for Gofer have always been included in public dis-
tributions, there was no substantial effort to pro-
vide details about the implementation. At the time,
this seemed unnecessary; although it introduced some
new ideas, most of the techniques used were believed
to be standard and well-known.

In retrospect, user feedback during the past few years
suggests that some of these ideas may not be as well-
known as we had expected. There has also been quite
a lot of interest in modifying the Gofer system, from
simple tasks such as the addition of new primitives,
to more sophisticated experiments in language design.
While this information can, in principle, be gleaned
by a careful study of the source code, it is certainly
not the most convenient form of documentation!

This report is intended as a guide for those interested
in the inner workings of Gofer. Its aim is to explain
the original design goals, the overall structure, the
datatypes used, and the way that the different pieces
fit together. It does not attempt to cover every tech-
nical detail of the system and should be viewed as
an introduction, not a replacement, for studies of the
source code. Nor is this report intended as a tutorial
on ‘the implementation of functional languages’; in-
deed, Simon Peyton Jones’ book by that name [48]
was a constant companion during the development of
Gofer, and remains an almost certain prerequisite to
this report.

Throughout this report, we assume familiarity with
the Gofer environment as described in the user docu-
mentation [24, 25, 32], with the Haskell functional
programming language on which much of the lan-
guage design is based [16}, and with the C program-
ming language in which the system is implemented.

Outline of report

We begin in Section 1, outlining the principal design
goals for the development of the Gofer system. Sec-
tion 2 summarizes the main features of the system
from the user’s perspective, highlighting some of the
decisions made in the design of the standard user in-
terface. In Section 3, we begin a more detailed study
of the current implementation of Gofer. Starting with
an overview of the whole system, we progress through



detailed descriptions of the most important compo-
nents including storage management (Section 4), lex-
ical analysis and parsing (Section 5), static analysis
(Section 6), type checking (Section 7), compilation to
supercombinators {Section 8), and program execution
(Section 9). Section 10 discusses some of the ways
that functional programming has been used and influ-
enced the development of Gofer, even though the sys-
tem was actually written in imperative C. The Gofer
compiler, a simple-minded translator producing ex-
ecutable C versions of Gofer programs, is described
in Section 11. Finally, Section 12 offers some reflec-
tions on the current implementation and some areas
for future development.

1 Motivation and design goals

The Gofer system was initially developed as a vehi-
cle for personal research. The name Gofer! is derived
from the claim that functional languages are suppos-
edly ‘Good for equational reasoning’, a reflection on
the fact that the system was originally planned as a
tool for machine-assisted equational reasoning. The
initial design included a small interpreter intended
only for simple calculations, but this soon became
the main focus of the project, motivated in particu-
lar by the desire to investigate a new implementation
technique for the Haskell overloading mechanism [21].

The system was designed with some specific goals in
mind:

¢ Compatibility: The language design should be
closely based on the definition of Haskell, an
emerging and freely available standard for non-
strict functional programming languages [16]. Of
course, Haskell was also a natural choice for work
on type class overloading and guaranteed an ini-
tial supply of examples on which to base any
comparisons. Finally, it seemed sensible to avoid
the notoriously difficult process of language de-
sign, concentrating instead on specific elements
of a carefully developed system.

¢ Extensibility: The system should provide a
good foundation for further work and experimen-
tation.

o Portability: The system should be usable on
a wide range of machines. A very specific con-

1We were not aware of the similarly named gopher
program—used to access information over the Internet—until
some time after the first release of Gofer. Despite their very
different application areas, the choice of names has been an un-
fortunate source of confusion, and may soon warrant the choice
of a new name for Gofer.

straint was that it should be able to run the
system on an 8MHz 8086 based PC with 640K
RAM running MS-DOS; all of the original devel-
opment work was carried out on this machine.
Such systems are infamous for their awkward 16
bit segmented architecture that limits the size of
individual blocks of data to 64K. Although the
Gofer system runs on many different machines
without such restrictions, this has continued to
be an important influence on the basic design.

Note that, although speed of execution is an impor-
tant part of making an implementation usable, we did
not consider this as a primary design goal.

Looking back, we believe that we have been reason-
ably successful in meeting these goals. Initially based
on version 1.0 of the Haskell report [17], Gofer has
been modified to track subsequent versions of Haskell.
As aresult, there is a large class of programs that can
be run using either Haskell or Gofer without requir-
ing changes to the source code. Unfortunately, there
are some differences, most significantly in the treat-
ment of type class overloading. It is easier now to
realize that the goal of compatibility stands in direct
conflict with the technical ideas that motivated its de-
velopment. We still believe that the Gofer approach
to type classes has some important advantages, but
the incompatibility with Haskell, although minor, has
become a little frustrating. The differences are also
something of an embarrassment, given that one of the
goals in the design of Haskell was to ‘reduce unneces-
sary diversity in functional programming languages’.
Gofer has also proved to be useful in subsequent work,
and some of these developments have found their way
into general releases of the Gofer system. Examples
of this include:

e A simple-minded compiler, translating Gofer
programs to C to enable the development of stan-
dalone applications written in Gofer.

¢ An system of consirucior classes, extending the
notion of Haskell type classes, to allow more’

sophisticated forms of user-defined overloading
[33].

Others, for example, the specialized partial evalua-
tor described in [31], have yet to be included in the
standard distribution.

Finally, the Gofer system has proved to be fairly
portable and includes support for a wide variety
of different machine and operating system environ-
ments. In a few places, the source code depends on
assumptions about the compiler used to build Gofer




which cannot be guaranteed by the C language stan-
dards. In this respect, we seem to have been fairly
lucky that our non-portable assumptions happen to
be true for the systems used. Despite the new features
added since the first release, Gofer can still be used
on the same small machines that it was originally de-
veloped for. However, most of the machines in use
today, even home computers, are much more power-
ful. We may see significant benefits in future versions
of the system once we are free of the constraints that
the older machines impose.

The fact that Gofer can be used on small machines
seems to be one of the main reasons for its widespread
use. However, while some other functional language
implementations do require more powerful machines,
Gofer is by no means unique in providing a func-
tional programming environment for smaller systems;
Leroy’s Caml Light {40], implementing a dialect of
ML, is another well-known example.

2 A user’s perspective

The Gofer system? provides an interpreter for an ex-
perimental language that is closely based on the def-
inition of Haskell version 1.2 [16]. Notable features
include:

e A purely functional language with non-strict
semantics (lazy evaluation), higher-order func-
tions, pattern matching, ...

e Facilities for defining new algebraic datatypes
and type synonyms.

e A polymorphic type system with provision for
user-defined overloading based on a system of
type classes (see Section 7.5 for further details).

e Full Haskell expression and pattern syntax in-
cluding lambda, case, conditional and let expres-
sions, list comprehensions, operator sections, and
wildcard, as and irrefutable patterns.

e A partial implementation of the Haskell I/O fa-
cilities, supporting simple text file manipulation
and interactive programs.

e User documentation, sample programs and
source code freely available by anonymous ftp.

o A relatively portable implementation runs on a
wide range of computer systems including several
smaller home/personal computers.

2This report js based on Gofer version 2.30, the current
release at the time of writing. Most of the comments in this
report are also true of earlier versions.

The only significant feature of Haskell that is not cur-
rently supported is the Haskell module system. On
the other hand, Gofer also supports several exper-
imental extensions of which constructor classes are
perhaps the best known example. The latest release
also includes prototype implementations of other re-
cent proposals for extensions to Haskell, including
monadic /O [47] and lazy state threads [39].

In a typical Gofer session, the system behaves like an
interactive calculator. First, the user enters an ex-
pression at the Gofer prompt, usually a ? character.
After checking for errors, the interpreter evaluates the
expression, lazily printing the result as it is produced,
and then returning to the prompt for another expres-
sion:

? 2 * (3+4)

14

(5 reductions, 10 cells)
? sum [1..10]

151)

(92 reductions, 132 cells)
?

The counts of reductions and cells give a rough
indication of the amount of time and memory used by
the calculation, respectively. These statistics can be
useful in some situations for comparing the relative
complexity of different algorithms. However, these
messages can also be suppressed using a command
line option to avoid unnecessary distractions.

The process described above has much in common
with the standard read-eval-print loop used in many
interactive programming environments, particularly
those for languages like Lisp and Scheme. Gofer al-
lows local definitions within an expression, for exam-
ple:

? f 3 where £ x = x*x - 3%x + 7
7

(7 reductions, 13 cells)
?

However, unlike most Lisp systems, it is not possi-
ble to define new global values or functions directly
from within the interpreter. Instead, new definitions
are entered using a text editor to produce a script
file of definitions that can then be loaded into the in-
terpreter. The strict separation between sessions and
scripts was a conscious design decision, inspired by
[7] and [58], reflecting the way we expect the system
to be used in practice. In particular, this approach
allows a programmer to work by switching between
scripts and sessions, adding new definitions, testing,



and making further changes as necessary. In addi-
tion, script files provide a consistent view of the cur-
rent program, allowing program development to be
spread across different Gofer sessions, but also avoid-
ing the complexities (and confusions) of incremental
compilation and type checking.

The user interface is carefully designed to support
this style of program development. For example, if
an error is detected while loading a script file, the
user can enter the command :e, an abbreviation for
:edit, to start up a text editor on the file contain-
ing the error at the approximate line position where
the problem was detected. Once the error has been
corrected, the user saves the file and exits the edi-
tor, returning to the interpreter, which automatically
reloads the script.

The following example shows how the :load com-
mand is used to load the definitions in the script file
example.gs into the interpreter:

? :load example.gs
Reading script file "example.gs":

Gofer session for:
/Gofer/Standard.prelude

example.gs
?

Notice that the list of files displayed here includes
not only example.gs, but also a prelude file called
/Gofer/Standard.prelude. This is a script of stan-
dard definitions that are loaded at the beginning of
every Gofer session. For example, the prelude typ-
ically includes the definition of standard arithmetic
and list processing functions. The interpreter allows
users to develop special versions of the prelude to
suit particular requirements. For example, this fea-
ture has been used to support experimental preludes
using constructor classes, or to provide closer com-
patibility with Haskell, or with a textbook such as
{7] in an introductory course on functional program-
ming. On the other hand, the system is carefully
designed to ensure that the prelude file will only be
loaded once when the interpreter is started. This is
intended to discourage users from the temptation of
modifying prelude definitions; since these definitions
are usually shared by many different programs, it is
bad practice to modify them for the purposes of one
particular program. The preferred method for writing
new prelude files is to build the new definitions on top
of a minimal prelude; the new definitions should only
be moved into a stand-alone prelude when the devel-
opment is complete. It is entirely desirable for this
process to be a little awkward; new preludes should

only be used as a last resort since they are inherently
non-standard.

Although Gofer does not include a module system, it
is often convenient to split large programs into sev-
eral different script files. This allows different com-
ponents of a program to be developed independently,
and perhaps reused in later programs. The Gofer sys-
tem supports this by allowing the user to specify a list
of script files, each of which is loaded, stacked on top
of the definitions in the preceding files. For example,
the following command might be used to load three
script files into the interpreter:

7 :load exl.gs ex2.gs ex3.gs

Since the files are loaded in strict order, it is possi-
ble for ex2.gs to include references to definitions in
ex1.gs, but not to those in ex3.gs. In a similar way,
if the definitions in ex2.gs are changed, then both
ex2.gs and ex3.gs will be reloaded, since the defi-
nitions in the latter might potentially be modified in
light of changes in the former. A more sophisticated
dependency analysis could be used to avoid reloading
ex3.gs in cases where it would not be affected by any
changes in ex2.gs. However, in practice, the reload-
ing of script files is usually fast enough that this is
not a concern.

For convenience, Gofer allows the list of files required
by a particular program to be recorded in a project
file. A command of the form:

? :project program.prj

can be used to read the file names listed in
program.prj and load the corresponding script files
into the interpreter.

It is important to mention that the original Gofer
user interface was closely modeled on the ‘scrolling’
interface of Orwell [68] which provided my own intro-
duction to functional programming. For example, fol-
lowing Orwell, early versions of Gofer displayed lines
of dots to indicate progress during various stages of
reading script files3. The command syntax of Gofer,
using a leading colon character, :, was also modeled
on that of the editor vi, versions of which are avail-
able for many of the systems on which Gofer is used.

In comparison with popular programs on some ma-
chines, the user interface of Gofer is very primitive.
Unfortunately, there are still many different stan-

3This feature is still supported by the current release but
requires a command line option, +.. It is no longer used as
the default behaviour because it has a surprisingly significant
slowing effect on the total time taken to process script files on
some machines.




dards for constructing more sophisticated user inter-
faces and we are not aware of any standard toolk-
its offering the degree of portability required for the
Gofer system. However, several people have devel-
oped graphical user interfaces for Gofer, targeted for
specific machines. The most widely known example
is MacGofer which extends the standard Gofer inter-
preter with a graphical user interface for Apple Mac-
intosh computers. The MacGofer system has been
developed by Kevin Hammond at the University of
Glasgow.

3 Overall structure

After all of the background information given above,
it is finally time to begin our tour through the Gofer
system!

3.1 Implementation language

One of the first decisions to be made was the choice
of implementation language. Given that Gofer was
intended to run on a wide variety of machines, in-
cluding small PCs with limited memory, the C lan-
guage was an obvious candidate. Even so, the deci-
sion to use C was not easy; we believe that the de-
velopment of Gofer would have been both easier, and
less error-prone, had it been written in a strongly
typed functional language which it accepts. This ap-
proach is often used by designers as a means of test-
ing, and of demonstrating confidence, in the use of
a new language for program development. For ex-
ample, Chalmers LML [4], Standard ML of New Jer-
sey [3] and Glasgow Haskell [12] are all able to com-
pile their own source code. However, each of these
systems requires substantial machine resources. In
addition, we were also concerned about bootstrap-
ping; each of the systems above relies on a compiler
to achieve reasonable performance, while Gofer was
originally conceived as an interpreter. Nevertheless,
even though Gofer was written in an imperative lan-
guage, it also shows strong influences from functional
programming. This is discussed in a little more detail
in Section 10.

Although compilers for ANSI C were available at the
time, the Gofer code was written so that it could also
be compiled with older K&R compilers [37]. The C
preprocessor was used to allow the use of important
features of ANSI C where possible. For example, a
preprocessor macro, Args (arglist) is used to allow
the use of function prototypes in declarations such as:

Void parseScript Args((String,Long));

For an ANSI C compiler, the Args macro includes
the types of the arguments of parseScript in the
declaration, allowing compile-time detection of some
argument mismatch errors. For older compilers, the
Args macro is defined to omit the list of argument
types from the preprocessed version of the program.

It turns out that many of the datatypes in Gofer are
just synonyms for existing C types. For example, the
types Int, Text, Cell, List, Pair and Module are
just new names for the standard C type of integers,
int. However, careful use of these different names
provides valuable program documentation, suggest-
ing how we intend different values to be treated. For
example, the prototype for the copy function defined
in storage.c is written as:

extern List copy Args((Int,Cell));

which gives a much clearer indication of what this
function does (returning a list containing some fixed
number of copies of a given Cell) than if we had
written just:

extern int copy Args((int,int));

Of course, this looses the benefits of strong typing; for
example, most C compilers will not report any errors
for an expression like copy(val,10), despite the fact
that the arguments have been written in the wrong
order. One way to restore strong typing would have
been to introduce new types rather than synonyms.
For example:

typedef struct {int cellValue;} Cell;

This might be sensible in C++, using classes in-
stead of structs, but is not suitable for some older
C compilers that prohibit the use of struct values
as function arguments. In truth, the ability to make
puns, implicitly treating values of one type as val-
ues of another, turned out to be quite convenient at
several points in the code.

Another important use of the C preprocessor in the
Gofer source is to support the display and handling
of error messages. For example, the code:

ERROR(line) "Syntax error"
EEND;

can be used to display an error message about a syn-
tax error in line line of a particular script file and
to branch to the error handler. A small collection of
macro definitions in the file errors.h provides ad-
ditional facilities for including expressions and types
in error messages. One advantage of this approach is



storage.c: Storage management (Section 4)

input.c:
Lexical analysis
and parsing
(Section 5)

static.c:
Static analysis
(Section 6)

type.c:

Type checking
and translation
(Section 7)

compiler.c: machine.c:
Compilation to Execution on
supercombina- an abstract ma-
tors chine

(Section 8) (Section 9)

Figure 1: Main components of the Gofer system

that it makes it much easier to identify error messages
in the source code, and helps to ensure that they are
all handed in a uniform manner.

The reader may be surprised by some of the conces-
sions that have been made to support older, and often
obsolete, compilers and architectures. However, we
have to recognize that many such systems are still in
use, particularly as the personal computers on which
Gofer is most widely used.

3.2 Components of the Gofer system

The main components in the Gofer system are illus-
trated by the diagram in Figure 1, which also cor-
responds to the way that input programs are pro-
cessed, from lexical analysis to execution on the Gofer
abstract machine. Each of these components is im-
plemented by a corresponding C file, described in
the following sections of the report, starting with
storage.c which provides the storage management
facilities used by all of the other components.

Each part of the system is responsible for initializ-
ing and maintaining the variables and data structures
on which it depends. This is described by includ-
ing a ‘control function’ in each component. For ex-
ample, the control function for the type checker is
called typeChecker(). This can be used, for exam-
ple, to reset the type checker by a call of the form
typeChecker (RESET). Several other messages are un-
derstood by control functions, including INSTALL, to
initialize local data structures, MARK, to request the
component to mark local data structures in prepa-
ration for garbage collection, and EXIT, to perform
any final tidying up necessary before exiting the
interpreter. The everybody() function defined in
commonui.c can be used to send a particular message
to every component of the system. For example, one
of the first things that the interpreter does is to call
everybody (INSTALL), and one of the last things it
does before terminating is to call everybody (EXIT).

There some other components of the Gofer system
that are not included in Figure 1, including:

e gofer.c: The standard interpreter user inter-
face. Includes code from commonui.c (parts of
the user interface shared with the Gofer com-
piler, gofc, for example, command line process-
ing) and from machdep.c (machine dependent
code, for example, terminal 1/0).

e builtin.c: Defines the built-in primitives, in-
cluded from the file prims.c.

e output.c: Provides a pretty-printer for the in-
ternal representations of programs, expressions,
types and kinds. These routines are mostly used
to display fragments of expressions or types as
part of error messages produced by the Gofer
system. They have also been quite useful when
debugging the interpreter itself!

We should also mention the files gofc.c, cmachine.c
and cbuiltin.c which are variants of gofer.c,
machine.c and builtin.c, respectively, used in the
Gofer compiler, gofc. See Section 11 for further de-
tails.

4 Storage management

One of the most important components of the Gofer
system is the storage management facilities provided
by storage.c and the header file storage.h. To-
gether, these define many of the datatypes and struc-
tures that are used in the other parts of the system.
The most important data structures used in the Gofer
system are as follows:

e The Text datatype, used to represent identifier
names and text strings (Section 4.1).

¢ The Cell datatype, used as a representation for
a wide variety of values, including programs and
types (Section 4.2).




e The Module datatype, used to deal with pro-
grams that are built up by loading a sequence
of script files (Section 4.3). T

o The Gofer stack, used for a variety of purposes,
including the execution of programs in the Gofer
abstract machine (Section 4.4).

4.1 The Text datatype

Gofer programs usually contain many different char-
acter strings, including keywords, variable names and
the text of string literals. A naive treatment of
strings, allocating fresh storage for each string as it
is encountered, has obvious disadvantages:

o Heap space may be wasted by keeping multiple
copies of the same string, for example, a function
name that is used throughout a source program.

e The memory allocators used in some C runtime
systems perform poorly when burdened with the
allocation of many, relatively small objects.

e Comparisons between strings are not atomic;
several character comparisons are necessary to
distinguish between strings with the same initial
prefix. This is particularly important, for exam-
ple, in code that searches a symbol table to find

- an entry corresponding to a particular string.

Gofer avoids these problems using a table of charac-
ter strings and associating each string with its offset
in this table; we use values of type Text to record
these offsets. Strings are only added to the table the
first time that they are encountered. Subsequent oc-
currences are given the same Text value as the first.
Using Text values to represent strings avoids all of
the problems described above, and ensures that two
strings are equal if, and only if, the corresponding
Text values are equal.

In the current implementation, the size of the char-
acter storage table is fixed at compile-time. With the
limited memory of an older PC, there was little point
in doing anything more sophisticated than this, par-
ticularly since a dynamically allocated table would
have required a further indirection to access values
in the table. However, a dynamically allocated table
would be useful on more powerful systems, allowing
the size of the character table to be increased without
a complete recompilation of the Gofer system.

