Linda and Message Passing: What have we learned?

Nicholas Carriero and David Gelernter

YALEU/DCS/RR-984
August 1993

Linda and Message Passing: What have
we learned?

Nicholas Carriero and David Gelernter*
Yale Unwversity
Department of Computer Science
New Haven, Connecticut

August 11, 1993

Abstract

We weigh the relative merits of two popular coordination systems:
Linda, a high-level coordination language, and PVM, a message pass-
ing coordination library. In the past, such a comparison might have
been merely academic. Today, however, both systems see significant
use in parallel programming, especially in LAN settings. Our com-
parison here will build on this foundation of practical experience. It
will reflect practical considerations like expressivity, performance and
flexibility. We conclude that the relationship is analogous to one that
holds between low- and high-level computation languages: both types
of system have a role to play, but for a generously broad sweep of
applications, the expressivity and flexibility gains of the high-level ap-
proach easily offset what are often surprisingly modest performance
losses relative to the low-level approach.

*This work funded in part by the ONR (N00014-93-1-0573).

1 Introduction

Although the development of software tools for parallel programming
continues to be an active and evolving area, the sub-field centering on
the use of local area networks as platforms for parallel applications
has achieved a certain stability—probably because LANs are today
the most important platforms by far for parallelism in commercial
settings. Three of the most widely used coordination models in the
local area network arena appear to be PVM from ORNL, Parasoft’s
Express, and Scientific Computing Associates’s Linda. (A coordina-
tion model defines a system for building parallel programs—defines
the “extra ingredients” that must be added to a sequential language
like C or Fortran to achieve a system that can be used for parallel
programming.) These three are often mentioned together. Vendors of
parallel machines and workstation clusters, for instance, have made a
point of mentioning the availablity of these systems in recent product
announcements—IBM’s SP1 announcement is one example. PVM and
Express are based on the message-passing coordination model; Linda
uses a form of virtual shared memory called a “tuple space.”

Neither message passing nor Linda is restricted to local area net-
work use: both models can and have been implemented on the full
spectrum of shared-memory multiprocessors, distributed-memory mul-
tiprocessors and networks. We single out networks only because a
greater degree of programming environment stability seems to have
been achieved there.

One way to assess the relative merits of programming systems (in
terms either of expressivity or performance) is to compare them head-
to-head on the same problems. In [CG89] we pursued this exercise in
the context of several systems that were popular in academic circles
at the time. Since [CG89], an interesting development: parallelism is
now a reality, in daily use for production computing. So we can now
ask not merely what’s popular in academia, but (far more interesting)
what’s popular with software developers—which systems see actual
use.

After briefly introducing Linda, we take up expressivity (how ex-
pressive is Linda vs. message passing?) by examining some simple
programming examples taken from the PVM programming manual,
recoding them in Linda and comparing. We amplify by discussing the
use of Linda on a real application of current interest.

We then examine the performance issue (how efficient is Linda vs.
message passing?) by discussing an experiment carried out by another
group in which the performance of Linda and PVM are compared
directly on the same application; we add some comments on similar
experiments performed elsewhere.

We reach the following conclusions: (1) Linda is in general more
expressive than message passing, and (2) the performance of Linda
and of message passing programs is generally comparable. A point we
take up in conclusion is that (3) Linda appears to offer a smoother
transition than message passing to adaptive parallelism, which we
believe will become a dominant paradigm in the near future.

Linda has disadvantages too. These are in line with the disadvan-
tages of optimized high-level systems (which make things easy and
in most cases efficient) versus low-level systems (which are inconve-
nient, but potentially unbeatable with respect to efficiency). The same
trade-offs hold when we compare C or Fortran to assembler code. We
believe that Linda is more expressive than message passing essentially
always: this follows from the fact that message passing operations are
trivially expressible in Linda. Linda is usually as efficient message
passing, but there are exceptions. The exceptions are those appli-
cations that rely on point-to-point communication that is irregular.
In an application relying on “regular” point-to-point communication,
each process sends a stream of messages to a fixed or slowly-evolving
set of recipients. Linda detects patterns like this, and supports such
applications as efficiently as a direct message-passing system would.
(In practice, most message-passing-style applications seem to fall into
this category.) But when message destinations are unpredictable—
when, for example, processes generate messages and send them to
randomly-chosen recipients—then there is no pattern for Linda to de-
tect, and Linda’s realization of such a program is less efficient than a
direct message-passing version would be.