Two functions are provided to convert between the
String and Text types:

extern String textToStr Args((Text));
extern Text findText Args((String));

The first of these simply returns a pointer to the
string at the offset in the table determined by the
Text value. The findText function is used to find
the Text value corresponding to a given String, ex-
tending the character table if necessary. A collection
of hash tables is used to speed the process of search-
ing the character table for previous occurrences of a
string. In the original implementation, a single hash
table was used to give the starting point for a linear
search through the character table. This was quickly
changed, to use multiple hash tables, when we discov-
ered that over 80% of the time required to load large
programs was spent inside the findText function,
searching for previous occurrences of strings! Where
possible, the current implementation now uses 10 lev-
els of hash tables before resorting to a linear search.
For large programs, this can gave an immediate five-
fold increase in compilation speed. The benefits for
smaller programs are less significant, but still worth-
while.

Two further functions:

extern Text inventText Args((Void));
extern Text inventDictText Args((Void));

are used to generate ‘new’ variables and dictionary
parameters, respectively, in later stages of the com-
piler. They are implemented as functions that return
values outside the range of offsets into the character
table.

4.2 The Cell datatype

One of the advantages of programming in a language
like Gofer is the use of automatic storage allocation
and garbage collection. This frees the programmer
from the need to specify when memory allocation is
required, or when allocated sections of memory can
be released for use in other parts of the program. Ex-
plicit memory management of this kind is a notorious
source of errors in languages like C.

To support automatic storage management, the Gofer
system includes an implementation of a garbage-
collected heap with values of type Cell used as ‘point-
ers’ to objects in the heap. This turns out to be a very
useful data structure and is used throughout the sys-
tem, not just for the execution of Gofer programs.
For example, the Gofer heap is also used to build
parse trees for input programs, to store types for use
in the type checker, and to implement the translation
of functions to supercombinators.

In the following subsections we outline both the in-

terpretation and implementation of Cell values. Be
warned that any reasonably complete description of



Cell values is likely to be long and complicated. For
a first reading, it may be best to simply scan the
following sections, without attempting to absorb too
many of the details.

4.2.1 Interpretation of Cell values

The Cell datatype includes representations for many
different kinds of value. The following list describes
some of the most important kinds of Cell value:

e Primitive constants: The Cell datatype in-
“cludes representations for several different kinds
of constant values, including integers (corre-
sponding to the int type in the underlying C
implementation), floating point numbers, char-
acters and string literals.

e Pairs: Used to construct compound values, in-
cluding pairs, trees and lists. A pair containing
two given Cell values, x and y, can be obtained
as the result of the function call pair(x,y).
Conversely, the two components of a pair p can
be extracted using the expressions fst(p) and
snd(p).

Pair cells are also used to represent function
application in both the compile-time and run-
time representation of Gofer programs. The
storage.h header file includes the following
macro definitions to support this use:

#define ap(f,x) pair(f,x)
#define fun(c) fst(c)
#define arg(c) snd(c)

Pairs are also used to build a representation for
lists; storage.h contains the following macro
definitions to describe the encoding of lists:

#define cons(x,xs) pair(x,xs)
#define hd(xs) fst(xs)
#define tl{(xs) snd(xs)
#define singleton(x) cons(x,NIL)
#define isNull(x) ((x)==NIL)

In words, a non-empty list is represented by a
pair whose fst component stores the head of the
list, with the tail of the list (i.e. the remaining
elements) in the snd component. The special cell
value NIL is used to represent the empty list (and
in other parts of the implementation as a general
purpose ‘dummy’ value). We refer to lists con-
structed in this manner as being ‘internal’ lists;
values corresponding to the list datatype used by

the Gofer program have a very different represen-
tation. For example, the fully evaluated Gofer
list [1..3] is represented by:

ap(ap(nameCons,mkInt (1)),
ap(ap(nameCons,mkInt(2)),
ap(ap(nameCons,mkInt(3)),
nameNil)))

where nameCons and nameNil are constant val-
ues (see the description of name values below)
corresponding to the Gofer constructor functions
(:) and [J, respectively.

Using three different names, for example, pair,
ap and cons, for a single function may seem
an unnecessary complication. However, in prac-
tice, careful use of these different names actually
makes the code a little more readable.

Variable names: There are several different
kinds of variable names that can be represented
as Cell values, including ordinary variables, con-
structor variables and dictionary variables. In
each case, the expression text0f(v) gives the
Text name for the variable represented by a Cell
value v.

Constructor cells: The Cell datatype includes
representations for fragments of parse trees. For
example, a list comprehension generator of the
form p<-exp is represented by a FROMQUAL cell
that contains a pair whose components are the
pattern p and the expression exp. In later sec-
tions, particularly in grammars describing inter-
nal representations of Gofer programs, we will
use the notation FROMQUAL (p,exp) to describe
a Cell value that is constructed in this way.

Special cell values: The Cell datatype in-
cludes a number of special values for certain con-
stants. Examples of this include:

— ARROW, LIST and UNIT, used to represent
the function space (->), list [ ] and unit.
() type constructors, respectively. UNIT is
also used as the representation for the Gofer
value (), the only value (other than 1) of
type ().

— WILDCARD, representing the wildcard pat-
tern _.

— STAR, representing the kind of all types, an
important concept in the treatment of con-
structor classes [33]. Function kinds, map-
ping constructors of kind k1 to constructors
of kind k2, are represented by pair(ki,k2).



Tuples: Used in the representation of tuple
types and values. For example, mkTuple(2) is
used in the construction of pairs. The Cell
datatype actually includes values corresponding
to nullary and unary tuples, mkTuple(0) and
mkTuple(1), respectively, but they are not used
in the current implementation.

Offsets: Used as place holders for type variables
in a polymorphic type, or for bound variablesin a
supercombinator definition. See Sections 7 and 8
for more details.

Dictionaries and selectors: Dictionaries are
used to package groups of related values as a sin-
gle unit. Selectors are used to extract the compo-
nents of a dictionary. This is described in more
detail in Section 7.5.

Type constructors: Used to represent Gofer
type constructors introduced by type or data
declarations, or as primitive built-in datatypes
such as Bool, Int and Char. The details about
the type constructor represented by a Cell value
tc are recorded in the C structure tycon(tc).
For example:

— tycon(tc).text gives the name of tc as a
Text value.

— tycon(tc).kind gives the kind of tc, as
described in [33].

— tycon(tc).what contains a code indicating
whether the type constructor was defined
by a data definition (DATATYPE), a type
synonym (SYNONYM), or a restricted type
synonym (RESTRICTSYN).

— tycon{tc).defn contains the expansion of
a type synonym or the list of constructor
functions for an algebraic datatype.

Note that tycon() is a macro, not a function
returning a struct as the syntax might suggest.

Names: Used to represent named values that
are needed for the execution of Gofer programs.
This includes user-defined values, constructor
functions, member functions, primitives and new
supercombinators introduced by the compiler.
Like type constructors, the details corresponding
to a Cell value n representing a name are held
in a C structure name(n), including the fields:

— name(n) .text: the Text name of n.

~ name(n).arity: the number of arguments
that the function expects. An arity of zero

indicates a constant applicative form (CAF)
as described in [48].

— name(n).type: the type of n, if known.

— name(n).defn: used to distinguish differ-
ent kinds of name. The value of this field
may indicate a constructor function CFUN or
a member function MFUN. For user-defined
functions, this field is also used to record de-
pendency information during compilation.
1t is also used to save the result of the first
(and thereafter, only) evaluation of a CAF
in machine.c.

— name(n).code: the starting address for the
code used to implement a supercombinator.
See Section 9 for more details.

— name(n).primDef: a pointer the implemen-
tation of a primitive function (or zero, if the
name does not correspond to a primitive).

As in the case of type constructors, name() is a
macro, not a function returning a struct.

e Type classes: Used to represent individual type

(or constructor) classes. Once again, if ¢ is a
Cell value representing a class then there is a
structure class(c) that includes fields:

class(c).text: the Text name of c.

— class(c).arity: the number of arguments
that the class takes.

— class(c).sig: the kind of constructor ex-
pected for each parameter.

— class(c).supers: the list of superclass
constraints.

— class(c) .members: the list of member
functions for ¢.

— class(c).defaults: the list of default def-
initions for each member function (if any).

— class(c).instances: the list of instance
declarations for class c. ‘

— class{(c).dictIndex: a pointer to the in-
dex of dictionary values for the class.

The use of these values is described in more detail
in Section 7.5.

Type class instances: Like type constructors
and names, the details about the instances of
a type class are kept in structures indexed by
Cell values. For example, if in is the Cell value
corresponding to the instance declaration



| Value [ whatIs code [ predicate [ selector | constructor(s) }
Integers INTCELL isInt int0f 1 mxInt
Floating point FLOATCELL isFloat | floatOf | mkFloat
Characters CHARCELL isChar charOf mkChar
Pairs AP isPair fst, snd | pair
Tuples TUPLE isTuple | tupleOf | mkTuple
Offsets OFFSET isOffset | offset0f | mkOffset
Selectors SELECT isSelect | selectOf | mkSelect
Dictionaries DICTCELL — dict0f mkDict
Type constructors | TYCON isTycon | tycon mkTycon, newTycon
Names NAME isName name mkName, newName
Type classes CLASS isClass class mkClass, newClass
Class instances INSTANCE isInst inst mkInst, newInst

Figure 2: Predicates, selectors and constructors for Cell values

instance (Eq a) => Eq [a] where
[1 ==10 = True

then the structure inst(in) includes fields:

~ inst(in).cl: The class that the instance
applies to; in this case, Eq.

— inst(in).head: The form of instance spec-
ified; in this case, Eq [a].

— inst(in).specifics: The context part of
the declaration; in this case, a singleton list
containing the class constraint Eq a.

— inst(in).implements: The list of mem-
ber function implementations; in this case,
a singleton containing the name of the func-
tion implementing equality of lists.

Once again, the use of these values is described
in more detail in Section 7.5.

Use of these different kinds of Cell values is sup-
ported by a small collection of utility functions, many
of which are summarized in Figure 2, including:

o Predicates, to determine if a given Cell repre-
sents a particular kind of value.

o Selectors, to return the value associated corre-
sponding to a particular kind of Cell. The fst,
snd and name functions described above are all
examples of this.

e Constructors, to obtain Cell values correspond-
ing to particular kinds of value. The pair func-
tion described above is a simple example of this.
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The whatIs function provides another way to deter-
mine what kind of value is represented by a given
Cell. Figure 2 lists some of the codes returned by
whatIs for frequently used Cell values; for example,
a test of the form whatIs(c)==NAME is equivalent to
isName(c), although the latter may be a little more
efficient. The whatIs function is more useful as a
means of testing for particular types of Cell that do
not have a predefined predicate. For example, test-
ing the condition whatIs(c)==DICTCELLis the easiest
way to determine whether c represents a dictionary
value. Another important application of whatIs is to
provide a simple form of pattern matching; the fol-
lowing idiom is widely used in the implementation of
Gofer, reducing the need for repeated inspection of
Cell values:

switch (whatIs(e)) {
case NAME
case CHARCELL :
default
}
Profiling experiments suggest that whatIs is one of
the most frequently executed functions in the whole

Gofer system, so it is certainly worth investing a little
time to try and make it as efficient as possible.

4.2.2 Implementation of Cell values

Starting from the description of Cell values above,
the most obvious implementation would be to use an
algebraic data type, similar to those that a Gofer pro-
grammer would normally introduce using a data def-
inition.



NIL BCSTAG TUPMIN OFFMIN CHARMIN INTMIN INTMAX
| | | | // | | |
| 1 I I / / ! I 1
pairs tags specials tuples offsets classes chars integers

Figure 3: Implementation of Cell values as ranges of integers (not to scale).

In fact, the current implementation uses a rather
more complicated scheme, encoding arbitrary Cell
values as integers. The main idea is to use different
ranges of integers to represent different kinds of value.
Figure 3 illustrates part of the encoding used in the
current implementation. This approach has some im-
portant benefits over the more direct implementation:

o It avoids the use of pointers in the representation
of Cell values. This was an important consid-
eration for the PC implementation which would
have required 32 bit pointers and, as a result,
doubled the storage requirements of a system us-
ing 16 bit integers.

e Occurrences of commonly used values, including
names, type constructors and small integers, do
not require any storage, regardless of the number
of times that they are used during the compila-
tion or execution of a program.

At the same time, this representation also has some
significant disadvantages:

e The task of decoding Cell values can be a little
expensive. The use of integers instead of point-
ers also carries some performance overheads,
for much the same reason that an array access
through a single pointer indirection is usually
more efficient than using an integer index which
involves additional, implicit pointer arithmetic.

o It is very difficult to change the mappingbetween
integer ranges and different kinds of Cell value
while the system is running. This might be im-
portant if we wanted to be able to modify the
initial configuration, for example, to accommo-
date larger input programs.

The integer ranges used in the current implementa-
tion, and the values that they correspond to, are as
described below. A long string of #define directives
in the header file storage.h is used to ensure that
none of these ranges overlap.

o Negative integers are used exclusively to repre-
sent pair values. This allows us to implement
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the test isPair(c) to determine if ¢ represents
a pair, as a comparison ¢<0 that is very cheap on
most machines. In theory, this limits the maxi-
mum number of pair cells in the heap to be equal
to the number of negative integers (i.e. 2°!
pairs where b is the number of bits in an inte-
ger). However, in practice, this doesn’t cause
any problems: Working with a 32 bit machine,
the upper bound is much larger than any heap
size that we are ever likely to use. On a 16 bit
PC, the upper bound on heap size is much lower
(a maximum of 32,768 pairs) but the PC archi-
tecture doesn’t have enough memory to support
a larger heap.

The first and second components of each pair
are stored in two arrays of Cells called heapFst
and heapSnd each of which contains heapSize
elements. The use of two arrays rather than a
single array containing both components of each
pair was another concession to the PC architec-
ture which limits the maximum size of an array
(at least, if we hope to avoid expensive index cal-
culations) to 64K. By using two arrays, the PC
architecture can support a 128K heap contain-
ing the maximum of 32,768 pairs, each requiring
4 bytes. However, the decision to use two arrays
may seem rather shortsighted because it makes
the allocation of variable size heap objects much
more difficult; this might be an obstacle to ef-
ficient implementation of arrays or records. In
fact, as we describe in the next section, the con-
straints imposed by the garbage collector in the
current design would still have made it almost
impossible to support variable length allocation.

Because pairs are represented by negative Cell
values, we use two variables heapTopFst and
heapTopSnd to point to the locations im-
mediately above the two arrays (i.e. to
heapFst+heapSize and heapSnd+heapSize, re-
spectively). The £st and snd selectors are im-
plemented by macros:

#define fst(c) heapTopFstic]
#define snd(c) heapTopSndlc]



so that the negative index values for ¢ find their
way back to the appropriate elements in the ar-
ray. Since the Gofer heap is quite heavily used,
it would probably be useful to store the variables
heapTopFst and heapTopSnd in global registers.

The default heap size setting for a particular ma-
chine can be changed using a command line op-
tion, but the current implementation does not
make any provision for expanding the heap while
the interpreter is running. This might be useful,
for example, to allow the user to request an in-
crease in heap size, or even to permit automatic
heap expansion if garbage collection fails to re-
claim sufficient space. There is no reason why
this feature could not be added but this would
only be of use on larger systems; the default heap
size settings for older PCs are already set to the
maximum possible values.

The zero value is used to represent the NIL value,
making tests for the empty list very fast.

INDIRECT and INDIRECT1, symbolic names for
the integers 1 and 2, are used in the implemen-
tation of indirection nodes. See Section 9.1 for
more details.

Values in the range [1..BCSTAG-1] are used as
tags in the fst component of a pair represent-
ing a ‘boxed’ value. The following table lists
the boxed values used in the current implemen-
tation. The right hand column gives the type
of value that is stored in the snd component of
these boxed values:

VARIDCELL Identifier variable Text
VAROPCELL Operator variable Text
DICTVAR Dictionary variable Text
CONIDCELL Identifier constructor Text
CONOPCELL Operator constructor Text
STRCELL String literal Text
INTCELL Integer literal Int
ADDPAT (v+k) pattern Int
MULPAT (c*v) pattern Int
DICTCELL  Dictionary Dict
FILECELL Input file no. Int
FLOATCELL Floating pt Float

One of the main purposes of a tag value is to
indicate that the snd component of a pair should
be ignored by the garbage collector.

Values in the range [BCSTAG..SPECMIN-1] are
used as tags in boxed values whose snd compo-
nent is another Cell. The FROMQUAL value is a
simple example of this with a pair containing the
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pattern and expression for a generator as its snd
component.

Values in the range [SPECMIN..TUPMIN-1] are
used for special cell values such as UNIT,
WILDCARD and STAR.

The first NUM_TUPLES values in [TUPMIN..] are
used to represent tuple type and value con-
structors. The default setting of NUM_TUPLES in
prelude.h allows for tuples with up to 100 com-
ponents. In practice, it is very rare to find Gofer
programs that use tuples with more than 6 com-
ponents.

The first NUM_OFFSETS values in [OFFMIN..] are
used to represent offsets. The default setting of
NUM_COFFSETS to 1024 in prelude.h allows for ex-
tensive use of pattern matching and local vari-
ables in function definitions, and for up to 1024
different polymorphic type variables in inferred
types. Examples exceeding this limit are only
usually of interest as pathological examples.

The first NUM_TYCON values in [TYCMIN..] are
used to represent type constructors. The tycon
selector is implemented using the macro:

#define tycon(tc) tabTycon[(tc)-TYCMIN]

where tabTycon is an array with NUM_TYCON
structures containing the fields described in the
previous section.

The first NUM_NAME values in [NAMEMIN..] are
used to represent names. The name selector is im-
plemented using an array of structures in a sim-
ilar way to the tycon selector described above.

The first NUM_SELECTS values in [SELMIN..]
represent dictionary selectors.

The first NUM_INSTS values in [INSTMIN..] cor-
respond to instances of a type class. The inst
selector is implemented by using Cell values to
index the elements in an array of structures.

The first NUM_CLASSES values in [CLASSMIN..]
are used to represent classes, with the class se-
lector implemented in similar way to tycon, name
and inst.

The first NUM_CHARS values in [CHARMIN..] are
used to represent character values. The default
value of NUM_CHARS allows for 256 characters,
enough to support the full character set of most
current machines.



e The remaining values not covered by the above,
all in the range [INTMIN..INTMAX] are used to
represent ‘small’ integers as unboxed values. In
practice, the INTMIN value used here tends to be
quite small, while INTMAX is the largest positive
integer value. As a result, the range of small in-
tegers is actually quite large, not much less than
the range of integers that can be represented us-
ing b — 1 bits, assuming b bits in every Cell
value. The midpoint of this range is used as a
representation for zero:

#define INTZERO (INTMIN/2 + INTMAX/2)

This makes it possible to encode many integer
values as Cells without requiring any additional
storage. Integer values that cannot be repre-
sented in this way must be stored as boxed val-
ues, 1.e. as a pair with first component INTCELL
and a second component containing the integer.

Since many programs use only small integer val-
ues, this representation gives a noticeable reduc-
tion in the amount of space used by programs.
On the other hand, simple arithmetic operations
on integers are more expensive to implement be-
cause they have to be written to deal with both
boxed and unboxed integer values. In an inter-
preter like Gofer there are many more significant
performance overheads to worry about. How-
ever, this representation would not be suitable
for other systems where execution speed is an
issue.

4.2.3 Garbage collection

We have already described how new pair cells are al-
located by calling the pair() function. But what
happens when all of the heapSize pairs in the heap
have been allocated? Like many other systems, Gofer
relies on the assumption that, by the time this hap-
pens, many of the pairs allocated earlier in the com-
putation will no longer be required. A garbage col-
lector is used to determine which parts of the heap
can be reused, linking them together as a list of free
pairs called the freeList. New pair cells can then
be allocated by removing an element from the free
list. When the free list becomes empty, the garbage
collector is called once again, to build a new free list,
and the allocator continues as before. Although it
is possible for the heap to become full, most of the
time, the garbage collector helps to maintain the il-
lusion that there is no limit on the number of pairs
that can be allocated.
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Automatic garbage collection is particularly conve-
nient because it frees the programmer from the re-
sponsibility of deciding when a particular piece of
storage can safely be reused, and avoids hard to lo-
cate errors that can occur when a programmer makes
the wrong decision. Indeed, it has even been argued
that the use of garbage collection can be faster than
other forms of memory allocation [2], although we
would not attempt to make any such claims for the
particular garbage collection system used in Gofer.

Although there is no need for the programmer to
specify when a particular section of storage should
be reused, it is important to ensure that the garbage
collector will be able to identify all of the parts of the
heap that are still in use. This is achieved by listing
a collection of roots, i.e. pointers to data structures
in the heap that must be preserved by the garbage
collector. Roots come from several different sources.
For example, the type and defn fields in the struc-
ture describing a Name value, local variables used to
hold intermediate results, and global variables point-
ing to list of definitions in a particular input pro-
gram, must all be preserved by the garbage collec-
tor. If they are not, the program will behave badly
when the parts of the heap that these variables point
to are overwritten with new values. Each compo-
nent of the system includes a control function (see
Section 3.2) that responds to the MARK message by
marking all of the roots relevant to that part of the
system. The garbage collector uses this by calling
everybody (MARK). Any part of the heap that is not
marked will be reused. For example, it is important
to realize that, if a component is modified to use a
new global variable, newList, pointing to a list of
values in the heap, then the control function for that
component must be modified to include the line:

mark(newList);

It is also sensible to ensure that newList is initial-
ized and reset to a suitable value (usually NIL) in
response to the INSTALL and RESET messages, respec-
tively. Failure to do this may mean that the storage
pointed to by newList is retained for longer than it
is actually required.

Everything that we have described so far is relatively
straightforward. We have hinted at some specifics
of the algorithm used to allocate new pairs, and to
collect unused cells using the freeList; this is an
example of a mark-scan garbage collector. However,
compared with the garbage collection algorithms used
in other systems, our mark-scan collector has some
serious disadvantages:

e The time taken to build the new freeList after



all the cells have been marked is proportional to
the total size of the heap, not to the size of the
heap that is actually in use, which is often much
smaller.

o Allocating new pairs from a free list (including
a test to make sure that the list is non-empty)
is expensive, compared with alternative schemes
where new pairs are allocated from a contigu-
ous array of cells, with a heap pointer that iden-
tifies the next free heap location. Testing for
heap overflow requires a comparison of the heap
pointer with a pointer to the end of the heap.
In addition, it is often possible to allocate sev-
eral new pairs at a time, using only a single heap
overflow test.

o An additional benefit of the approach described
above is that it allows the allocation of different
sized heap objects. For example, to allocate an
array of 100 cells, we simply need to increment
the heap pointer by 100, checking first for over-
flow of course. In theory, a mark-scan collector
could also be used to allocate variable sized heap
objects. However, in practice, this often fails
because the free space may become fragmented,
making it inefficient, and sometimes impossible,
to allocate a block of memory of the right size,
even when the total amount of free memory is
large enough.

These problems can be avoided by using a garbage
collector that is allowed to move objects during
garbage collection, typically using a compaction al-
gorithm, that avoids any heap fragmentation. For
this to work correctly, we need to to ensure that the
garbage collector will update any pointers to the old
position of an object to reflect its new position.

Unfortunately, it is not possible to ensure this prop-
erty for the Gofer garbage collector; to allow the heap
to be used in arbitrary C functions in the system, the
garbage collector also uses the C calling stack as a
source of roots. To see why this is useful, consider
the following function, taken from storage.c, which
can be used to allocate a list containing a given num-
ber of copies of a particular Cell value:

List copy(n,x)
Int n;
Cell x; {
List xs = NIL;
while (O<n--)
xs = cons{x,xs);
return xs;
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Suppose now that a garbage collection occurs part
way through this routine, for example, when only half
of the required list has been constructed. Clearly, it
is important to ensure that the current value of xs
is preserved by the garbage collector. Similarly, the
value of the x parameter may need to preserved by
the garbage collector; in this particular case, this is
only necessary if the garbage collector is invoked on
the first call to the cons function—after that, the
value pointed to by x would have been included, and
hence marked, as part of the data structure pointed
to by xs. The easiest way for the garbage collec-
tor to find these values is to look for them on the C
calling stack. Of course, the C stack also contains
several other kinds of values including, for example,
other function parameters like n, temporary values
and function return addresses. When the garbage
collector encounters a value on the C stack that looks
like a reference to a part of the heap?, it must treat
that value as a root for the garbage collector. On
the other hand, it should not attempt to change the
value on the stack, allowing for the possibility that it
might actually be some other kind of value which just
happens to fall in the same range as a heap reference.
For example, modifying a return address is likely to
cause the program to branch to the wrong location
at some later stage, with unpredictable, and possibly
disastrous effects.

In this particular example, it would have been possi-
ble to change the definition of copy() to ensure that
there were enough free cells available before attempt-
ing to construct the result list, avoiding the chance of
a garbage collection during the construction of the re-
sult list. This is not a general solution; in some cases,
it is impossible, or at best, very expensive, to calcu-
late an upper bound on the amount of storage that
a particular C function will allocate. Furthermore, it
requires the programmer to take more responsibility®
for storage allocation, complicating the code that has
to be written.

There are other alternatives, using extra code in the
definition of C functions, for example, to label inter-
mediate values, to avoid the need for garbage collec-
tion off the C stack. However, with many of these
schemes, we soon find ourselves writing the C equiv-
alent of G-code, a low-level assembly language (see
Section 9.2) to ensure proper marking of roots. This

4 The predicate isGenPair() is used as a more accurate al-
ternative to isPair() to test for genuine pair cell values, i.e.
excluding any Cell values less than ~heapSize.

51t's not that we don’t trust the programuner (in this case,
one and the same person!); we simply recognize that it is all
too easy to make errors in memory allocation, and often very
difficult to detect and correct such mistakes.



would not be so bad if the copy() function was one
of the most complex functions that we had to deal
with; unfortunately, it is one of the very simplest.

As if the limitations of the garbage collector that we
have already discussed are not enough, there are some
further problems that we should mention.

o First, the garbage collector is conservative, in the
sense that it may preserve parts of the heap that
are not actually needed [59, 9]. This happens
when the garbage collector misinterprets a value
on the C stack as a pointer into the heap. In
some situations, this causes a space-leak, pre-
serving large data structures long beyond the
point where they are actually needed. Fortu-
nately, this does not seem to cause too many
problems in practice, except on some occasions
when the heap is already almost full to capacity.

e Another major problem that we have skimmed
over until now is that accessing values from the
C stack is inherently unportable, and generally
speaking, very poor C programming practice.
The standard version of the garbage collector
relies on the assumption that the C stack can
be treated as a contiguous array of equally sized
Cell values. This is true for many systems, from
small PCs to powerful workstations, but there
are also some examples for which these assump-
tions are not valid. For example, in a port of the
Gofer system to run under Acorn’s RISCOS op-
erating system, Bryan Scattergood had to mod-
ify the garbage collector to deal with a stack
implemented by a linked list of frames. As an-
other example, in the development of MacGofer,
Kevin Hammond had to modify other parts of
the system to accommodate the use of an 80-bit
(10 byte) representation for floating point values
that does not fit directly into the 4 byte units
used for Cell values. As another illustration of
the kind of portability problems that we have
run into, it is common for optimizing C com-
pilers to place temporary values in registers. In
some cases, and despite our efforts to avoid the
problem, the values in registers are hidden from
the garbage collector, even when they should be
treated as roots. For example, on a Sun worksta-
tion, the compiler.c part of the Gofer system,
which makes heavy use of the garbage collected
heap, is usually compiled without optimization
to avoid exactly this kind of problem.

In conclusion, the garbage collection system is an
enormous pain, and a significant source of portability
problems. More than any other part of the system,
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it demonstrates some of the compromises that have
been necessary in the development of Gofer. Hap-
pily, in practice, the garbage collector is usualiy very
reliable. For example, we have run large Gofer pro-
grams taking several days to execute and requiring
several tens of thousands of garbage collections with-
out any apparent problems. In light of the discussion
above, we consider ourselves very fortunate that the
garbage collector works as well as it does! The cur-
rent implementation allows us almost transparent use
of the heap in C function definitions. Without this,
we believe that it would have been significantly more
difficult to write and maintain large sections of the
system, particularly the supercombinator compiler in
compiler.c. At the same time, the garbage collector
does still cause some problems, in particular, pro-
hibiting useful extensions such as the allocation of
variable sized blocks of memory. Perhaps these prob-
lems can be avoided in future versions of the system
by switching to a language that includes built-in sup-
port for garbage collection. Alternatively, it might be
possible to use a language, for example C++, allow-
ing special treatment of Cell values to ensure proper
garbage collection; it remains to see what kind of per-
formance overheads this approach might carry.

4.3 The Module datatype

As we have already described in Section 2, the Gofer
system allows the user to load a sequence of script
files, each layered on top of the definitions in pre-
viously loaded files. Apart from Cell values which
have been described in detail in the previous section,
most other values, for example, Names, Classes and
Insts, are allocated from fixed tables with ‘high wa-
ter mark’ values, for example, nameHw, classBw, and
instHw, respectively, pointing to the next free posi-
tion in each table.

The Module datatype is used to record the number
of script files that have currently been loaded. More
importantly, for each script file loaded, the system
maintains a table recording the values of the various
high water mark variables immediately before each
file was loaded. These values are saved by a call to
the function:
Module startNewModule Args((Void));

which returns a module number for the new script file.
Later, the system can restore the storage allocation
to its position immediately before this module was
loaded by a call to the function:

Void dropModulesFrom Args((Module));



In addition to resetting the values of the various
high water marks, this function also requires some
small adjustments to some additional data struc-
tures, such as the hash table used to locate Name
values. Together, these functions provide a simple
checkpointing mechanism. For example, by calling
startNewModule() before reading a new script file,
or before reading an expression to be evaluated, it is
easy to restore the original state if an error occurs, or
once the expression has been evaluated, respectively.

A more sophisticated scheme for the allocation and
recovery of values from tables would be necessary if
the system did not assume a strict dependency be-
tween the script files in the order that they are loaded.

4.4 The Gofer stack

Several parts of the Gofer system make use of a stack
of Cell values:

o The parser uses a stack to record intermediate
values corresponding to fragments of input pro-
grams (Section 5.3).

o The algorithm for calculating strongly connected
components of a program dependency graph dur-
ing static analysis uses a stack to record nodes
in the graph that have already been visited (Sec-
tion 6.2).

e The Gofer abstract machine uses a stack to hold
intermediate values and function arguments dur-
ing program execution (Section 9).

All of these applications are implemented using the
same stack data structure, with the most important
operators as follows:

Void clearStack Args((Void));

Void push Args((Cell));
Cell pop Args((Void));
Cell top Args((Void));
Cell pushed Args((Int));

The use of these functions should be obvious from
their names and types, except perhaps the last;
pushed(n) returns the value n positions from the top
of the stack. The expression top() is equivalent to
pushed(0). In fact, these operators are implemented
by preprocessor macros rather than function calls.
Note that all of the values on the stack are treated as
roots for the garbage collector; this is important to
ensure that the stack is preserved if a garbage collec-
tion occurs during parsing, static analysis or program
execution.
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5 Lexical analysis and parsing

The input.c program is used to read and parse
both the definitions in Gofer scripts and the com-
mands and expressions that are entered into the in-
terpreter. Combining a hand-written lexical analyzer
and a yacc generated parser [19], this part of the sys-
tem draws on standard techniques of compiler con-
struction.

5.1 Lexical analysis

Most of the code for lexical analysis is included in the
file input.c. A two character lookahead, represented
by the two variables c¢0 and ¢1 is sufficient to iden-
tify all of the tokens used by the Gofer system. At
each stage, the current position in the input text is
maintained in the row and column variables. Column
positions are used chiefly to keep track of indentation
which is significant in the implementation of the lay-
out rule. Row values, corresponding to line numbers
in Gofer programs, are recorded at various points in
the parsed form of input expressions so that errors
detected at later stages in the system can be referred
back to the appropriate point in the source code.

The lexical analyzer can be initialized to take its in-
put from the console, a project file or a Gofer script
file using one of the three functions:

Void consoleInput Args((String));
Void projInput Args((String));
Void fileInput Args((String, Long});

For console input, the String argument is used as
the Gofer prompt. In the remaining two cases, the
String argument is the name of the file to be read.
The second argument to fileInput gives the length
of the input file (if known) and is used to determine
the portion of the file that has been read at any point
during parsing.

The lexical analyzer is able to read Gofer script files
using both the standard and literate styles. In the
latter case, program lines in input files must begin
with a >’ character in the first column; all other lines
are treated as comments. This convention, described
more fully in [16, Appendix c], is widely used because
it allows program text to be freely mixed with its
documentation. The ability to read literate scripts
directly without preprocessing does not significantly
increase the complexity of the lexical analyzer.

For each token encountered, the lexical analyzer re-
turns a code to the parser to indicate what kind of to-
ken has been read. For example, NUMLIT for numeric
literals, VARID for a variable name and COCO for a ::



symbol. Distinguishing between different types of to-
ken is all that the parser needs to process the input,
but many of these different kinds of tokens have cor-
responding attributes that are needed in later stages;
obvious examples include the value of a numeric lit-
eral or the name of a variable, both of which can
be represented as Cells. These additional properties
are passed to the parser in the variable yylval, the
standard convention for yacc-generated parsers. In
some cases, notably for the = and :: symbols, the
value returned in yylval is the line number on which
the symbol occurs. These line numbers are used in
later stages of the system to locate the (approximate)
source of an error.

5.2 The Gofer grammar

The grammar for Gofer programs and expressions is
defined by the file parser.y, used as input to yacc
to produce parser.c which is #included as part of
input.c. For convenience, the grammar includes pro-
ductions for the module headers, including import
and export declarations, that are used in full Haskell
programs. This means that it is often possible to use a
file containing one or more Haskell module definitions
as input to Gofer without modification. However,
other than checking for syntax errors, these module
headers are completely ignored.

The Gofer grammar is closely based on the defini-
tion of Haskell, although it is a little more liberal
in some respects. As a simple example, patterns in
Gofer programs are actually parsed as expressions.
This helps to avoid unnecessary conflicts and ambi-
guities in the grammar. Later, in static.c, static
checks are used to ensure that the expressions parsed
are valid patterns. A similar technique is used to
parse certain forms of type expression. The following
examples show that several tokens of lookahead may
sometimes be necessary to determine whether a given
type expression includes a (type class) context:

Ta=->Tbd
(T a, TVb)

Ca=>Ta
(Ca, Cb) =>a->hbt

VS.
VS.

Since yacc grammars only allow a single lookahead
token, we deal with this problem by parsing the con-
text part of a type expression as if it were just a type.
Later, if a => symbol is detected, we use a simple
static check to ensure that the value parsed as a type
can instead be treated as a context. For example, the
expression Int => Bool would be accepted by the
parser, but rejected by the static check. On the other
hand, the current grammar will accept a type ex-
pression of the form ((Eq a)) => a -> Bool, even
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though a strict adherence to the Haskell grammar
would prohibit the repeated parentheses around the
predicate Eq a.

There are also some small differences in the interpre-
tation of certain expressions. For example, in Haskell,
the two expressions:

let (n+1)
let n+1 =

43 inn
43 in n

have different meanings; the first evaluates to 42
while the local definition in the second introduces a
new value for the (+) operator, not for n, and hence
returns whatever value was bound to n in the enclos-
ing environment (or a compile-time error if no such
binding exists). In Gofer, the second interpretation
is used for both expressions; (n+k) patterns cannot
be used at the top-level of a pattern binding, with or
without the parentheses.

Another interesting aspect of the Gofer parser is the
way that expressions involving infix operators are
treated. The Haskell grammar [16, Appendix B] de-
fines the syntax for infix operators using a complex
family of productions indexed by precedence and fix-
ity values. Implementingthis directly as a yacc gram-
mar would cause a significant increase in the size of
the grammar. Instead, the Gofer parser reads ex-
pressions involving infix operators as a sequence of
expressions, separated by operator symbols, without
any further processing. When the whole sequence
has been read, it is passed as an argument to the
tidyInfix function at the end of parser.y that uses
a simple shift-reduce parser to determine the correct
interpretation of the expression. In a system sup-
porting Haskell-style import declarations, this tidy-
ing process could profitably be delayed until the inter-
face files for imported modules have been read, pro-
viding the fixities for imported infix operators. Apart
from simplifying the yacc grammar, this approach
would also make it very easy to extend the range of
precedence values that can be assigned to infix oper-
ators. Following Haskell, the current implementation
allows only single digit precedences.

Another small difference between the Haskell and
Gofer grammars is in the treatment of the prefix
unary minus operator. The definition of Haskell, re-
quires unary minus to be treated as having a prece-
dence value of 6, the same precedence used for bi-
nary addition and subtraction. In Gofer, unary minus
binds more tightly than any infix operator, but less
tightly than function application. This rarely causes
any difficulties in practice, although we will proba-
bly change the Gofer grammar at some point in the
future to be consistent with Haskell.



5.8 The shadow stack

During parsing, the Gofer system is constantly using
the heap to build expression trees corresponding to
parsed fragments of the source program. It is impor-
tant to ensure that all of these intermediate values
are preserved if a garbage collection occurs during
parsing. In fact, parsers generated by yacc already
maintain a stack of such values for internal use; if
we could make the values on the yace stack known
to the garbage collector, then we wouldn’t have to
worry about loosing the parse trees for intermediate
fragments during garbage collections.

Unfortunately, because the yacc stack is intended
only for internal use, there is no officially documented
way to access these values. Instead, using some in-
sight into the way that yacc generated parsers work,
the current implementation uses the Gofer stack to
simulate the state of the internal parser stack. This
duplication of effort has obvious disadvantages, but
does at least ensure that the garbage collector will
preserve intermediate values during parsing in a rel-
atively portable manner.

We refer to this process as shadowing the yacc stack.
The first step in the shadowing process is to ensure
that the lexical analyzer pushes the appropriate value
onto the Gofer stack every time it encounters a to-
ken in the input file. Most of the remaining work is
taken care of by the geShadow() function defined in
parser.y. This is used in productions such as:
ctype : ctype atype {$$=gc2(ap($1,$2));}

An expression of the form gc2(e) is just an abbrevi-
ation for gcShadow(2,e), the purpose of which is to
remove the top two elements of the stack and replace
them with the new expression e. In fact, the defi-
nition of gcShadow is a little more complicated since
we need to take account of situations where the stack
already contains an extra lookahead token. We refer
the reader to parser.y for more details.

5.4 Implementing the layout rule

The Haskell layout rule, also adopted by Gofer, al-
lows a programmer to use layout and indentation to
reflect the structure of a program in a concise and
natural manner. In effect, the layout rule works by
automatically inserting {, ; and } tokens at certain
points in the input stream. For example, the case
expression:

case expr of True -> branchi
False -> branch2
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is transformed, by the insertion of these additional
tokens, to:

case expr of { True =-> branchi;
False -> branch?2

}

We refer the reader to [24, Chapter 13] and [16, Sec-
tion 1.5} for a more complete description of the layout
rule and its use.

The implementation of the layout rule is a little tricky
and relies quite heavily on the error recovery features
of yacc and on some mildly complicated interactions
between the lexer and parser. The details are a little
too technical for this report and we refer the reader
to the code for input.c and parser.y, in particu-

- lar, the productions for close and closel, for more

information.

5.5 Abstract syntax for parsed values

To explain the role of the different components in
the Gofer system, we will describe the internal rep-
resentation of Gofer programs at each stage using a
sequence of simple grammars. The purpose of the
lexical analyzer and parser is to translate input pro-
grams in the concrete syntax of Gofer into the first of
these abstract syntaxes.

The main result of parsing a Gofer program is a list
of equations mixed with type signature declarations.
Using the grammar in Figure 4, this can be described
as a list of the form [Eqn]. Note that, following the
Gofer syntax for lists, we use the notation [...] to in-

- dicate a list of values, not an optional item as in some

BNF-style notations. The Line type used here indi-
cates an integer value corresponding to a line number
in the source program. We have used the names VAR
and CON to indicate variables and constructor identi-
fiers respectively. In fact, the parser and lexer actu-
ally go a step further, making a distinction between
the case when an identifier is written with applica-
tive/prefix syntax (VARID/CONID) and the case when
infix syntax is used (VAROP/CONOP).