The current releases of C-Linda and Fortran-Linda from Scientific
Computing Associates form our basis for discussion. Although we will
describe ongoing research in a few cases, our main goal is to discuss the
Linda environment as it is commercially distributed—the environment
that sees production use today.

The authors express their particular thanks to Al Geist of Qak
Ridge National Laboratory, for his comments on our comparison of
Linda and PVM, and to Clemens Cap and Volker Strumpen of the

University of Zurich, for their comments on our discussion of their
study comparing the performance of Linda, PVM and Parform.

2 Linda

2.1 Coordination Languages

Linda is a “coordination language.” The “coordination” part of that
term means that Linda is designed for gluing separate serial compu-
tations into ensembles. Our contention has been that parallel appli-
cations, distributed systems, certain kinds of heterogeneous systems,
“time-coordinated” as opposed to “space-coordinated” computations
(in which processes run at different times rather than in different
places) and “Turingware” ensembles (in which people and processes
are intermixed) are all instances of the same software species, and
should be supported by a single general-purpose coordination model.
The field has generally preferred to create special programming mod-
els for parallel applications, for distributed systems and so on. We’ve
argued that this strategy is insufficiently flexible and an unnecessary
violation of conceptual economy. The study of software ensembles
is, we believe, the emerging centerpoint of systems research, but the
lack of general-purpose coordination languages impedes progress in
discovering and understanding general principles.

The “language” in “coordination language” distinguishes a system
like Linda from a coordination library—for example, a message passing
library like PVM [GBD*93]. A language is supported by a compiler:
in the case of C-Linda, for example, by a pre-compiler that translates
C-Linda into plain C with library calls, plus some data files that are
used at linktime to produce custom-generated interface routines that
invoke appropriate runtime support routines for each type of Linda
operation in the source program [CG92]. A programmer who uses a
coordination library is responsible for choosing the right runtime oper-
ation for every communication operation in his program, and often for
hand-assembling messages out of their component data values. In the
case of a coordination language, the optimizing compiler chooses an
appropriate realization for each communication operation, supports
a uniform, integrated syntax, supports debugging and generally pro-
vides the range of services for which compilers have made themselves

well-liked.

2.2 The Linda Model

The Linda coordination model is based on a form of shared memory
that is tailored specifically to the needs of software ensembles. Since
the earliest shared-memory multiprocessors, it has been recognized
that writing and reading data in a shared memory is a convenient
way for processes in an ensemble to communicate. But what kind of
shared memory is right for the purpose? It has often naively been
assumed that there is only one kind—that “shared memory” neces-
sarily means shared address space, a linear array of bytes. But a
conventional address space of bytes is a poor fit to the special needs of
inter-process coordination. The byte-level access it supports is wrong
for inter-process communication: processes don’t need to execute code
out of shared memory, and they don’t send bytes to each other—they
send bunches of data objects (using “object” generically—a value or
an aggregate of values). Its synchronization characteristics are also
wrong. Because bytes in a shared address space can be overwritten at
will, some form of added locking mechanism has to superimposed to
insure safety in the presence of multiple readers and writers.