There are two useful observations to make about
this grammar. First, as suggested in earlier com-
ments, the grammar does not distinguish between
expressions and patterns; for example, the fact that
WILDCARD is not permitted in an expression or that
LETREC clauses cannot appear in patterns is not cap-
tured by the grammar. These errors will not be
detected until later, during the static analysis in
static.c (Section 6). Second, the grammar is quite
complex; while it omits much that is purely syntactic
such as comments and parentheses used for grouping,



SIGDECL (Line, [Var], SigType)
(Expr, Rhs)

Eqn

VAR Text

CON Text

AP (Expr, Expr)

Const

COND (Expr, Expr, Expr)
FINLIST [Expr]

LETREC ([Egn], Expr)
LAMBDA Alt

CcoMP Comp

RUNST Expr

ESIGN (Expr, SigType)
CASE (Expr, [(Pat, Rhs)))
ASPAT (Var, Pat)
LAZYPAT Pat

WILDCARD

Expr

Const UNIT

TUPLE Int
STRCELL Text
CHARCELL Char
FLOATCELL Float

INTCELL Int

(Expr, [Qual))
FROMQUAL (Pat, Expr)
QWHERE [Eqn]
BOOLQUAL Expr

Comp
Qual

Pat
Alt
Rhs

Expr
([Pat], Rhs)

GUARDED [(Line, (Expr, Expr))]
LETREC ([Eqn], Rhs)
(Line, Expr)

QUAL ([Pred], Type)
Type

ARROW
TUPLE
UNIT
LIST
VARID
CONID

AP (Type, Type)

Pred = AP (CONID, Type)
| AP (Pred, Type)

SigType

— i

Type

Figure 4: Abstract syntax for parsed terms and types
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it is still quite close to the input language. Although
it makes the implementation a little more compli-
cated, keeping the input in this form makes it easier
to give accurate error messages during static analysis
and type checking. That said, there are a few exam-
ples where the special syntax used in Gofer programs
is not preserved. The following table shows the trans-
lations used for the special syntax for right sections,
unary minus and arithmetic sequences:

Source Translation

(‘op‘ a) | flip a

(- a) negate a

fa..b] enumFromTo a b
[a,b..] enumFromThen a b
(a..] enumFrom a

[a,b..c] { enumFromThenTo a b ¢

Apart from the list of equations and type signatures
that are returned when the end of the input file is
encountered, the parser also processes several other
kinds of declaration:

e type and data definitions: For each type con-
structor definition, the tyconDefn() function is
used to allocate a new Tycon and to save the de-
tails for further processing during static analysis.

e class and instance declarations: In a similar
way, new Class and Inst values are allocated us-
ing classDefn() and instDefn() to record the
details for each class and instance declaration
in the input program, respectively.

e Primitive declarations: Bindings of variable
names to internal primitives are gathered to-
gether in a list primDefns during parsing using
the primDefn() function. Later, as part of the
static analysis carried out in static.c, new Name
values are allocated for each named primitive.

o Fixity declarations: Precedence values and asso-
ciativities for infix operator symbols are entered
into the tables used by the expression parser as
soon as the fixity declarations are encountered.

Note that these declarations can only appear at the
top-level of an input program.

6 Static analysis

The main purpose of the code in static.c is to carry
out static checks and analyzes on parsed programs
and expressions before they are passed on to the type
checker. Most of these tasks are so mundane that we



often don’t think about them explicitly when writing
programs for Gofer. For example, consider a program
containing a datatype definition of the form:

dataTabc=C | Dtil | Et2 t3

where t1, t2 and t3 are some type expressions. To
ensure that this definition is valid we need to carry
out the following tests:

e Check that there is no previous definition for T,
either as a type constructor or as a type class.

e Check the format of the left hand side. The
parser ensures that the arguments to T are simple
type variables, but an additional check is needed
to ensure that there are no repeated variables.

e Check that the type expressions appearing on the
right hand side are well-formed. In particular, we
need to ensure that:

— The only type variables involved are those
on the left hand side of the definition.

— All of the type constructors referred to on
the right hand side are defined somewhere
in the current program.

— The types on the right hand side are well-
kinded. For example, this prevents any at-
tempts to supply a type constructor with
too many arguments. This requires a form
of kind inference and will be described in
Section 7.7.

e Add new Name values with suitable types and ari-
ties for each of the constructor functions €, D and
E defined by the right hand side. In addition, we
need to ensure that there are no previous defi-
nitions for these functions in another datatype
definition.

Definitions for type synonyms, classes, instance,
primitive, function and operator fixities are also sub-
Jjected to static checks of a similar nature. Verifying
these conditions for input programs allows the sys-
tem to give early detection of simple program errors.
In addition, it simplifies the code in later sections of
the compiler. For example, there is no need to deal
with unbound variables during type checking or code
generation.

The Gofer system allows the definitions in a script to
be placed in any order®. As a result, many of these

SThe placement of fixity declarations does have an effect
on the way that programs are parsed. Also, the ordering of
definitions does affect the order in which errors are reported to
the user. However, it does not have any effect on the semantics
of error-free programs.
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static checks must be delayed until the whole script
file has been parsed.

Although the full list of static checks is quite long,
most of them quite easy to implement. For the re-
mainder of this section, we will concentrate on two
particular features; the translation of parsed terms
and types to a form that is suitable for the type
checker, and the use of dependency analysis. Strictly
speaking, the kind inference mechanisms used in
Gofer are also part of the static analysis. How-
ever, the implementation of these functions in kind.c
shares some code and data structures with the main
type checker and, therefore, we postpone further dis-
cussion of this to Section 7.7.

6.1 Translation of parsed values

In addition to the checks described above, the static
analysis component of the Gofer system also trans-
lates parsed types and declarations into a slightly dif-
ferent form. Most of the changes are motivated by the
need to avoid unnecessary work in later stages. For
example, identifiers corresponding to constants such
as Names, Tycons or Classes in input terms are re-
placed with the corresponding values in translated
terms, avoiding the need for further symbol table
lookups.

6.1.1 Translation of parsed types

Most of the work of the static analysis routines is ac-
complished by ‘walking’ the structure of input terms,
types and declarations. For example, the analysis of
a parsed type expression produces a result of the form
described by the grammar in Figure 5. Notice that
occurrences of CONID cells in the input grammar have
now been replaced by the Class or Tycon values that
they refer to. In a similar way, the type variables rep-
resented by VARID cells in parsed types are replaced
by numbered Offsets. The presence of type vari-
ables, signaling a polymorphic type, is represented
by POLYTYPE values, with the Sig field used to record.
the kinds of polymorphic type variables”.

A full description of the representation of polymor-
phic types requires a fairly good understanding of the
technical issues discussed in [33]. We will illustrate
the main ideas by describing the representation of
the Gofer type a => m a. Following the Haskell con-
vention that type variables are implicitly bound by
an outermost universal quantifier, this corresponds to

"During the preliminary stages of static analysis, the Sig
field is used to record the number of type variables, but not
their kinds.



POLYTYPE (Sig, Type)
QualType

QUAL ([Pred], Type)
Type

SigType n=

QualType =

ARROW
TUPLE

UNIT

LIST
OFFSET Int
TYCON Tycon

AP (Type, Type)

Pred = AP (Class, Type)
| AP (Pred, Type)

Type

Figure 5: Representation of types after static analysis

the following type in the underlying formal system:
Va* Ym*™*.a > m a.

The annotations on the variables a and m specify the
kind of constructors that they represent. Treating
V as a form of A-binding, this type can be thought
of as a function mapping a constructor a of kind *
and a constructor m of kind * — #* to a constructor
a — m a, also of kind x. With this interpretation,
we choose the kind * — (* — *) — * as a signature
for the type a => m a. The full representation of this
type can be constructed using the expression:

ap(POLYTYPE,
pair(pair (STAR, /* Sig
pair(pair(STAR,STAR),
STAR)),
ap(ap(ARROW,

mkOffset(0)),
ap(mkOffset(1),
mkOffset(0)))))

*/

/* Type */

Note the use of mkOffset(0) and mk0ffset (1) cor-
responding to the variables a and m, respectively. We
will see later that this representation makes it par-
ticularly easy to instantiate a polymorphic type with
new constructor variables of the appropriate kinds.

6.1.2 Translation of parsed equations

Definitions of variables and functions, represented by
lists of equations in the output of the parser, are also
translated during static analysis. The main change is
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to group equations into bindings each of which takes
one of two possible forms:

e A function or variable binding groups together
all the equations for a single variable and is rep-
resented by a value of the form:

(Var, (Type, [Alt]))

The Type value in a function binding is used to
record any explicitly declared type for the func-
tion named by the Var field. If there is no ex-
plicit type declaration, a NIL value is used in its
place. The list of Alternatives in a binding is ob-
tained by combining the defining equations for
the corresponding variable in the original script.
Recall that each Alt is a pair containing a list
of patterns and a right hand side expression. As
part of the conversion from equations to bind-
ings, static checks ensure that all of the equations
for a particular variable are grouped together in
the source file and that the number of argument
patterns is the same for all equations (referred to
as the arity of the variable).

e A pattern binding is used to represent a group
of variables that are defined by a single equation
whose left hand side is a pattern. Such bindings
are represented as values of the form:

([Var], ([Type], (Pat,Rhs)))

The variables defined by a pattern binding are
listed in the first component with a correspond-
ing list of explicitly declared types {or NIL values,
as necessary) in the second. Differing slightly
from the definition of Haskell, the Gofer system
will reject any pattern bindings that do not de-
fine any variables. This was a conscious design
decision, intended to prohibit silly pattern bind-
ings like True = False; without any variables
on the left hand side, there is no way to force
evaluation, and hence detect the failure of such
pattern matches. '

Given an arbitrary binding b, the Gofer implementa-
tion uses the test isVar(fst(b)) to distinguish be-
tween function and pattern bindings. The description
of bindings using nested pairs makes it a little easier
to explain how the explicit type information in a bind-
ing can be discarded after type checking, for example,
by mapping a function binding to a value of the form
(Var, [Alt]). Of course, since all Gofer data structures
are built up using the primitive pairing constructor,
this is just a matter of presentation.



Binding = (Var, (Type, [Alt]))
| ([Vail, ([Type], (Pat,Rhs)))
Expr = L.
| LETREC ([[Binding]],Expr)
|  NAME Name
Qual ::= FROMQUAL (Pat,Expr)
|  QWHERE [[Binding]]
|  BOOLQUAL Expr
Rhs GUARDED [(Line,(Expr,Expr))]

LETREC [[Binding]] Rhs
(Line, Expr)

Figure 6: Grammar of terms after static analysis

Figure 6 summarizes the main changes in the form of
parsed terms and declarations. Notice the use of lists
of lists of bindings in local definitions, rather than the
lists of equations in the original parsed form. This is a
result of the dependency analysis, described below. A
somewhat smaller change is the introduction of Name
values, used as replacements for variables that refer
to constructor functions, class member functions, or
user defined functions in previously loaded script files.

6.2 Dependency analysis

As we have already mentioned, Gofer does not place
any restrictions in the ordering of definitions in a
script file. However, for the benefit of other parts
of the system, particularly kind and type inference,
the Gofer system uses information gathered during
static analysis to sort these definitions in order of de-
pendency.

For example, given a list of bindings bs, the depen-
dency analysis is used to produce a list of lists of
bindings, [bs1, ..., bs,] such that:

o bsy, ..., bs, includes exactly the same collection
of bindings as bs.

o The bindings in each bs; are mutually recursive.

e For any variable f defined in bs and referenced
in bs;, the definition of f is included in bs; for
some j < 1.

In practical terms, this means that an expression of
the form:

let bs in expr
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can be rewritten using a sequence of nested let ex-
pressions:

let bs; in

let bs, in expr

The principal motivation for dependency analysis is
to enhance polymorphism. For example, without de-
pendency analysis, the type checker would reject the
following expression because the use of a single bind-
ing group forces a more restrictive type for id than
we might expect:

let id x = X
succ y = idy + 1
in id True

A proper understanding of this relies on the fact that,
in the pure Hindley/Milner type system, all calls to
functions within a single binding group are assigned
the same monomorphic type [1]. Dependency analysis
is discussed in more detail in [48, Section 6.2.8] and
in [16, Section 4.5.1]. A secondary reason for using
dependency analysis in the current implementation is
to make Gofer programs easier for the type checker to
digest; as we describe in the next section, the Gofer
type checker works best when a program can be split
into small binding groups.™”

Dependency analysis can be implemented by find-
ing the strongly-connected components for the depen-
dency graph of a given program and using a topolog-
ical sort to arrange them in the desired order. In
Gofer, the dependency analysis is implemented us-
ing a small modified version of a standard algorithm
that automatically produces the strongly-connected
components in the required order [51, 6]. The core
of the algorithm is contained in the file scc.c. This
file is set up to allow different instances of the de-
pendency analysis algorithm to be generated using
the C preprocessor and #includeing several copies
of the code. Templates in C++, generics in Ada, or
functors in Standard ML would have provided more’
elegant ways to deal with this in other languages.

Dependency analysis is also applied to group mutu-
ally recursive class and type definitions together in
dependency order prior to kind inference. In previ-
ous versions of the Gofer system, up to and includ-
ing version 2.28b, separate dependency analyses were
used for type and class definitions. With an eye to
providing better compatibility with Haskell in future
releases, the implementation in version 2.30 accom-
modates arbitrary recursions between class and type
definitions, combining the two dependency analyses



in one. Strictly speaking, there is no need for a de-
pendency analysis of this form because the current
version of Gofer does not support polymorphic kinds.
Nevertheless, we anticipate that this may be a useful
addition at some point in the future. In the mean-
time, we still benefit from the ability to split the
kind inference of the declarations in a program into
smaller, more manageable, pieces.

7 Type checking/inference

The main task of the type checker is to ensure that
every expression, and indeed, every definition in a
Gofer program has a type. Sections of a program
that cannot be assigned a type are treated as errors.
This can often help to detect and locate coding er-
rors. Furthermore, if a given program type checks
without producing any error messages, then we can
be sure that its execution “will not go wrong” and
that run-time type checks can be omitted from the
compiled version of the program. Perhaps more im-
portantly, types are useful as a means of describing,
documenting, and reasoning about the way that ob-
jects are used. This reflects a general philosophy that
types are a valuable tool in software development.

In practice, it is not usually necessary to include ex-
plicit type information in most parts of a Gofer pro-
gram. This is possible because the system is able to
infer the missing type information. The Gofer type
checker has two main roles:

e To calculate types for all of the functions and
variables defined in a script file and to ensure
that the results are consistent with any explicit
type declarations included in the source pro-
gram.

e To add extra parameters to functions with over-
loaded types, to be used to pass dictionary values
in the implementation of type class overloading.

The first of these can be seen as another part of the
static analysis described in the previous section, while
the second is the first step in a sequence of program
transformations that are needed to convert input code
to executable programs. Throughout this report, we
persist with the standard practice of referring to this
component of the Gofer system as a ‘type checker’. In
reality, checking plays a secondary role to the more
important task of type inference.

The type checker is the largest and most complicated
component of the Gofer system. Of course, this is
not really too surprising, given that one of the ear-
liest motivations for the development of Gofer was
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to explore extensions to the type system. The type
checker is implemented by the code in type.c, but
also includes additional sections from the files:

e subst.c: Deals with the representation of sub-
stitutions and with the unification of types and
kinds.

e kind.c: Provides functions for kind inference
and for checking equalities between kinds during
type checking.

¢ preds.c: Provides support for the implementa-
tion of type class overloading, including the sim-
plification of predicate sets and the construction
of dictionaries.

The Gofer type checker builds on a large body of the-
oretical work, most of which we will not attempt to
describe here. In particular, we will assume some fa-
miliarity with the basics of standard type inference
algorithms [41, 11] and with the extensions of this
work to qualified types [26, 30, 29] and to construc-
tor classes [33], on which the type checker depends
for its theoretical basis. To give some historical in-
sight to these references, it took approximately three
months to develop the first version of Gofer version
2.xx that was capable of running small programs and
included a Hindley/Milner style type checker. As we
started to add the extra mechanisms required to sup-
port type classes, it became clear that we did not
have sufficient understanding of the underlying the-
ory to complete the implementation. A further three
months study, resulting in the work described in [26]
and later summarized in [30], was necessary before we
were able to complete the type checker. In conclusion,
you should not expect to understand the full details
of the implementation of the Gofer type checker un-
less you are prepared to spend a considerable amount
of time studying and examining it. The information
in this section provides only a brief introduction, not
a complete description.

Since this section is quite long, we will start with a
brief outline of its contents. We begin with a de-
scription of the representations used for the ‘current
substitution’ and typing assumptions in Sections 7.1
and 7.2, respectively, and show how they are used to
implement generalization in Section 7.3. The main
type checking algorithm is described in Section 7.4,
while the implementation of overloading is covered
by Section 7.5. This includes details about the con-
struction and use of dictionary values. Section 7.6 de-
scribes the representation of type checked programs.
Kind inference, strictly speaking a part of the static
analysis, but implemented using the same ideas as



the type checker, is discussed in Section 7.7. Finally,
Section 7.8 suggests some simple experiments for ex-
ploring the workings of the type checker.

7.1 The ‘current substitution’

We have already described the representation of poly-
morphic, and possibly qualified, types using the
grammar of Figure 5. In particular, polymorphic
types usually include Offset values corresponding to
type variables in the original type expression. For
example, a representation for the type of the identity
function, Va*.a — a, can be constructed using the
expression:

ap(POLYTYPE,
pair(pair (STAR,STAR),
ap(ap(ARROW,
mkOffset(0)),
mkOffset(0))))

If the identity function is applied to a value of type
Int, then we need to instantiate this type, replacing
each occurrence of mkOffset(0) with typeInt, the
Tycon representing the type of integers, to obtain:

ap(ap(ARROW,typelnt),typelnt)

Rather than copying the structure of a polymorphic
type expression like this every time it is instantiated,
the Gofer type checker adopts a different representa-
tion for monomorphic types combining a skeleton for
the type with an offset value. The skeleton captures
the basic structure of the type, without specifying
what types, if any, the variables that it contains are
bound to. For example, the same skeleton,

ap(ap(ARROW,mk0ffset(0)) ,mkOffset(0))

is used for all instances of the identity function. No-
tice that this skeleton is taken directly from the orig-
inal polymorphic type; there is no need for copying.
Since every instance uses the same skeleton, we de-
scribe this approach as structure sharing. The same
terminology is used for similar purposes, in the im-
plementation of logic programming languages [10].

The second component in the representation of a
monomorphic type is an offset into an array of type
variables, each of which is a structure of the form:

typedef struct {
Type bound; /* Skeleton */

Int offs; /% Offset */
Kind kind; /* Kind */
} Tyvar;
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This array is described as the current substitution
since it can be viewed as a mapping from type vari-

-ables to type expressions. The first two components

of a type variable contain another skeleton/offset
pair, representing the type that the variable is bound
to. Unbound type variables are represented by type
variables in which the bound field is NIL. The third
component specifies the kind of the variable; this is
set using the information in the Sig field of the rep-
resentation of a polymorphic type. Although we de-
scribe the workings of the type checker in terms of
type variables and type expressions, we should re-
member that the system of constructor classes pre-
sented in [33] also allows variables and constructors
with kinds other than *, the kind of types.

For the example above, we would expect the type of
the identity function, instantiated bee applied to in-
teger values, to be represented by the skeleton above,
combined with an offset value pointing to a type vari-
able with bound = typeInt and kind = STAR. The
value of offs does not matter in this case because
there are no unbound type variables in the bound
type.

Type variables in the current substitution are referred
to by their position in the array. The expression
tyvar(n) produces a pointer to the nth element of
the current substitution. Polymorphic types contain-
ing more than one type variable are instantiated using
consecutive type variablesin the current substitution.
For example, if the offset value for the representation
of a particular type is o, then each occurrence of a cell
of the form mkOffset (i) in the corresponding skele-
ton is interpreted as a reference to the type variable
pointed to by tyvar(o+i).

In practice, polymorphic types are usually instanti-
ated in several steps, the first of which isto extend the
current substitution with the required number of un-
bound type variables of the appropriate kinds. This
process is implemented by the instantiate() func-
tion which, given a type t, returns a skeleton, an off-
set value corresponding to the first new type variable,
and a list of predicates (or rather, skeleton predicates).
for overloaded functions in the global variables:

/* Skeleton */
/* Offset */
/* Predicates */

Type typels;
Int typeOff;
List predsAre;

Later, when the function is applied to arguments of
a particular type, a unification algorithm is used to
match the expected argument type against the type
of the value that it is actually applied to, binding
these variables to appropriate types as necessary.