There are in principle, though, many sorts of memory, and the
Linda model is based on a sort called “tuple space” that is designed
specifically to accommodate inter-process coordination. A tuple space
stores not bytes but “tuples.” A “tuple” is (not to put too fine a point
on it) a tuple: an ordered aggregate of data objects. A tuple space pro-
vides three basic access operations instead of the two (read and write)
that are provided by conventional address spaces, and these operations
have built-in synchronization: the out operation generates a tuple and
adds it to memory; the in operation looks for some “matching” tu-
ple and removes it, blocking if necessary until one is available; the rd
operation is like in, but copies rather than removes the matched tu-
ple. The tuples in a tuple space are immutable. “Matching” works in
the style of a relational database. Tuple space is an associative mem-
ory: in or rd statements specify a “matching template” or anti-tuple
which may include either values or typed place-holders or both. A
tuple matches an anti-tuple exactly when, for all k, the kth element
of the tuple and the anti-tuple are identical (if the anti-tuple’s kth
element is a value) or type-consonant (if the anti-tuple’s kth element

is a typed place-holder).

Abolishing physical addresses and using tuples rather than bytes
as the storage unit (tuples are usually much larger than bytes) col-
lectively have radical implications for implementation. A byte-level
address space requires hardware support if it is to be realized effi-
ciently. Linda can be realized efficiently in software. A tuple space
can be provided, in effect, wherever separate computers are wired to-
gether. The architecture of a distributed-memory parallel machine or
a local area network precludes communication via conventional shared
memory, but Linda-style shared memory can and has been efficiently
implemented in both settings.

(An address space structured on larger storage units—say, pages—
can be realized without hardware support. But where Linda allows
larger-than-byte units that are semantically meaningful—that have
meaning to the programmer—to be stored in memory and moved
around the communication system, a page-level shared memory deals
in arbitrary fixed-size blocks, which in the case of any given commu-
nication event are essentially guaranteed to include either more or less
stuff than the programmer actually needs.)

To complete the outline of the model, Linda provides a process-
creation mechanism integrated with the tuple space abstraction: the
eval operation generates and places in tuple space an unevaluated
tuple. Each field of the unevaluated tuple is specified by some ex-
pression (which may of course be a constant); those expressions are
evaluated concurrently within tuple space. When they have all been
fully evaluated, the unevaluated tuple turns into an ordinary tuple
which can be read or removed using the standard operations.

The model doesn’t assume a single tuple space; multiple tuple
spaces are useful for many reasons [Gel89]. The most sophisticated
version of multiple first-class tuple spaces currently appears in Jagan-
nathan’s Scheme-Linda [Jag91]. Our implementations have recently
acquired a more limited multiple tuple space capability.

3 Expressivity

3.1 A simple head-to-head

Linda has often been described as a highly expressive coordination
model—one that lends itself, in other words, to clear and concise pro-
grams. Thus, for example, “the Linda formalism uses an extremely
powerful, but simple, primitive to give unparalleled expressiveness and
flexibility” ([BA90], p. 114). It’s impossible to prove such an assertion,
but one way to support it is to examine representative programming
examples offered by developers of competing systems, recode them in
Linda, and compare.

Of PVM and Express, PVM appears to be gaining ground more
rapidly, which is testament to the facts both that it is a well-designed
and expertly implemented system and that it happens to be free.
(Parasoft has recently announced that the Express system will sup-
port PVM programs.) Comparing Linda to programming examples in
a recent PVM manual should, accordingly, be a useful exercise.

The examples in the PVM manual are chosen toillustrate “message-
passing style” applications—applications in which communication re-
lies on message sending, not on writing and reading shared data ob-
jects. Linda supports the creation and manipulation of shared objects
and data structures in a way that a message-passing system, given
that it provides no shared memory of any sort, obviously can’t. But
of course the shared-memory model trivially encompasses message-
passing as well. So let’s compare these approaches on message-passing
turf, and examine the PVM examples.

Figures 1-3 shows a PVM program that does the following, in
general terms. (1) A master process creates a collection of identical
worker processes. (2) It hands each worker an array of input data. (3)
Each worker performs an operation on the input, sends the result to
the next worker in a virtual ring, receives a result from the previous
worker in the ring, adds its result to the result it has just received,
and forwards the sum to the master process.