The representation of the current substitution de-
scribed in this section makes it possible to instantiate
polymorphic types with new type variables very effi-
ciently, without any copying. The biggest problem
with this approach is that the maximum number of
type variables that can be allocated is limited by the
size of the array used to represent the current sub-
stitution. For many programs, the number of type
variables required to type check each top-level bind-
ing group is well within the default setting. However,
there are some programs where more type variables
are required. Some of these are pathological exam-
ples, often used to demonstrate that the complexity
of Hindley /Milner typing is exponential in the worst
case by defining terms with outrageously high degrees
of polymorphism. More important, programs with
very large binding groups require large numbers of
type variables. The most common source of programs
causing this kind of problem are the machine gener-
ated parsers produced by systems like Ratatosk [43].
In a change from earlier versions of Gofer, the current
distribution allows the size of the current substitution
to increase dynamically during type checking (within
the limits of available memory, of course) to accom-
modate such programs.

7.2 Representing assumptions

Another important data structure used by the type
checker is a collection of assumptions about the types
of the variables that appear in a term. One obvious
way to represent type assumptions is to use a list of
pairs, each of which gives the name and type of a par-
ticular variable. In fact, it turns out to be more con-
venient to split the type assumptions into two groups:

e A-bound variables, e.g. variables bound in A-
expressions, as function arguments or in list
comprehension generators. These variables can
only be used at a single, monomorphic and non-
overloaded type. For example, the following defi-
nition is not permitted because the A-bound vari-
able i is applied to values of two distinct types
on the right hand side:

funny i = (i True, i 'a’)

e Let-bound variables, i.e. variables bound by top-
level or local definitions. The Hindley-Milner
type system used in Gofer allows let-bound vari-
ables to be assigned polymorphic types. For ex-
ample, the let-bound variable id in the expres-
sion:

let id x = x in (id True, id ’a’)
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has type Va*.a — a, and hence can be applied
to different types of value, for example, booleans
and characters, without causing a type -error.
Note however that, all occurrences of a let-bound
variable in its definition must have the same
monomorphic type. Hence the following example
is not permitted:

strange : a —-> Bool
strange x = strange [x]

This restriction is necessary to avoid some of the
problems with polymorphic recursion and type
inference, as described in [1]. However, it is quite
likely that future versions of both Haskell and
Gofer will be extended to permit a weaker form
of polymorphic recursion, requiring an explicit
type signature for any let-bound variable that is
used in this way.

These two types of variable can be mixed in a single
expression by interleaving uses of one with those of
the other. For example, in the function definition:

member X xs = any isx xs

where isx y = x==y

the variables member and isx are let-bound, while x,
xs and y are A-bound.

At any stage during type checking, the current as-
sumptions are represented by two lists of lists of (vari-
able, type) pairs:

/* let-bound */
/* lambda-bound #*/

List defnBounds;
List varsBounds;

Using lists of lists like this makes it easy to interleave
assumptions about let-bound and A-bound variables.
In fact, these lists are used rather more like a stack
with the first elements in each containing assump-
tions about the most recently bound variables at each
stage. For example, during type checking of the ex-
pression x==y in the definition of member above, these
lists would be of the form:

defnBounds = [[(*isx",it)],
[("member",mt)]]
varsBounds = [[("y",yt)],

[("XS" ,XSt) , (nxu ,xt)]]

for some types, it, mt, yt, xst and xt. The types
bound in assumptions take one of two forms; either
a polymorphic type scheme, or a monomorphic type
expression, often just a single integer referring to a
particular type variable in the current substitution.



The reason for distinguishing between different kinds
of variables in the representation of assumptions is
that let-bound variables require some special treat-
ment to deal with overloading (recall that A-bound
variables cannot have overloaded types). This will be
described in more detail in Section 7.5.2.

The only variables that appear in the assumptions
in defnBounds and varsBounds are those which are
bound locally in the current (or enclosing) binding
group. The types of for globally defined values, for
example, constructor functions, member functions or
functions from definitions in earlier binding groups,
perhaps in another script file, can be obtained from
the type field in the corresponding Name value. For
example, the types of both any and (==) in the defi-
nition of member above will be obtained in this way.

In addition to assumptions about the types of bound
variables, it is also necessary to keep a list of pred-
icates to capture any class constraints that are re-
quired for overloaded functions. The global variable:

List preds;

is used to store these predicates as a list of triples,
each of which contains:

e The skeleton for a predicate, i.e. an expres-
sion of the form C t1 . tn where C is an
n-parameter class and t1, ..., tn are skeletons
for each parameter.

e An offset, used to map Offset values in the
skeleton to particular type variables in the cur-
rent substitution.

¢ An expression that can be used to obtain a dic-
tionary for the given predicate. Initially, this
expression will be a newly generated dictionary
variable which will be inserted at the appropri-
ate point in the translated expression. However,
it may be overwritten later if it turns out that
the dictionary required can be obtained as a sub-
component of some other dictionary value.

For example, consider the expression x==y in the def-
inition above. The type of the (==) symbol is:

Eq a => a -> a -> Bool

When this type is instantiated, we allocate a new type
variable beta in the current substitution, generate a
new dictionary variable dv and add the triple (Eq a,
beta, dv) to preds. At the same time, the call to
(==) in the original version of the program is replaced
by (==) dv, taking the dictionary parameter as an
extra argument.
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7.3 Implementing generalization

The description of the current substitution in Sec-
tion 7.1 focussed on the way that polymorphic types
are instantiated. The reverse process, generalizing
a monomorphic type to determine the most general
type possible, is also an important operation in a
type inference system. The generalization of a quali-
fied type p in the presence of an assumption set A is
represented by the notation Gen(A, p) in [29]. Some
authors describe this as the closure of a type with
respect to a particular set of assumptions.

There are two steps in the calculation of the gener-
alization of a type; first we need to mark ‘fixed type
variables’, i.e. those appearing in the current assump-
tion set, then we need to make a copy of the type
to be generalized, replacing type variables that are
not fixed with generic type variables, represented by
Offset values.

The marking and copying of types are implemented
by functions in subst. ¢, using the offs field of each
unbound type variable to distinguish between:

o FIXED_TYVAR: a type variable that appears in the
assumption set.

o UNUSED_GENERIC: a type variable, not appearing
free in the assumption set, that has not been used
as a generic variable.

e GENERIC+n: a type variable, not appearing free
in the assumption set, that has previously been
encountered as a generic variable, represented by
mkOffset(n).

The generalization of a type expression, described by
a skeleton and offset value, is usually calculated in
the following manner. First, the offs field for ev-
ery unbound type variable is set to UNUSED_GENERIC
using the function clearMarks(). All of the types
in the current assumption set are marked using the
functions markTyvar () and markType(). Finally, the
type to be generalized is copied using the copyType ()
function. Each occurrence of a FIXED_TYVAR is rep-
resented by the integer value for the variable in the
current substitution. Each time a UNUSED_GENERIC
variable is encountered, the offs field is changed to
indicate a new generic variable, GENERIC+n, and the
offset mkOffset(n) is returned as the result of this,
and any subsequent copies of that variable.

The full generalization operation is implemented by
the function generalise() in type.c, adding any
type class constraints and kind annotations necessary
for the full representation of a polymorphic type.



7.4 Basic typechecking

The typeExpr() function lies at the very heart of
the type checker. Taking a line number 1 (for use in
error diagnostics, should a problem be detected) and
an expression e as arguments, typeExpr calculates
the type of e, represented by a (skeleton,offset) pair
in the variables typeIs and typeOff introduced in
Section 7.1. In fact, as part of the implementation of
overloading, typeExpr also returns a translation of
the input expression e that includes extra dictionary
values and parameters.

There are quite a few cases to consider, depending
on the form of the expression e, and we will only
consider a few examples here. One of the simplest
cases deals with character constants, represented by
CHARCELL values:

inferType(typeChar,0);

The typeChar variable used here corresponds to
the Char type constructor, and is initialized during
typeChecker (INSTALL). In fact, the inferType()
function is a simple macro and the code above ex-
pands to:

typels =
typeOff

typeChar;
0;

Not surprisingly, most of the other cases are more
complicated than this! For example, the code for con-
ditionals is as follows:

Int beta = newTyvars(1);
check(1l,fst3(snd(e)),e,cond, typeBool,0);
check(1,snd3(snd(e)),e,cond,var,beta);
check(1l,thd3(snd(e)),e,cond,var,beta);
tyvarType(beta);

The first step here is to allocate a new type variable,
beta, to hold the type of the expression, coinciding
with the type of the expression in both the true and
false branches of the conditional. The check() macro
in the next three lines is used to calculate the type of
a particular expression, generating an error message
if the type obtained cannot be unified with the type
in the last two arguments. If the two types cannot
be unified, the values in parameters 1 (a line num-
ber), e (the enclosing expression), and cond (the text
string, "conditional") are included in the error mes-
sage displayed by the system to help the programmer
locate the source of the problem. The three uses of
check ensure that the test part of the conditional is
a boolean value, and that the two branches have the
same type by unifying the types of each with the vari-
able beta.
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As a final example, the following code is used to type
check an expression e of the form LETREC (bs,m) rep-
resenting a local definition:

enterBindings();
mapProc(typeBindings,fst(snd(e)));
snd(snd(e)) = typeExpr(l,snd(snd(e)));
leaveBindings();

The enterBindings() call in the first line pushes
NIL values onto the front of the lists defnBounds
and varsBounds, in preparation for the addition of
both let- and A-bound variables in the typing of the
bindings in bs. These assumptions are discarded by
the call to leaveBindings() in the last line, once
the type of e has been calculated. The intermediate
lines are used to type check each group of bindings
in bs, and then find the type of m in the resulting
context. As the third line suggests, the translation of
e is obtained by destructively updating the original
expression.

The most complicated part of the type checker is the
task of finding the types of a group of mutually re-
cursive definitions in a binding group. This is the
purpose of the function typeBindings() in the code
above. We will delay further discussion of this until
Section 7.5.2.

7.5 Overloading

One of the most innovative features in the design
of Haskell is its support for user-defined overloading
based on the concept of type classes, introduced by
Wadler and Blott [57]. Extending earlier work by
Kaes [36], type classes were proposed as a general
method of dealing with examples like equality and
arithmetic functions that do not fit comfortably into
a simple polymorphic type system, in contrast with
the ad-hoc solutions adopted in earlier languages. Us-
ing the same ideas and notation, Gofer extends the
basic system of type classes used in Haskell in a num-
ber of ways, for example, allowing multiple param-
eter classes, mutually recursive class definitions and
constructor classes [33]. The Gofer type system also
differs in subtle ways from that of Haskell in its treat-
ment of type classes. This allows (in fact, requires)
the use of arbitrary forms of class constraints in type
expressions and leads to a particularly simple imple-
mentation. In addition, this permits further useful
extensions such as the possibility of defining overlap-
ping instances.

Several researchers, including this author, have in-

vestigated the theory and formal properties of type
classes [8, 30, 29, 36, 44, 45, 50, 53] and there has



also been some experience with practical implemen-
tations [14, 28, 46, 5] and applications [27, 38, 13].
Since these topics are so well-documented, we will
concentrate here only on the special features in the
implementation of Gofer. We will also assume that
the reader is familiar with the syntax and use of type
classes in Gofer, as described in [24, Chapter 14].

Following the suggestions of Wadler and Blott [57],
the implementation of overloading in Gofer makes
heavy use of dictionary values. Roughly speaking,
a dictionary is a tuple of values containing the imple-
mentation of overloaded functions corresponding to a
particular instance of a class. As a simple example,
consider the definition of the Eq class in the standard
prelude:

class Eq a where
(==), (/=) ::a->a
x /=y = not (x

-> Bool
and the instance declaration that makes Int an in-
stance of this class:

instance Eq Int where
(==) = primEqInt

The function primEqInt used here is a primitive func-
tion of type Int —> Int -> Bool that can be used to
test two integers for equality. The default definition
for the (/=) function will be used since no explicit def-
inition is included in the instance declaration. These
impliementations of (==) and (/=) can be packaged
up together as a dictionary, eqInt:

= /=)

primEqInt defNeq eqln

Every dictionary for an instance of the Eq class must
contain (at least) implementations for the (==) and
(/=) operators as its first and second components, re-
spectively. In general, we will write (#n d) to denote
the nth component of a dictionary d. Thus, if d is a
dictionary for some instance Eq a, then the first com-
ponent, (#1 d), is an equality function of type a ->
a -> Bool. We can use this to implement overloaded
functions like:

member :: Eq a => a -> [a]l] -> Bool
member x [] = False
member x (y:ys) = x==y || member x ys

by adding an extra dictionary parameter and replac-
ing occurrences of the (==) operator with appropriate
dictionary references:
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x [] = False
x (y:ys)
(#1 d) x y || member d x ys

member d
member d

Note that the same definition works for any type of
values, so long as we ensure that the first component
of any dictionary passed to member includes the ap-
propriate equality function as its first component.

The same ideas are used to handle default definitions,
as in the case of the (/=) function for integers, im-
plemented by defNeq eqInt in the dictionary above.
The defNeq function referred to here is a general func-
tion derived from the default definition in the class
declaration, which also uses an additional dictionary
parameter to obtain the implementation of the (==
operator:

defNeq d x y = not ((#1 d) x y)

Thus, if d is a dictionary for Eq a containing a defi-
nition of the equality operator (==), then defNeq d
can be used as an implementation of (/=).

If the type of an expression is known at compile-time,
then we can use constant dictionary values rather
than adding extra dictionary parameters. For ex-
ample, the expression (4 /= 5) is implemented by
translating it to (#2 eqInt) 4 5 which can be eval-
uated as follows:

(#2 eqInt) 4 5 =

defNeq eqInt 4 5
not ((#1 eqInt) 4 5)
not (primEqInt 4 5)
not False

True

Motivated by the examples above, we will split the
remaining description of the implementation of over-
loading into two pieces:

e The construction of dictionaries using the infor-
mation provided by class and instance declara-
tions (Section 7.5.1).

e The translation of source programs to include’
extra parameters for dictionary values (Sec-
tion 7.5.2).

7.5.1 Dictionary construction

To understand the process of dictionary construction,
it is first necessary to explain the representation of
dictionaries in a little more detail. In the general
case, a dictionary value is represented by an array of
Cell values of the form illustrated in Figure 7. The
storage space for dictionary cells is allocated from
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Figure 7: General layout of a dictionary

an array called tabDict [3, and individual dictionary
values are identified by the position of their first (i.e.
header) cell in the array. The nth element in the dic-
tionary array is usually accessed using an expression
of the form dict(n) which is defined as a preproces-
sor macro for tabDict[n]. Dictionaries can also be
represented by values on the heap, storing the cor-
responding integer offset in the snd component of a
pair whose fst component is DICTCELL.

As indicated by Figure 7, dictionary values can be
split into four distinct sections:

e The header: The first slot (i.e. index 0) in a dic-
tionary d, contains the Cell value correspond-
ing to d. This fact can be used to distinguish
dictionary headers from other cells in the dictio-
nary array. However, its original purpose was
to ensure that all heap references to a particular
dictionary could share the same DICTCELL pair.
When a dictionary is first created at some offset n
in the dictionary array, its header field, dict(n)
is initialized to ap (DICTCELL,n). All subsequent
references to the dictionary share the same value.
This use of headers was originally motivated by
concerns about the limited heap space in the
original PC implementation of Gofer. In ret-
rospect, although it does reduce heap use, the
overall saving is probably quite small.

The header is the only part of a dictionary that
is not optional. As such, it plays a useful role by
ensuring that the allocation of a new dictionary
will always strictly reduce the amount of space
remaining for subsequent dictionary allocation.
This helps to detect programs that are not well-
typed because they require an infinite collection
of dictionaries; since the size of the dictionary
is fixed at compile-time, only a finite number of
dictionaries can be allocated before space is ex-
hausted.

¢ The member functions: The implementations for
each of the member functions for a particular
class are stored at the beginning of the corre-
sponding dictionaries, starting at index 1. The
ordering of the member functions is loosely de-
termined by the order that they are listed in the
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class declaration, and hence is the same for all in-
stances of the class. If no explicit member func-
tion definition is included in a particular instance
declaration then the default definition from the
original class definition will be used instead. If
there was no default definition either, then the
member function slot will be filled with a func-
tion that signals a run-time error if it is ever
used.

Superclass dictionaries: As suggested by Wadler
and Blott, superclasses can be implemented by
storing their dictionaries as components of the
dictionaries for immediate subclasses. The or-
dering of superclass dictionaries is again deter-
mined by the form of the class declaration, so
that the position of a particular superclass dictio-
nary is the same for all instances of a class. For
example, the standard prelude includes a class
Ord with six member functions whose definition
begins:

class Eq a => Ord a where

If d is a dictionary for some instance Ord a, then
(#1 d) through (#6 d) give the implementation
for each of the member functions, while (#7 d)
gives a dictionary for Eq a, and hence (#1 (#7
d)) is an equality function for values of type a.

Note that the superclass/subclass terminology
used here is not really appropriate since it is pos-
sible to have mutually recursive classes each of
which includes the other as a distinct ‘superclass’
(see [24, Chapter 14] for example). Nevertheless,
we continue to use these terms in the same way
that they are used in Haskell where a strict hier-
archy is enforced.

Instance specifics: Unlike the other parts of a
dictionary, the format of the instance specifics
section varies from one instance of a class to the
next, depending on which instance declaration
was used to construct the dictionary concerned.
For example, the standard prelude contains the
following definition for the equality on lists:



(==) /=) eqa
eqList d1 | defNeq di ]
di::Eq [Tree [Int]]
(== /=) eqa eqf
eqTree d2 | defNeq d2 y y
d2::Eq (Tree [Int])
(== /= eqa
eqList d3 | defNeq d3 1
d3::Eq [Int]
(==) /=)
primEqInt | defNeq d4
d4::Eq Int

Figure 8: Dictionary structure required for instance Eq (Tree [Int]).

instance Eq a => Eq [a] where
(1 == [1 = True
(x:xs8) == (y:ys) = x==y && y==ys
== = False

The first line of the declaration indicates that
the equality of lists of type [a] will be defined
in terms of an equality on values of type a. If
d is a dictionary for Eq [al, it is convenient to
store the dictionary for Eq a in d, for example,
in (#3 d). The equality on lists can now be im-
plemented using the function:

eqlist d [] (1
eqList d (x:xs) (y:ys)

= (#1 (#3 d)) x y &% eqlist d xs ys
eqlist d _ = False

= True

As another example of the use of instance
specifics, consider the definitions:

data Tree a = Node a [Tree al
instance (Eq a, Eq [Tree al])
=> Eq (Tree a) where
Node x as == Node y bs
= x==y && as==bs
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In this case, two instance specifics will be re-
quired, one for each of the constraints in the con-
text of the instance declaration. In particular, if
the dictionaries for Eq a and Eq [Tree a] are
stored in positions #3 and #4, respectively, of a
dictionary for Eq (Tree a), then the equality on
trees might be implemented by:

eqTree d (Node x as) (Node y bs)
= (#1 (#3d)) x y &%
(#1 (#4 d)) as bs

Dictionary values are only constructed for class con-
straints without any free variables, i.e. for instances
of a class in which all of the types and constructors
involved are fully determined. For example, if a par-
ticular program requires the comparison of two trees
of type Tree [Int], the type checker will call the
function makeDict() in preds.c to construct a suit-
able dictionary that can be inserted in the translated
version of the program. It may also be necessary to
invoke makeDict () recursively to fill the dictionary
values in the superclass and instance specific sections
of a dictionary. In this particular case, four dictio-
naries will be required, as illustrated in Figure 8. To
avold unnecessary clutter, dictionary header fields are
not included in this diagram.

Note that all references to a particular instance of a
given class share exactly the same dictionary, as in



the case of the recursion between dictionaries shown
in Figure 8. This significantly reduces the amount of
space required to store the set of dictionaries that are
used in a particular program and avoids the problems
of repeated construction discussed in {29, Chapter 6].

The sharing of dictionaries is achieved by implement-
ing makeDict () as a kind of memo-function. For each
class, there is a corresponding index mapping mono-
types or constructors to dictionaries. By allocating
the storage for a dictionary, and inserting a path to
it in the index before attempting to initialize its com-
ponents, we can avoid ever trying to build the same
dictionary twice.

The index from constructors to dictionaries is imple-
mented by breaking each type expression down into
a string of single Tycon values {or special values like
ARROW, LIST, or tuples), and using these strings to lo-
cate the required element in a tree of the form shown
in Figure 9. For example, the constructor string cor-

—{-) H Int H Int l———> Int -> Int
I +
I £] H Int H Int l—-b [Int] -> Int
P -+

[Bool] -> Int

E_] Bool [Bool]
Char [Char]
Tor | Int

Figure 9: Indexing types by strings of constructors

responding to a type of the form T t1 ... tnstarts
with T and is followed by the strings for each of t1
through tn in turn®. Each node in the index is labeled
with a constructor and the dictionaries corresponding
to individual types are located by traversing the index
in the obvious way.

7.5.2 Translation of binding groups

The main purpose of this section is to describe how
a group of mutually recursive bindings can be type
checked, and to show how new dictionary param-
eters are introduced, as necessary, to implement
overloading. This process is implemented by the
typeBindings () function in type.c.

3In the current implementation, it is actually more conve-
nient to take the arguments t1 through tn in the reverse order,
but the overall effect is the same.
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The first task is to analyze the group of bindings to
determine the correct set of typing rules. There are
three cases:

o If the binding group contains any pattern bind-
ings, or if it contains variable bindings (i.e. bind-
ings in which the left hand side is a single
variable) without any explicit type declarations,
then the monomorphism restriction applies as
described in [16, Section 4.5.4] and {24, Section
14.4.6]. The function noOverloading() will be
used to type check the binding group in this case.

e If there are no pattern bindings, no variable
bindings and no explicit type signatures, then
the type checker infers the most general types
possible for the bindings, possibly adding extra
parameters for dictionaries, using the function
implicitTyping().

¢ In the remaining case, there are no pattern bind-
ings but there are explicit type signatures and
there may be some variable bindings. The func-
tion explicitTyping() will be used to infer
types for the functions in the binding group, add
dictionary parameters if necessary, and ensure
that the inferred types match the declared types.

For the rest of this section, we will concentrate on
the second case. The first is arguably a little easier,
the third a little more complex because of the need
to deal with user-supplied type constraints, but the
basic principles are the same.

Consider a binding group of the form shown below
with mutually recursive bindings for the variables f;,
..., Tm to bodies ey, ..., ey, with no explicit type

signatures for any of these variables.
f; args, = e
f,, args,, = en

The steps in calculating the types, and possibly trans-
lated definitions, for these variables are as follows:

o New type variables 3; are allocated to be used as
the type for corresponding f; values, and saved
in the top level of defnBounds.

o Each of the bindings in the group is type checked.
For each equation f; args;, = e;, we calculate
the types of both the left and right hand sides
and unify the results to ensure that they are the
same. In the process, dictionary variables will be
added for each reference to an overloaded vari-
able in e;, with corresponding triples added to
preds, as described at the end of Section 7.2.



When type checking is complete, it may turn out
that we need to add extra dictionary parameters
for some f; ‘and hence we would need to tra-
verse the bodies a second time, replacing each £;
with an expression of the form £, dv; ... dvg for
some dictionary parameters dvy, ..., dvg. In the
worst case, with nested binding groups, repeated
traversals like this could be very expensive. The
type checker arranges for all references to a par-
ticular let-bound variable (i.e. a variable bound
in defnBounds) to share exactly the same pair
cell in the heap, that can be overwritten at some
later point if extra parameters really are neces-
sary. This is one of the reasons for distinguishing
between let- and A-bound variables in the repre-
sentation of assumptions.

Once all the bindings have been processed,
the type checker marks all of the fixed vari-
ables in the current substitution (in the same
way that is described in Section 7.3) and the
elimConstPreds() function is used to deal with
any class constraints that have been accumulated
in preds. There are two ways to eliminate a
triple (pi,beta,v) from preds at this stage:

— If pi does not contain any free type
variables, then we can use the function
makeDict () described in Section 7.5.1 to
construct the corresponding dictionary, and
overwrite v with a pointer to it.

— If the only free type variables in pi are all
marked as fixed, then there is no point in-
cluding it in the type of the £; because we
cannot generalize over any of the variables
that it contains. Instead, the predicate is
treated as a constraint on the environment
that contains the binding group.

These two cases correspond directly to the con-
cepts of constant and locally constant overload-
ing described in {30, 29].

The remaining predicates in preds are simpli-
fied as much as possible to reduce the number
of dictionary parameters that will be required.
The simplification process eliminates duplicate
predicates from preds. Predicates can also be
eliminated if they can be derived either as super-
classes or instance specifics from other members
of preds. As described in [29, Section 8.2.3], we
now consider the use of instance specifics in this
way to be an error in the original design, and
may change this behaviour in future releases of
the system.
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The basic simplification algorithm, implemented
by the function simplify() in preds.c can be
described by the following pseudo-code:

simp ps = iterate s ps !! length ps
where s [] =[]
s (p:ps)
| entails ps p = ps
| otherwise = ps ++ [p]

The main idea is to eliminate a predicate p if it
is implied (i.e. entailed) by the remaining pred-
icates ps. In addition, the simplification algo-
rithm overwrites the dictionary variable v for any
predicate that is removed with a suitable dic-
tionary expression of the form (#n d). In the
case of duplicate predicates with corresponding
dictionary parameters v and v’, the algorithm
overwrites v with (#0 v’), rather than a copy
of the v’ cell. By sharing a single copy of v’, we
avoid any problems if it also overwritten later in
the simplification process.

¢ Finally, the dictionary variables in the remain-
ing preds list are added as extra parameters to
each of the variables in the binding group to ob-
tain the translated versions of the original def-
initions. Similarly, for each ¢, we combine the
predicate parts of the constraints in preds with
the type bound to f; in the current substitution
and generalize (Section 7.3) to calculate the prin-
cipal type for £;.

You are not alone if you consider this description of
type checking a group of implicitly typed bindings to
be rather daunting! A good part of the complexity
here is caused by the need to deal with overloading,
but even without that, there is still a lot of detail
that does not show up in the simple rules used in
many formal presentations of type inference. On the
other hand, this level of complexity is not uncom-
mon when dealing with complete languages, as in the
static semantics for Haskell presented in [35] and the
definition of ML in [42].

7.6 Abstract syntax for type checked
programs

Figure 10 gives the grammar for the bindings that are
produced as the results of type checking. The most
important points here are:

¢ Type annotations are no longer included in Bind-
ings.



Binding ::= (Var, [Alt])
I ([Var], (Pat,Rhs))

LETREC ({[Binding]],Expr)
COND (Expr,Expr,Expr)
AP (Expr,Expr)

Const

NAME Name

VAR Text

SELECT Int

DICTCELL Dict

FINLIST [Expr]

LISTCOMP Comp
MONADCOMP ((Expr, Expr), Comp)
RUNST Expr

CASE (Expr,[(Pat,Rhs)])
LAMBDA Alt

Expr

R

Figure 10: Grammar of type checked bindings

e Type annotations in expressions, for example,
the term (42 :: Int), represented using ESIGN
values in previous stages, are not included in
typed terms.

e Dictionary selector functions and dictionary
constants are introduced using SELECT and
DICTCELL values, respectively. Note that SELECT
n is just the representation for the dictionary se-
lector function #n in Section 7.5.

e Comprehensions, previously represented by COMP
values, are split into two cases: LISTCOMP for
list comprehensions and MONADCOMP for monad
comprehensions. Note that the type checker will
only produce MONADCOMP values if a standard
prelude containing suitable definitions for the
monad constructor classes is used. The represen-
tation of monad comprehensions includes two ex-
pressions for the appropriate Monad and Monad0
dictionaries respectively. In the case where the
comprehension can be interpreted over an arbi-
trary monad, the second of these dictionary ex-
pressions is replaced with NIL.

7.7 The kind system

Just as types can be used to classify values, kinds
can be used to classify type constructors. The kind
system in Gofer is used primarily to support the im-
plementation of constructor classes described in [33]
and has two main roles: to calculate suitable kinds
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for each of the data type constructors and classes
in a program, and to use these kinds to ensure that
only well-formed type and constructor expressions are
used in Gofer programs. Without the complexities of
polymorphism or overloading, the kind system is im-
plemented as a greatly simplified version of the type
system. Readers struggling to understand the basic
features of the type checker may find that a study of
the kind inference code in kind.c and of [33], pro-
vides a somewhat smoother introduction.

As we have already mentioned, kind checking can re-
ally be viewed as part of the static analysis of a pro-
gram, rather than type checking. Nevertheless, we
have included it in this section because of its simi-
larity to the main type. More importantly, kind.c
is included as part of type.c because it makes use
of the same data structures to represent the ‘current
substitution’ described in Section 7.1; the only differ-
ence is that the bound and offs fields in the current
substitution are used to represent kinds, while the
kind field is not actually used.

There are only two forms of kind expression, the kind
* denoting the collection of all types and represented
by STAR, and function kinds of the form k; — k2
which are represented by pairs pair(ki,k2), where
k1 and k2 are the representations for k1 and &2, re-
spectively. For the purposes of kind inference, we use
Offset values to form skeleton kinds. Paired with an
offset into the current substitution, these represent
kinds that are initially unknown.

Further details about the kind system are given in [33]
and the definitions in kind.c are a straightforward
implementation of the ideas described there.

7.8 Experiments with type.c

To understand how a program works, it is often use-
ful to be able to examine and study the results that it
produces for different inputs. This is particularly im-
portant in the last three stages of the Gofer system,
i.e. the type checker, compiler, and abstract machine
support, where most of the effort in converting source
programs to abstract machine code is concentrated.
For each of these components, we will describe some
simple ways to use or modify Gofer to gain some in-
sight into the inner workings of the system. Most of
these features were originally included in the Gofer
source code as an aid to debugging.

The main source file for the type checker, type.c in-
cludes macro definitions for the symbols DEBUG_TYPES
and DEBUG_KINDS. Normally, these are commented
out and have no effect. Removing the comments from
the first definition so that it reads:



#define DEBUG_TYPES

and rebuilding the system, we obtain a modified ver-
sion of the interpreter that prints a lot of extra in-
formation during type checking. In particular, this
includes details about:

e the allocation of new type variables,
e the results of unification,

e the introduction of new assumptions about
bound variables, and

e the results of type checking individual expres-
slons.

For large programs, this produces a considerable
amount of ocutput that should normally be redirected
to a file so that it can be browsed and dissected using
a text editor, or similar tools.

In a similar way, removing the comments from the
second #define to obtain:

#define DEBUG_KINDS

yields a modified version of the interpreter that dis-
plays the inferred kinds of each datatype, type, and
class in a given source program.

Finally, it is possible to get some insight into the con-
struction and use of dictionary values by adding the
line:

#define DEBUG_CODE

at the beginning of type.c and recompiling (unlike
the previous examples, the standard distribution does
not include a commented out version of this line).

The three flags described above can be used in any
combination to select whatever information is of most
~ interest. The format of the output is too complicated
to explain here; you should expect to make frequent
references to the Gofer source code during your first
few experiments.

8 Compilation to supercombi-
nators

Having dispensed with parsing, static analysis and
type checking, compiler.c is used to translate Gofer
programs into supercombinator definitions. The
translation is implemented in four steps, described
in the following subsections.
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8.1 Program transformation

The first step in the compilation to supercombinators
is to translate Gofer programs into a simpler language
that provides only the core elements without some of
the fancier features such as comprehensions, pattern
bindings etc. One advantage of this is that it avoids
further complexity in subsequent parts of the com-
piler. Switching to a simpler representation in earlier
stages might also have eased the task of writing the
static analysis and type checking components of the
Gofer system. However, this would also have made
it more difficult to give useful error messages, help-
ing Gofer users locate the source of errors in their
programs. Fortunately, errors of this kind cannot oc-
cur once a program has passed successfully through
the type checker, leaving the compiler free to adopt
different representations.

The reduction to the core language is carried out by a
tree walk on the structure of type checked programs.
The grammar of the output language is described in
Figure 11. The main steps in the transformation are

Binding == (Var, [Alt])

Rhs ::= GUARDED [(Expr, Expr))
| LETREC ([Binding], Rhs)
| Expr

Expr LETREC ([Binding], Expr)

COND (Expr, Expr, Expr)
AP (Expr, Expr)

Const

NAME Name

VAR Text

SELECT Int

DICTCELL Dict

Figure 11: Grammar of translated bindings
as follows.

¢ Line numbers are removed from the representa-
tion of right hand sides (represented by the non-
terminal Rhs in the grammars in this report).
There is no need to retain this information in the
compiler because we do not expect any further
program errors to be detected®.

2In retrospect, this may have been a little hasty; we have
considered the possibility of modifying the pattern matching
compiler, described in Section 8.2, to produce warning mes-
sages for non-exhaustive definitions. However, without the line
numbers, it is difficult to relate such errors back to the input
program.



o Local definitions, cast into lists of lists of bind-

ings during dependency analysis, are flattened
into simple LETREC values as suggested by the
expansions given in Section 6.2.

List and monad comprehensions are eliminated
using the translations suggested by Wadler in
[65] and [56], respectively.

Case and lambda expressions are eliminated by
translating them to equivalent expressions using
local definitions. For example, the expression:

\f xs -> case xs of

0 -> []
(y:ys) > fy : map f ys
would be translated as:
let g £ xs
= let h [] = [
h (y:ys) =fy : map £ ys
in h xs
in g

Note that this requires the introduction of new
variable names, in this case, g and h. In fact,
the names that Gofer uses, generated by the
inventText () function described in Section 4.1,
are all printed as the letter v followed by a num-
ber; you will certainly have seen such variables
as the result of this translation if you have ever
entered a lambda expression without any argu-
ments into the Gofer interpreter.

Pattern bindings are reduced to simple variable
bindings. For example,

let (x:xs) = el in

is translated to:

let u = conf el
conf ue(_:_) = u
x = head u
Xs = tail u
in

A couple of items here deserve further attention.
First, the function conf is used to implement a
conformality test, i.e. to ensure that the value
of e1 matches the pattern (x:xs). Conformality
tests are only used when the left hand side of a
pattern binding contains an-irrefutable pattern.
In addition, Gofer provides a command line flag
that can be used to suppress the introduction of
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conformality tests, with a small change in the se-
mantics of pattern bindings. By default, confor-
mality tests are used to ensure compatibility with
Haskell. Notice also that new variables names,
in this case u and conf, are generated as part of
the transformation.

A second point is that, although we have used the
functions head and tail in the code above, the
compiler actually generates calls to an internal
primitive function nameSel, sometimes printed
_SEL. The definitions for x and xs become:

_SEL (:) u 1
_SEL (:) u 2

X
Xs

In general, _SEL ¢ v n is used to extract the
nth component in the value v, constructed us-
ing the constructor function ¢. There is no valid
type for the _SEL function in the Gofer system.
However, this does not cause any problems, since
it is not introduced until after type checking is
complete. If it were important, type safety could
be restored by introducing special families of se-
lectors for each datatype; indeed, this is almost
what we have if we think of _SEL(:)1 as a name
for the function \u => _SEL (:) u 1.

8.2 Compilation of pattern matching

After the transformations described in the previous
section, the only significant complication in the rep-
resentation of Gofer programs is the use of patterns in
function bindings. This section describes a program
transformation, based closely on Wadler’s description
in [54], that reduces pattern matching in function def-
initions to a particularly simple form. For example,
the standard map function, usually defined as:

map £ [] =0
map f (x:xs) = f x : map £ xs
is translated to:
map o2 ol
= case o1 of
] -> [

(04:03) -> 02 04 : map 02 o3

Given our description in the previous section about
eliminating case expressions by translating them to
function definitions, this may seem to be a step back
in the wrong direction! However, it is important to
realize that the pattern matching compiler will be
used to translate arbitrary functions definitions. In



contrast, function bindings introduced as a result of
case bindings in the original program are a special
case because they always have exactly one argument.

Another important fact about the case expressions
produced by the pattern matching compiler is that
they do not use nested patterns. For example, the
nested pattern binding in the source for the function
definition:

firstDup (x:y:ys)
= if x==y then x else firstDup (y:ys)

is translated to a nested pair of case expressions:

firstDup o1l
= case ol of
(03:02) -> case 02 of
(05:04) -> ...

The representation for the output of the pattern
matching compiler is a little unusual because it does
not include the binding occurrences of variables. For
the examples above, we have used variable names o1,
02, ...for bound variable names. In fact, the ac-
tual representation used for the two examples above
is somewhat closer to the following:

map {~ arity 2 -}
= case ol of
o ->10
(:) => 02 04 : map 02 03
firstDup {- arity 1 -}
= case o1 of
(:) -> case 02 of

(:) > ...

The main idea here is to annotate function bindings
with arities and to omit bound variables from pat-
tern matching, leaving just the original constructor
functions or constants. When required, the omitted
argument variables can be inferred from context. The
same idea is used for locally bound variables (but not
for locally bound functions which will be eliminated
by the transformations described in the next section).
As another example, we give the standard Haskell def-
inition of the function filter, the results produced
by the pattern matching compiler, and the actual rep-
resentation with implicit naming of bound variables.
This example includes examples of the three differ-
ent ways that local bindings can occur, as function
arguments, in patterns, or in local definitions:

filter p 0 = [
filter p (x:xs)
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= let rest =
in if px

filter p xs
then x:rest
else rest

filter 02 o1
= case ol of
( -> [
(04:03) —> let o5 = filter o2 o3
in if 02 o4 then o04:05
else o5

filter {- arity 2 -}
= case ol of
0 >0
(:) -> let filter 02 03
in if 02 o4 then o04:05
else o5

One of the problems of this representation is that the
meaning of an expression depends on the context in
which it appears. For example, by itself, the local
definition in the final version of filter above does
not tell us the name of the variable that is bound
to filter 02 03. The fact that it appears in the
scope of two function bound variables and two pat-
tern bound variables is necessary to determine the
correct variable name, in this case, o5. Fortunately,
it is fairly easy to keep track of the number of bound
variables as we traverse the representation of pro-
grams; this is what the ‘current offset’ parameter, co,
is used for in many of the functions in compiler.c.

On the other hand, this choice of representation has
some important benefits. First of all, omitting bind-
ing occurrences of variables reduces the space needed
to store compiled programs. Although the savings
are quite small, this was important for the early PC
implementation of Gofer where space was limited. A
more significant benefit is that the naming scheme for
bound variables is carefully optimized for compatibil-
ity with the Gofer abstract machine described in Sec-
tion 9. In particular, the variables o1, 02, ...are ac-
tually represented by Offset values corresponding to
the positions of the corresponding values in the stack
when the program is executed. This doesn’t mean
that the results of compiler.c could not be used for
a different abstract machine. However, in the spe-
clal case of the Gofer abstract machine, it avoids the
need for any special environment mapping variables

to stack locations!®.

10The Gofer compiler, gofc, added some time after the initial
design of compiler.c, uses a compile-time optimization which
changes the direct mapping from offsets to stack locations. A
simulation of the run-time stack is used to determine the new
location of bound variables. (See Section 11.)



The output of the pattern matching compiler is de-
scribed by the grammar in Figure 12. As always,

LocalDef ::= ([Rhs], [FunDef))
FunDef := (Var, Int, (Fvs, FFs, Rhs))
Rhs ::= GUARDED [(Expr, Expr)]
| LETREC (LocalDef, Rhs)
| CASE (OFFSET Offset, Match)
| FATBAR (Rhs, Rhs)
|  Expr
Match = [(Discr, Rhs)]
Expr LETREC (LocalDef, Expr)

|  OFFSET Offset
|

Figure 12: Bindings after pattern matching compiler

some additional comments are necessary to point out
the most important features.

First, in preparation for lambda lifting, described in
the next section, lists of local definitions are sepa-
rated into a list of expressions, each of which is im-
plicitly bound to an 0ffset value, and a list of func-
tion definitions. Each function definition, represented
by Fundef in the grammar, includes the name of the
function, its arity and a triple of the form (Fvs, FFs,
Rhs) where:

e Rhs is the right hand side, or body, of the func-
tion.

e Fysis a list of 0Offsets corresponding to the free
variables appearing in Rhs.

o Ffsis alist of Fundefs that are referenced in Rhs.
This links Fundef values together, reflecting the
dependencies between them. Note that the Fun-
def values included in Ffs may either be defined
in the same list as the current Fundef value or,
otherwise, in some enclosing scope.

We will illustrate how this information is used in the
following section. The task of collecting these de-
tails has little to do with the pattern matching com-
piler; if Gofer had been implemented in a Haskell-like
language, this process would probably have been de-
scribed using a separate pass over the representation
of compiled terms. However, working in C, we chose
to merge these two steps, avoiding a repeated traver-
sal of the program graph.
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Some final comments may be necessary to explain
the FATBAR construct. A right hand side of the form
FATBAR (l,r) is used to describe a combination of / and
r which behaves like | except when that fails, either
because of a failed pattern match or guard, in which
case it behaves like r. This is exactly the same as the
fatbar operator, [|, used in [48]. A simple example is
in the compilation of the function:

null []
null xs =

True
False

Writing the definition in this way requires that the
second equation is only used if the first fails. Apply-
ing the pattern matching compiler to this definition
produces the following definition:

null {- arity 1 -}
= FATBAR (case ol of
[1 -> True,
False)

The reason for introducing FATBAR as a new con-
struct, rather than a primitive function, is to make
it easier for the code generator to recognize right
hand sides of this form; in practice, many uses of
the FATBAR construct can be eliminated during code
generation. The only exception is when a FATBAR
construct appears on the right hand size of a local
variable definition, i.e. in a non-strict context. The
code generator does use a primitive function to deal
with this case.