Figures 4 and 5 show a Linda program with identical functionality,
written so as to follow the PVM approach as closely as possible. Why
is it so much shorter? Notice that

(1) in the PVM program, a message must be assembled explicitly
out of constituent values, and explicitly disassembled: thus operations

like
pvm_pkint (&nproc, 1, 1),
pvm_upkint(&who, 1, 1)

and so forth. Because Linda is a language and not a library, this sort
of assembly and disassembly is handled automatically by the system.
The programmer specifies the desired tuple of data objects, or an
anti-tuple for matching; message assembly and disassembly are the
system’s job. Further, Linda’s simpler format makes coding errors less
likely, and the fact that the compile-time system handles the details of
message construction makes it possible for the the system to detect and
report some kinds of errors (for example, type mismatches between the
sender’s and the receiver’s view of the data) at compile-time.

(2) In PVM, messages must be sent to specific recipient processes.
Processes are identified by “task id”; a process learns its task id by
executing mytid = pvmmytid(). In order to send a message to any
other process, it must know that process’s task id too; and in order to
communicate with the next process and the previous one in a virtual
ring, worker processes must have some uniform way of establishing
which task id will designate the “next” process in the ring and which
will designate the “previous” process. The necessary coordination is
accomplished by having the master broadcast to each worker an array
holding the task id’s of every worker (this array was returned by the
pvm_spawn(...) operation that created the workers); each worker
searches for its own task id within this array, and calls the task id
following its own the “next task” in the ring, and the task id preceding
its own the “previous task.”

In Linda, none of this mechanism is necessary. Linda tuples aren’t
sent to recipients, they are simply deposited in shared memory. When
the master process in the Linda version creates a worker using the
eval("slave", worker(i)) statement, the worker knows who it is
from the start—the index i that distinguishes workers has been passed
to the newly created process via the worker() function. The fifth
worker in a 10-process ring communicates with the next worker in
the ring by generating the tuple ("sum", 6, n), where n is the value
to be transmitted. Worker number 6 uses associative matching to
grab this tuple; by using the operation in("sum", 6, 7 psum), it
designates for removal a tuple whose first element is the string "sum",
and whose second is the integer 6. The last element in the matched

tuple is assigned to the local variable psum.

The Linda example followed the PVM approach as closely as pos-
sible. If it had been written in “native Linda style,” it would have
been slightly simpler still: workers wouldn’t have executed an out to
send their results to the master—the worker () function would simply
have returned a result, whereupon the unevaluated tuple created by
the master’s eval would have collapsed into an ordinary data tuple,
which would have been in’ed by the master directly. In PVM mes-
sages, an array-valued field must be followed by another field giving
the length of the array, and the Linda example does the same; but
Linda supports transmission and receipt of array lengths within the
same field as the array itself.

Figures 6, 7 and 8 show PVM and Linda versions of another simple
program. This application creates a ring of identical processes, and
passes a single token round the ring. The explanations for the con-
ciseness and clarity of the Linda version are the same as before, but
this example makes the point even more dramatically.

What conclusions should be drawn? Not by any means that Linda
is guaranteed to produce solutions that are clearer and more concise
than competing systems across the board. Rather that, in a range of
programming examples chosen not to show off Linda but to illustrate
the features of other systems, the subjective claim that Linda is highly
expressive receives concrete support. (We’ll provide some information
on the performance of Linda vs. PVM and other systems in the next
section.)

In comparing Linda and PVM, we need to keep sight of the fact
that these systems are radically different in design and goals. Our
conclusion is by no means that (with respect to expressivity) PVM
must be judged a failure and Linda a success. PVM was designed
with specific, pragmatic goals in mind (to provide a well-designed,
portable message passing service), and it appears to have achieved
these goals very successfully. The Linda project’s aims are different:
to define and explore a novel coordination paradigm, and the idea
of a general-purpose coordination language. In pursuing these goals,
the realization of an efficient and portable Linda implementation was
merely a necessary precondition.

Thus, within the parallel-programming domain, Linda supports all
three of what we have argued are the basic paradigms of asynchronous
parallelism—“specialist,” “agenda,” and “result” parallelism [CG90].