8.3 Lambda lifting

Lambda-lifting is a program transformation that
eliminates local function definitions. The result is
a program containing only closed, global functions
known as supercombinators, a term coined by Hughes
in his presentation of an algorithm for lambda-lifting
[18]. The Gofer compiler includes an implementa-
tion of an alternative algorithm proposed by Johns-
son, who also introduced the term lambda-lifting [20].
Other descriptions of Johnsson’s algorithm may be
found in [48, Section 14.6] and in [49, Chapter 6].

Up to this point, all of the program analyses and
transformations that we have described have been
fairly general, and largely independent of any par-
ticular implementation technique; we would expect
to find similar components in any implementation of
a non-strict functional language. On the other hand,
lambda-lifting is not essential for the compilation of
such languages; for example, lambda-lifting is not re-
quired for either of the implementations by Turner



[52] or Peyton Jones [34]. The only reason for in-
cluding a lambda-lifter in Gofer is to transform Gofer
programs to a form that can be compiled for execu-
tion on the Gofer abstract machine, a variation on the
Chalmers G-machine, that is described in Section 9.

8.3.1 A simple example

Lambda-lifting algorithms are based on a very simple
idea; to turn a local function definition into a global
function definition, add an extra parameter for each
free variable in the body of the function. We will illus-
trate the effect of the lambda-lifting algorithm used in
Gofer with the following definition of the foldr func-
tion. For convenience, we will write the definition
using standard Gofer syntax. Of course, in practice,
by this point in the compiler, the same definition will
actually be represented using a case expression:

foldr a £ = let g [] = a
g (x:xs) = £ x (g xs)
in g

This style of definition, using local definitions to de-
scribe higher-order functions, is popular with some
Gofer programmers. On the other hand, the defi-
nition of foldr in the Haskell report [16], although
equivalent, does not use a local definition. We will
see that main effect of lambda-lifting in this exam-
ple is to convert the definition above into something
more closely resembling the definition in the Haskell
report.

As it stands, we cannot treat g as a global function
because it includes two free variables, a and £, in its
definition. Adding these variables as extra parame-
ters to g, we obtain the following definition:

foldr a £
=let g a £ [] = a
gaf (x:xs) =1 x (gatxs)
in gaf

Since this new definition for g does not refer to any
free variables, we can ‘lift’ the definition out as a new
global function:

foldr a £ =gaft
gaf[] = a
gatf (x:xs) =fx (gafxs)

We have now reduced the original program to a pair of
supercombinator definitions without any local func-
tion bindings. In fact, in this example, there is an
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opportunity to improve the supercombinator defini-
tions using 7-reduction to define foldr = g. Even

‘better, substituting foldr for g in the lifted function

definition gives:

foldr a £ []
foldr a £ (x:xs)

a
¥ x (foldr a f xs)

This final optimization using 7-reduction is not in-
cluded in the current Gofer implementation although
it would be useful in a production quality compiler.

8.3.2 Lambda-lifting recursive definitions

In the general case, lambda-lifting is complicated by
the need to deal with mutually recursive function def-
initions. As an example, consider the following defi-
nition:

x+hz
Yy-—gz

fxy=1letgz-=
hz

in

Taking the same approach as the previous example,
we might observe that, since x appears freein g, and y
appears free in h, these definitions should be rewritten
as:

fxy=1letgxz-=
hyz
in

x+hyz
y-gxz

But we still cannot turn the definitions for g and h
into global functions because the transformation has
introduced new free variables in the body of each
function. For example, y now appears free in the
body of g! However, we can repeat the original pro-
cess, adding further parameters to the function defi-
nitions to obtain:

ftxy-=

]
®
ot

]

-«
o]
N

[

=x+hxyz
y-gyxz

=2
"
«
N
]

in

Finally, the definitions of g and h can be lifted out as
global functions.

To explain this process a little more formally, we will
write lv(g) for the set of variables that have to be
added to g before it can be lifted out as a global def-
inition, and fv(g) for the set of variables that appear
free in the body of g. Our task now is to find solutions
for the simultaneous equations:

lv(g) fo(g) U lv(h)
Iv(h) fo(h) U lv(g)



More accurately, since we would prefer to add as few
parameters as possible, our real task is to find the
least solution of these equations. Fortunately, there
is a simple way to find least solutions to such equa-
tions by using a sequence of approximations and it-
erating until we reach a least fixed point. In other
words, we generate a sequence of values of the form
(lw(g), , lv(h),) using the equations:

e

v(h), = Jv

lv(glyr = l(g), U lv(h),
Iv(h)n_H = Il(h), U h(g),

until we reach a point in the sequence where the sets
produced do not change from one step to the next.
Since we have only a finite number of equations, this
process is guaranteed to terminate after a finite num-
ber of steps, obtaining a minimal solution to the orig-
inal equations as its result.

The same technique applies to arbitrary collections
of function bindings. For each function £, we need to
find the smallest possible solution to an equation of

the form:
Iv(f) = fusU U lv{g),
ge ffs

where fvs and ffs are the free variables and free func-
tions, respectively, in the body of £. Note that these
are exactly the values that we arranged for the pat-
tern matching compiler to store in the representa-
tion of FunDef values, as described in Section 8.2.
This information is used by the solve() function in
compiler.c to solve the simultaneous equations and
calculate the sets of variables to be added to each
definition.

Apart from adding extra parameters to each func-
tion, we also need to add the appropriate variables
as extra parameters in calls to lifted functions. For
example, replacing calls to h with calls to h x y in
the above. Perhaps the most direct implementation
would be to define a function to carry out substi-
tutions of the form [h x y/h]P, replacing free occur-
rences of h in P with h x y. However, this would be
very expensive since it would almost certainly require
multiple traversals of program fragments, particularly
when dealing with nested local definitions. Our im-
plementation avoids this problem by using a stan-
dard technique in the implementation of program-
ming language interpreters, using an environment,
tr, to record a translation for each variable. Since
all of the information needed to compute lv(f) sets is
calculated before lambda-lifting, the translation en-
vironment tr can be extended with the appropri-
ate translations for locally defined functions before
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traversing the bodies and scope of the local defini-
tion. This avoids any need for multiple traversals.

8.3.3 Representation of supercombinators

The result of the lambda-lifter is a collection of global
functions, or supercombinators, each of which is de-
scribed by its name, its arity, and a right hand side
of the form specified by the grammar in Figure 13.
The same representation is used for the supercom-

Rhs = GUARDED [(Expr, Expr))

|  LETREC ([Rhs], Rhs)

| CASE (OFFSET Offset, Match)
|  FATBAR (Rhs, Rhs)

| Expr

Match := [(Discr, Rhs)]

LETREC ([Rhs], Expr)

|  COND (Expr,Expr,Expr)
| AP (Expr,Expr)
|  Const

| OFFSET Offset
I

|

l

Expr n=

NAME Name
SELECT Int
DICTCELL Dict

Figure 13: Grammar for supercombinators

binator definitions passed to the code generator in
machine.c.

8.4 Pre-compiler

The final, rather poorly named, stage of compiler.c
massages the results of the lambda-lifter into a form
that can be used as input to the code generator. The
structure of compiled programs is not modified by
this process. The only changes that it makes are ad-
justments to the numeric values of 0ffset values cor-
responding to bound variables. This is only necessary
because of our decision to make binding occurrences
of such variables implicit in the representation of pro-
grams, as described in Section 8.2. To see why some
adjustments are necessary, consider the following ex-
ample:

f 02 01l = let g 03 = 02 + 03
in g o1l

Rewriting this with implicit naming of bound vari-
ables gives:



t {- arity 2 -}
= let g {- arity 1 -} = 02 + 03
in g o1l

Lambda-lifting adds an extra parameter to g and pro-
duces the supercombinator definitions:

f {- arity 2 -}
g {- arity 2 -}

g o1l
02 + 03

However, expanding out the implicit bindings, the
definition of g becomes:
g 02 01 = 02 + 03

Clearly this is wrong; the variable 03 on the right
hand side does not even appear on the left!

Fortunately, it is fairly easy to calculate the correct
offset values when we lift out the body of a locally

defined function if we know!!:

o the arity, a, of the function prior to lifting,
o the offset, r, of the right hand side, and

o the list, extraVars, of free variables to be added
as extra parameters.

The values of these parameters for the function g in
the example above are 1, 4, and [02], respectively.
Writing n for the length of extraVars, the lifted func-
tion will have arity a+n. The adjusted value of an off-
set o in the body of a lifted function can be calculated
as follows:

e If 1 < o < r-a, then o corresponds to a free
variable, included in the list extraVars. The
adjusted offset is a value in the range a<o’<a+n,
determined by the position of o in the list.

o If r-a<o<r, then o corresponds to a parameter
of the function before lifting, and maps to an
offset in the range 1<o’<a.

e If r < o, then o corresponds to an offset intro-
duced in the body of the function, and maps to
the offset (o-r)+(a+n)>a+n.

For the example above, these calculations map o2 to
02 and o3 to o1, so that the correct definition of g
generated by the pre-compiler is:

g {- arity 2 =} = 02 + o1

11 The parameters a, r, and n used in the description here
correspond to localArity, localOffset and numExtraVars, re-
spectively in the current implemnentation.
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Despite appearances, the calculation for adjusting off-
sets is straightforward. The only reason for including
the details here is to illustrate the consequences of
our non-standard representation for programs with
implicit introduction of bound variables.

8.5 Experiments with compiler.c

One of the best ways to explore and understand the
workings of compiler.c is to study the output that
it produces for particular Gofer programs. The gofc
program provides an easy way to inspect the output
of the compiler in a fairly readable form. On most
systems, a command of the form:

gofc +D prog.gs

will run gofc, dumping pretty-printed versions of the
supercombinators for the definitions in prog.gs, in-
cluding those from the prelude, in the file prog.gsc.
In theory, this output file could also be used as source
code for an alternative back-end for the Gofer sys-
tem. This might be useful, for example, in experi-
ments with new code generators or program analyz-
ers, using the Gofer front-end instead of writing a new
parser, type checker, etc. The only problem with this
is that the current pretty-printer does not include the
structure of dictionary values in the output file. This
shortcoming could be fixed by modifying the printer,
or by avoiding programs and prelude files that involve
type classes.

9 Program execution

The code in machine.c is used to compile supercom-
binator definitions produced by compiler.c to in-
structions for an abstract machine, and to simulate
the execution of this machine to provide a lazy evalu-
ator for Gofer programs. While there are some differ-
ences, this part of the Gofer system borrows heavily
on the ideas used in the Chalmers G-machine, de-
scribed in [4, 48]. On the other hand, by isolating
the details of the abstract machine in a single file, it
should, in principle, be possible to replace this part of
the Gofer system with alternative back-ends, for ex-
ample, based on the Three Instruction Machine [60].
In practice, this may also require changes elsewhere
in the system, for example, in the storage manage-
ment routines of storage.c to support heap alloca-
tion of closures, or in compiler.c to add extra pro-
gram transformation steps.

We will not include formal rules for translating Gofer
programs to the instruction set of the Gofer abstract



Expr := AP {Expr,Expr)
|  Const

| NAME Name

| DICTCELL Dict
|

FILECELL Int
Figure 14: Representation of program graphs

machine in this report; this would serve only to du-
plicate details that are already clearly documented in
the source code for machine.c. Instead, we will give
a detailed description of the way that the Gofer ab-
stract machine works, including a description of its
instruction set, and give some examples to illustrate
how they are used to implement supercombinator re-
duction.

9.1 The evaluator

Gofer programs are executed by evaluating expres-
sions. Often, the result is a list of characters or a list
of 1/0 requests; this determines what the user sees as
the results of running a program. Starting with the
initial expression, represented by a graph structure
in the heap, Gofer uses an evaluator to transform the
graph by a sequence of reductions, each correspond-
ing to an equation in the source program or to some
built-in system primitive. As a simple example, the
evaluation of the expression show (3*4+5) requires
three reduction steps!?:

show (3%4+5) =—> show (12+5)
=—> show 17
: |l17"

Internally, these expressions are represented by a very
simple form of program graph stored in the Gofer
heap and described by the grammar in Figure 14.
Note that program graphs are closed expressions (i.e.
there are no free variables) built up from atomic val-
ues using function application. Graph structures are
necessary because, in the general case, programs may
include shared subexpressions or cycles, introduced
by recursive definitions. The FILECELL values intro-
duced here are used to implement input from a file
as a lazy stream. Notice also that, while the gram-
mar for program graphs includes dictionary values,
there is no need to include selector functions; appli-
cations of selectors are implemented more efficiently
using the DICT instruction described in Section 9.2.

12For simplicity, we do not consider overloading of show or
the arithmetic operations in this example.
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Strictly speaking, we should also have included an
extra production for indirection nodes in the gram-
mar for Exprs in Figure 14; indirections are simply
pointers to other expressions in the heap and are used
in the implementation of lazy evaluation, particularly
for the UPDATE instruction described in Section 9.2.

Returning to the example above, each step in the re-
duction sequence is actually implemented as a graph
rewrite. For example, the reduction in the sequence
corresponds to:

show
5 — show
C)) 5
4 +) 12
(x») 3

The evaluator is implemented as a function eval()
that reduces the Cell value passed as its argument
to weak head normal form. Suppose that the original
expression is represented by a program graph of the
form:

an

a2 en

al .
e2
b el

Starting at the application labeled an, the evaluator
works its way down the spine of the graph, recording
the values of each application node on the stack until
it reaches the head, £. Using base to record the orig-
inal position of the stack pointer when the evaluator
begins, the layout of the stack by the time the head is
reached can be illustrated by the following diagram:

anl la2 ail

base sp
The most important cases we need to consider are as
follows:

e If £ is a constant value, for example, an integer
or a floating point number, then the expression
is already in weak head normal form. In fact,
the type system guarantees that there will not
be any arguments in this case. To return its re-
sult, the evaluator stores the value of the head, £,
in the global variable whnfHead, serving as a reg-
ister of the abstract machine. If the value is an



integer, then the evaluator also records the corre-
sponding integer value in the variable whnfInt.
In a similar way, floating point numbers are re-
turned by placing the corresponding value in the
whnfFloat variable.

If £ is a constructor function, then the expres-
sion is also in weak head normal form. Once
again, the evaluator returns the head of the ex-
pression in the variable whnfHead. In addition,
the elements on the stack are rearranged so that
the calling program can access the values of the
arguments to the constructor function; for the
example above, the layout of the stack when the
evaluator returns will be:

enl le2 e1]

base sp

To illustrate how this can be used, the following
fragment of C code shows how the Gofer evalu-
ator could be used to calculate the sum of a list
of integers, specified by an expression e:

total = O;

eval(e);

while (whnfHead==nameCons) {
eval(pop()); /* head */
total = total + whnflnt;
eval(pop()); /* tail */

}

Notice that it is necessary to evaluate, not just
every node in the list, but also every integer
value that it contains. On the other hand, the
Gofer type system allows us to omit run-time
type checks from this code. For example, there
is no need to check that the value produced by
the first eval(pop()); statement is an integer

because the type system guarantees that it will
be.

If £ is a function expecting n or fewer arguments,
then the evaluator calls the code for £ to carry
out the appropriate modifications to the graph.
This code may be implemented by a built-in
primitive function, coded in C, or by a sequence
of abstract machine instructions, as described
below. Before calling the function, the evalua-
tor rearranges the values on the stack. Suppose
that £ has arity m. First, we set a point, root,
to identify the top m elements on the stack, to be
used as arguments to f:
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w] — [m] - Jwla1]

base root sp

Then, to make it easier for the code for £ to ac-
cess the argument values rather than the appli-
cation nodes from which they came, we modify

the stack to give:

= I ) I T T

o]

sp

base root
Note that the value am is retained in the root
position on the stack; this will be used by the
code for f to overwrite the original call to £ with
the resulting expression.

The function f may require further evaluation
of its argument values; this can be achieved by
further calls to eval() in the body of the code
for £.

Finally, when the reduction is complete, the eval-
uator resets the stack pointer to the root posi-
tion and continues, unwinding the result of the
reduction onto the stack and looping until a weak
head normal form is obtained.

9.2 Abstract machine instructions

A small number of Gofer functions are implemented
as primitives, hand-coded in C. However, most of the
functions in a typical program are represented by se-
quences of instructions to be executed by the Gofer
abstract machine. These instructions have two pur-
poses, first to examine the arguments of the function
to determine which equation in the definition of a
function should be applied, then to make the appro-
priate rewrite.

We will list the instruction set of the Gofer abstract
machine in two groups. The first group, described
in Section 9.2.1, are used primarily to construct the
result of a reduction. The second, in Section 9.2.2,
are used to deal with control flow.

9.2.1 Imstructions for constructing values

The following instructions are used to construct frag-
ments of program graph, using the stack to store tem-
porary values as well as the function parameters and
the results of calls to the evaluator.

e LOAD n: Push the value from position n in the
current stack frame onto the top of the stack.



Used to access the values of function arguments
or locally bound variables.

CELL c: Push the constant cell value specified
by c onto the top of the stack. Used to access
constants such as constructor functions and su-
percombinators.

CHAR n: Push a character value onto the top of
the stack, corresponding to the integer value n.

INT n:
stack.

Push the integer n onto the top of the

FLOAT f. Push the floating point number f onto
the top of the stack.

STRING str: Push the string value str onto the
top of the stack. Note that the string is repre-
sented using a Text value as described in Sec-
tion 4.1.

MKAP n: Apply the function on the top of the
stack to the n argument values immediately be-
low it. The top n+1 elements on the stack are
replaced by the resulting expression. Note that
this instruction does not involve any evaluation
of the function, its arguments, or the resulting
expression.

For example, a MKAP n instruction takes a stack
of the form:

o] [x]z]

root sp

and reduces it to the stack:

root sp

where e = £ x1 ... xn.

UPDATE n: Removes the value, r say, from the
top of the stack and updates the nth element in
the current stack frame with a pointer to an in-
direction node to r. For example, the instruction
UPDATE n reduces a stack of the form:

o] Te]z]

root+n sp

root

to the stack:
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"r e e

root root+n sp

This instruction is used to overwrite the root of
an expression as part of the implementation of
lazy evaluation, i.e. to ensure proper sharing of
the result of an expression. It is also used to
save the values of variables bound in a local def-
inition. The indirection cell is used to avoid a
loss of laziness [48, Section 12.4]. The use of an
indirection is reflected by the caret symbol in the
diagram above.

UPDAP n: This instruction has almost the same
effect as a MKAP 1 instruction followed by an
UPDATE n instruction; in other words, the nth
element in the current stack frame is replaced
with the application formed from the top two
values on the stack {which are subsequently dis-
carded). The difference is that the UPDAP in-
struction should only be used when it is known
that the nth element on the stack already points
to an application node; in this case, the old ap-
plication node can be overwritten with the new
values, avoiding the need to allocate a new ap-
plication node.

ALLOC n: Allocates n pairs, each initialized so
that both first and second components are NIL,
and pushes a pointer to each pair allocated onto
the stack. This instruction is as part of the pro-
cess of initializing (possibly recursive) local vari-
able bindings.

SLIDE n: Slides the value on the top of the stack
down n places by removing the n values imme-
diately below it. This instruction is used to deal
with expressions involving local variable defini-
tions. For example, suppose that the expression
e is constructed using values vi, ..., vn bound
to local variables. This produces a stack of the
form:

|v1l IVII e

root sp

Executing a SLIDE n instruction produces a
stack of the form:

root sp

Of course, the expression e may itself contain
pointers to the values in v1, ..., vn.



e DICT n: Replaces the value on the top of the
stack—which must be a dictionary value, d say—
with the value held in the nth slot of d. This in-
struction is used to implement dictionary lookup
by compiling expressions of the form (#n d) to
an instruction sequence:

. code to build 4 ...
DICT n

The type system ensures that the DICT instruc-
tion will only ever be used when the value on the
top of the stack is a dictionary. Furthermore,
since all of the dictionary values required by a
program are constructed before it is executed,
there is no need to evaluate the dictionary d be-
fore the DICT instruction. Thus DICT can be im-
plemented very efficiently with just a couple of
machine instructions without needing a run-time
representation for dictionary selectors.

e ROOT n: Used in the implementation of the root
optimization; see Section 9.3 for further details.

9.2.2 Control flow

The following instructions are used to call the eval-
uator, to test the values that it returns, to indicate
the end of a particular reduction, or to signal an ir-
reducible expression.

e EVAL: Pops the top expression off the stack and
calls the evaluator to calculate its value.

e INTEQ n addr: If the value in the whnfInt reg-
ister is equal to the integer constant n, then
continue with the current sequence of instruc-
tions. If the two values are not equal, then con-
trol transfers to addr. This instruction is used to
support pattern matching of integer constants.

e INTGE n addr: If the value in the whnfInt reg-
ister is greater than or equal to n, then the in-
teger whnfInt - n is pushed onto the stack. If

the test fails, then control passes to the address
addr.

This instruction is used to support (p+k) pat-
terns. For example, an INTGE 2 addr instruc-
tion might be used to match the value on the
top of the stack against the pattern (v+2). If
the value on the top of the stack is less than 2,
then the match fails and execution transfers to
the instruction at addr. Otherwise, the match is
successful and the value pushed onto the stack
gives the value bound to the variable v.
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Extending Gofer to allow (p+k) patterns to
be matched against values of any type in the
Integral class as permitted in Haskell would re-
quire some extensions to the INTGE instruction,
or, more likely, more significant changes to the
program transformations used in compiler.c.
However, it seems more likely that future ver-
sions of Gofer will eliminate support for (p+k)
patterns altogether.

INTDV n addr: Similar to INTGE, this instruc-
tion is used to determine whether the value in the
whnfInt register is a positive multiple of the in-
teger n. If so, the value of whnfInt/n is pushed
onto the stack. Otherwise, control transfers to
the instruction at address addr.

This instruction is used to support pattern
matching of (n*v) patterns, added as an exper-
imental feature to the Gofer interpreter. This
form of pattern is now considered obsolete.

TEST ¢ addr: This instruction compares the
value in whnfHead register with the value of the
Cell constant ¢, branching to the instruction at
address addr if the values are not the same.

This instruction is used in the implementation of
pattern matching. To illustrate this, consider a
conditional expression:

if e then t else f

and note that this is equivalent to the case ex-
pression:

case e of True -> ¢t
False -> £

The following code can be used to calculate the
value of this conditional in situations where it is
clear that results of the conditional will always
be required (i.e. when the conditional appears in
a strict context):

. code to build e .
EVAL
TEST True label
. code to build t ...
RETURN
label: ... code to build f ..
RETURN

(Each of the sections of code that ‘build’ an ex-
pression here are expected to leave the required
expression, unevaluated, on the top of the stack.)



As an aside, in situations where we cannot be
sure that the value of the conditional will be re-
quiied, we use code of the form:

. code to build f ...
code to build t ...
. code to build e ...
CELL namelf
MKAP 3

to build a delayed version of the conditional ex-
pression. The namelIf cell used here refers to a
primitive function defined so that:

L]
34

namelf True t £
namelf False t f

1]
Hh

Clearly, we would prefer to use the code con-
taining the TEST instruction whenever possible
because it avoids the need to build code for both
t and £ when the program executes.

e GOTO addr: Causes an unconditional jump to
the instruction at address addr.

e RETURN: Signals the end of (one possible path
through) the code for a supercombinator. The
RETURN function usually follows the UPDATE 0 or
UPDAP 0 instructions used to update the root of
the current redex.

e FAIL: Used to signal a failed pattern match, usu-
ally resulting in a run-time error.

For convenience, the current version of the code
generator places a single FAIL instruction at a
fixed address, recorded in the variable noMatch
during the initialization process. Pattern match-
ing failures in other parts of the program are trig-
gered by branching to this address.

e SETSTK n: Resets the stack pointer to root+n.
This instruction is used in to set the stack pointer
to a known position in situations where its value
cannot be determined at compile time.

9.3 The root optimization

Quite a few of the functions in the Gofer standard
prelude use the same initial parameters in each recur-
sive call. For example, the same function £ is used
for each call to map in the following definition:

01
f x:

map £ (]
map f (x:xs)

map T xs
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Apart from standard user-defined functions, several
of the program transformations used in the Gofer
compiler generate definitions of this form, particu-
larly the addition of extra parameters in the im-
plementation of overloading and the use of lambda-
lifting. Since the same parameters are used for each
call, it seems a shame that we have to duplicate them
each time.

The Gofer code generator avoids this problem by de-
tecting places where part of the original expression to
be reduced can be reused to construct the result. For
example, the second equation in the definition of map
corresponds to the following reduction:

xs
map 1

In this case, there is no need to reconstruct the appli-
cation of map to £ because we can recycle the appli-
cation on the left hand side. As a result, this reduc-
tion requires the allocation of only 3 new application
nodes, rather than the 4 nodes that would normally
be required.

We refer to this as the ‘root optimization’ because all
of the expressions that are recycled are derived from
initial portions of the root of the original expression.
The abstract machine instruction ROOT n is used to
implement the root optimization; its purpose is to
push the expression obtained by deleting the last n
parameters from the root onto the top of the stack.
For example, as we will see in the following section, a
ROOT 1 instruction is used in the compilation of map.

The root optimization was originally described in [23],
including figures suggesting a 25-30% reduction in
space requirements for some small examples using the
optimization. We are not aware of any other systems
that use a similar optimization.

9.4 Examples

This section gives some examples of the machine code
produced by the system that is used to implement
combinator reduction.

The simplest example is the identity function defined
by id x = x. The corresponding sequence of ma-
chine instructions is:

0x0009 LOAD 1



UPDATE O
RETURN

0x000B
0x000D

The values on the left are the addresses of the in-
structions on the right. The code is easy enough to
follow; we push the first (and only) argument on to
the stack and use it to overwrite the original call to
the id function.

Only slightly more complicated, the implementation
of function composition, defined by (f . g) x = £
(g x), is described by the instructions:

0x0051 LOAD 1
0x0053 LOAD 2
0x0055 MKAP 1
0x0057 LOAD 3
0x0059 UPDAP 0
0x005B RETURN

The first three instructions load the values of x and g
onto the stack and combine them to form the subex-
pression g x of the result. The next two instructions
overwrite the root of the original call to (.) with the
application of £ to g x, completing the reduction.

As a simple example of pattern matching, consider
the (&&) function defined by:

False
y

False &% y
True && y

The corresponding instruction sequence is as follows:

0x006E
0x0070
0x0071
0x0074
0x0076
0x0078
0x0079
0x007C
0x007E
0x0080

LOAD 2

EVAL

TEST False 0x0079
CELL False

UPDATE ©

RETURN

TEST True 0x0000
LOAD 1

UPDATE ©

RETURN

These instructions evaluate the first argument of
(&&). If the result is False, then the definition re-
turns the value False in the line labeled 0x0074. If
the result is not False then we branch to the TEST
instruction labeled 0x0079. The 0x0000 label used
here is just the value of noMatch, mentioned in the
description of the FAIL instruction above. Strictly
speaking, this instruction is redundant and the pro-
gram will never actually branch to 0x0000 because
the type system guarantees that the only possible
results that could occur here are False, which has
already been eliminated, and True. The remaining
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instructions simply overwrite the original expression
with the value of the second parameter, much like the
implementation of id.

As a final example, the following sequence of instruc-
tions that is generated from the definition of the map
function given above:

0x00D6
0x00D8
0x00D9
0x00DC
0x00DE
0x00EO
O0x00E1
O0x00E4
0x00E6
0x00ES8
Ox00EA
0x00EC
0x00EE
0x00F0
0x00F2
0x00F4
0x00F6

LOAD 1
EVAL

TEST [1 0x00E1
CELL 01

UPDATE 0
RETURN

TEST
LOAD
ROOT
MKAP
LOAD
LOAD
MKAP
CELL :
MKAP 1
UPDAP 0
RETURN

0x0000

=N PR W e

We will not comment further on this example, leaving
the task of understanding how these instructions im-
plement the map function as a strongly recommended
exercise for the reader.

9.5 Experiments with machine.c

As with the type checker and compiler, one of the best
ways to understand the workings of machine.c is to
study the programs that it produces as its output.
This can be achieved by modifying the source code
to include the line:

#define DEBUG_CODE

at the beginning of machine. ¢, and recompiling. This
will produce a custom version that shows the code for
each compiled function as it is produced by the code
generator. In practice, this tends to produce rather
a lot of output so it is probably best to redirect the
output of the modified compiler to a file that can be
examined more carefully using a text editor. All of
the examples in the previous section were obtained
using a version of the interpreter that had been mod-
ified in this way.



10 Functional programming in
an imperative world

We have already described, in Section 3.1, the reasons
why the Gofer system was not written in a functional
language. However, looking at the source code, it is
clear that functional programming has been a signif-
icant influence on its development. In some places,
there are even small fragments of Gofer code, or type
annotations, that were used to develop some sections
of the program before coding them in C.

It is not too difficult to find other aspects of the im-
plementation of Gofer that have been influenced by
functional programming systems, including:

e The garbage collected heap, with constructor
functions such as pair and selectors hd, t1, fst
and snd. Simple list processing functions such
as length and (destructive) append and reverse
are implemented using these functions.

e The C preprocessor is used quite heavily, for ex-
ample, to support weak forms of higher-order
functions and polymorphism. For example, the
implementation uses a range of map-like opera-
tions for processing lists of values, implemented
by macros such as:

#define mapBasic(_init,_step) \

{List Zs=(_init); \
for(;nonNull(Zs);Zs=t1(Zs)) \
_step;}

Some aspects of the current implementation do rely
on side-effects, for example, the error trapping mech-
anisms and the implementation of type checking,
garbage collection and graph reduction. Some of
these can be implemented cleanly and efficiently in
a purely functional language, but others remain as
open (and perhaps uninteresting) problems.

Based on our experience with Gofer, we believe that
the ideas and idioms of functional programming can
play an important and useful role in the development
of programs, even if they are actually written in tra-
ditional imperative languages.

11 The Gofer compiler, gofc

A short time after the release of Gofer, I was asked
whether it would be easy to produce a simple-minded
‘compiler’ that would translate programs written in a
functional language into executable C code (without
too many concerns about performance). Given the
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machinery that had already been developed for the
Gofer interpreter, this turned out to be a relatively
simple task.

The Gofer compiler, gofc, was develbped by modi-
fying the backend of the interpreter to output suit-
able C code for each of the abstract machine instruc-
tions in a given program. Combined with a run-time
system derived from a simplified version of the in-
terpreter storage management system and the imple-
mentation of primitive functions, gofc allows the de-
velopment of small, stand-alone Gofer applications.
In performance terms, simple tests suggest that com-
piled programs typically offer only a twofold increase
in run-time speed over interpreted code. Serious
Haskell compilers can do much better than this us-
ing more sophisticated implementation, analysis and
optimization techniques. In addition, gofc does not
support any form of separate compilation, making it
unsuitable for large projects requiring repeated com-
pilation. In its favour, gofc often produces signifi-
cantly smaller executable binary files than other sys-
tems. The translation of Gofer programs to C is usu-
ally quite fast, although compilation of the resulting
C programs can take rather longer. To some extent,
the interpreter reduces the problems caused by the
lack of separate compilation, offering a more respon-
sive interactive development environment and delay-
ing the need for compilation until the final stages of
a project.

One important advantage of the simplified run-time
system used by gofc is that it does not require a
conservative garbage collector. In particular, it is not
necessary to scan the C stack to look for pointers
into the heap, avoiding many of the problems and
restrictions of the garbage collection system in the
interpreter described in Section 4.2.3. In fact, the
source code for gofc currently includes two differ-
ent garbage collectors, a simple mark-scan collector
in markscan.c and a two-space, copying garbage col-
lector in twospace.c. The latter supports the allo-
cation of variable length blocks of heap space and
has recently been used to add an implementation of
Haskell-style arrays with O(1) access time. By con-
trast, the array implementation for the mark-scan
collectors in both the interpreter and the compiler
requires a less efficient representation of arrays using
linked pair cells. It would certainly be possible to ex-
tend the run-time system to support different garbage
collectors. For example, one obvious possibility would
be to experiment with the implementation of a simple
generational collector.

We will not go into great details about the translation
of abstract machine instructions to the corresponding




C code. However, as a simple example, the following
implementation of the map function is taken directly
from the output of gofc and should be compared with
the sequence of abstract machine instructions for map
given in Section 9.4.

comb2(s¢_map)
needStack(4);
eval(offset(1));
test (mkCfun(0)) goto a;
update(0,mkCfun(0));
ret();

a:test(mkCfun(1)) fail();
heap(3);
pushpair(rootFst(offset(0)),offset(3));
pushpair(offset(2),offset(4));
topfun(mkCfun(1));
updap2(0);
ret();

End

/* map */

This code makes heavy use of C preprocessor macros,
defined in the header file gofc.h. The lines of the
form needStack(n) and heap(n) are used to test for
the availability of blocks of stack and heap storage,
avoiding the need to check for overflow before each
push() or pair() call, respectively!®. Notice also
that constructor functions are represented using val-

ues of the form mkCfun(n). In the example above,

the nil list, [J, and the cons function, (:), are repre-
sented by the values mkCfun(0) and mkCfun(1), re-
spectively. The same two mkCfun values are used to
represent the boolean values False and True, but the
type system ensures that these two uses are never
confused. However, this choice of representation does
mean that it is impossible to write a fully polymor-
phic primitive function like show® in the interpreter
that is able to interpret the run-time structure of a
value and produce a corresponding printable repre-
sentation as a string. This is not a major shortcom-
ing; indeed this is exactly the kind of application that
type classes are intended to be used for!

One feature of the translation from machine instruc-
tions to C is the use of technique suggested by [48,
Section 19.3.2} to simulate the run-time stack at
compile-time. This allows the code generator to avoid
unnecessary use of the stack, but requires a more
complicated form of instructions in generated C pro-
grams. For example, the single line:

13The heap(n) instruction is only useful for the two-space
collector which allows allocation of cells in contiguous blocks. If
the mark-scan collector is used, it is just as efficient to continue
testing for heap exhaustion before each pair() call, and to
treat heap() calls as no-ops.
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pushpair(rootFst(offset(0)),0ffset(3));

in the implementation-of -map above corresponds to
the sequence of three abstract machine instructions:

LOAD 3; ROOT 1; MKAP 1

This sequence of instructions uses two stack locations,
duplicating a value that is already available from an-
other position on the stack. The two values pushed
onto the stack are treated, implicitly, as arguments of
the MKAP instruction. By contrast, the C code version
avoids two unnecessary pushes, but requires the ar-
guments of pushpair() to be specified explicitly. It
is not clear whether this has any noticeable effect on
execution time.

The gofc compiler shares a substantial amount of
code with the interpreter. Only the main program
(in gofc.c), the code generator (in cmachine.c), and
the definitions of built-in functions (in cbuiltin.c)
are different from the corresponding components in
the interpreter. In fact, an early decision was to en-
sure that the compiler and the interpreter could be
built from ezactly the same compiled object code for
common components. Sharing code to this degree
has obvious benefits, for example, there is only one
version of the type checker to maintain and compile.
However, it has also been necessary to make some
compromises in the code to allow proper sharing, and
the results are not entirely satisfactory.

The implementation of the run-time system (in
runtime.c) suffers from even more severe problems
because it does not share any code with other parts
of the system. As a result, every primitive function in
the interpreter has had to be rewritten for the com-
piler. This is tedious at best, with coding errors lead-
ing to discrepancies in the behaviour of compiled and
interpreted code. In addition, the run-time system
compiles to a single object code file that is included
as a whole in every compiled program. A better ap-
proach would be to arrange it as a library of modules,
allowing the linker free to omit definitions that are
not needed in a given program. In fact, gofc already
goes to some lengths to avoid including unused code
from user programs'?, so it is a pity that the same
principles are not used for primitive functions. At
first sight, we might hope that this problem could be
overcome simply by spliting the source code for the
run-time system into separate parts. Unfortunately,
it would also be necessary to make more fundamental
changes to the representation of primitives to obtain
any benefits from this.

14For example, most programs use only a fraction of the
functions defined in the standard prelude.




None of this is really surprising given that the gofc
implementation was hacked into a system that had
never been intended or designed to support a com-
piler. Perhaps there will be an opportunity to develop
a new version of the system at some point in the fu-
ture, allowing for both an interpreter and a compiler
in the initial design, and avoiding some of the struc-
tural problems in the current version. As every pro-
grammer knows, the development of a system always
provides valuable lessons for the next version!

12 Future directions

Although the amount of time available for work
on Gofer is currently quite limited, there are al-
ways plenty of ideas for future developments and
extensions!® to the system. In this final section, we
describe some of these topics as an indication of pos-
sible directions for further development of the Gofer
system.

Closer compatibility with Haskell Tosome, the
goal of closer compatibility may seem strange; Gofer
is, after all, very closely based on Haskell! However,
as mentioned earlier, there are some small, but an-
noying incompatibilities between the two languages;
neither is a subset of the other. Fortunately, these
problems are becoming less severe as new releases of
Gofer move (very slowly) towards closer compatibility
with Haskell.

Module system There was never any thought
when Gofer was first released that it would be used
for anything but small programs. Perhaps 100 lines,
maybe as much as 500 lines, but certainly nothing
more. As such, and with concerns about being able
to run the interpreter on small machines, it seemed
appropriate to avoid the complexities of any form of
module system. This has actually been quite a sen-
sible approach, given the intended use of Gofer as
an experimental system; it is easier to develop and
experiment with language extensions if we do not
have to worry about their interaction with modules.
However, it seems that Gofer is often used for quite
large programs, and that some form of module system
would be useful.

One of the first concessions in this area was to extend
the parser to read, but otherwise ignore, the mod-

15There are also several cases where it would be desirable to

- remove features. Without making firm commitments to partic-

ular features, studies of the current version of the source code

will reveal that it is already possible to compile the interpreter
without support for (n+k) patterns or Dialogue style I/O...
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ule headers used in Haskell programs. This means
that some Haskell programs making only trivial use
of modules can be fed directly into Gofer without any
changes. Indeed, it seems that Gofer is often used in
this way to develop sections of programs that will ul-
timately be compiled using a full Haskell system.

One option, particularly with the goals of compati-
bility in mind, would be to add a proper implemen-
tation of the Haskell module system. This would re-
quire a fair amount of work, but otherwise seems quite
feasible. The most difficult task would be to adapt
the current interactive user interface to deal prop-
erly with collections of program modules. See [15]
for work dealing with similar problems, targeted at
Scheme programmers. '

On the other hand, the Haskell module system has
been criticized as one of the weakest parts of the
language definition, and may perhaps change in fu-
ture versions of the language. A more ambitious goal
might be to use Gofer as a testbed for alternative
module systems, providing, for example, the power
of Standard ML style parametric modules, but also
preserving the character of Haskell, including type
classes, lack of side-effects and call-by-name/lazy se-
mantics. We are currently exploring some proposals
for module systems of this kind, although we are still
a long way from any concrete implementation.

Records One of the weakest aspects in the col-
lection of primitive datatypes available to the Gofer
programmer is the lack of support for any form of
records. From a semantic viewpoint, records are just
a form of tuple, but to the programmer it is often
more convenient to access components of a large tu-
ple by name, rather than by position. Records of
one form or another are a standard part of many lan-
guages from Pascal to Standard ML, but are not in-
cluded in the current definition of Haskell. A flexible
implementation of extensible records, building on the
use of qualified types and hence suitable for inclu-
sion in Gofer, has been proposed in [29]. We hope to
experiment with a prototype implementation of this,
system in the near future.

Performance and optimization Given that exe-
cution speed was never a major design Goal, we have
been pleasantly surprised by the performance of the
Gofer interpreter. However, having developed a sys-
tem that permits functional programming on small
computers, it would be nice if we could also offer the
level of performance necessary to make the language
a realistic tool for serious application development on
those machines. One possibility would be to build a




more ambitious compiler, targeted at an abstract ma-
chine with less interpretive overhead and using more
sophisticated optimization techniques.

Lessons learned The Gofer implementation has
been pushed far beyond the expectations of the origi-
nal design, and the source has been extended, patched
and modified many times in its relatively short life.
In the process, we have learnt many useful lessons
about how the design might have been improved. 1
hope that it will not be too long before someone, per-
haps even me, has the opportunity to develop a new,
cleaner version of the system, building on this expe-
rience ...
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