Message passing systems are well-suited only to the first of these; but
in addition to programs of the sort we have discussed in this section,
Linda supports others that rely heavily on distributed data structures
stored in tuple space (generally speaking, these are “agenda parallel”
applications), and in principle the elegant fine-grained applications
that emerge from the result-parallel style. The qualification is essen-
tial because, in practice, communication and process management are
too expensive on most current platforms to make this sort of pro-
gram efficient. But Jagannathan and Philbin’s work [JP92] suggests
that this aspect of Linda’s expressivity will pay off handsomely within
highly-optimized environments that provide cheap communication and
process management.

Linda is also well-suited to the needs of adaptive parallelism, as
we’ll discuss below.

Beyond parallelism, Linda tends to suggest new approaches to co-
ordination in general. The discussion in [CG90] of Linda in the context
of an appointment calendar and meeting-maker application presents
many of these issues; and the ensembles that fall under the heading
of “Turingware” [Gel91], some with a groupware flavor, are the topic
of a current dissertation project at Yale.

Research questions posed by the Linda model itself have inspired a
variety of projects at other institutions, dealing (among other topics)
with Linda in the context of a variety of computing languages, with
object-oriented Lindas and with formal characteristics of the model
and of Linda applications. There is a substantial literature on these
topics. Recently, evidence has appeared that the tuple space model
is influencing other coordination paradigms as well (see for example
Agha [AC93] or Liskov [Lis92]).

3.2 Expressivity on real applications

Applications exist using C-Linda and Fortran-Linda in a wide variety
of domains. Many of these have been reported only informally or not
at all—they are production applications developed routinely by users
of the commercial system. But applications in a number of areas have
been described in the literature: ray tracing [MM91, BKS91], financial
analytics [NB92, CCZ93, Cag93], realtime data fusion [FGK*91], seis-
mic applications [BS92], probabilistic fatigue analysis [SLSC93] and
the Level-3 BLAS [GS92], among others.

10

In this section we take up a few simple examples, designed par-
ticularly to show “idiomatic” rather than (as in the previous section)
“message passing style” Linda. Idiomatic Linda makes use of shared
objects and distributed data structures.

Shared Objects: Assigning tasks... X-PLOR[Brii92]is a widely-
used application developed by Axel Briinger of the Yale Molecular
Biophysics and Biochemistry Department. We parallelized a subrou-
tine of X-PLOR that is invoked by the main code at each of a series of
time steps. The subroutine is a good target for parallelization because
it represents a major part of X-PLOR’s computational cost.

This subroutine “(ENBRD”) is structured as an n-body-style com-
putation over a collection of atoms. A doubly nested loop computes
displacement, forces and energies resulting from atomic interactions.
The outer loop runs over the whole list of atoms that comprise the
molecule under study; the inner loop runs over only those atoms that
interact with the current “outer loop” atom. Scalars are used to collect
aggregate energy values, and three vectors (indexed by atom id) are
used to collect the aggregate force on each atom. The conformation of
the molecule—the position of each atom—evolves as the computation
proceeds, but atomic positions are updated not continuously but only
at the close of each iteration. It follows that, for a given invocation
of the routine, the interaction computations based on each atom are
independent of all the rest.

We parallelized the routine using the “owner computes” approach
that has in the past been associated with synchronous, data paral-
lel languages. (This approach proves to be just as valuable using a
general-purpose coordination language like Linda as in the context
of special-purpose languages targeted at synchronous data parallelism
[CGY3].) The general method is as follows. Each process stores a com-
plete description of the molecule under study. Each process “owns”
certain atoms in the molecule, and performs interaction computations
for the atoms it owns.

Here’s what makes the problem interesting: all atoms are not cre-
ated equal. Computations based on some atoms are more time con-
suming than others, because some atoms interact with more of the
surrounding molecule than others do. So it clearly will not be accept-
able to perform a uniform, static partitioning of atoms over processes.
More interesting still: the conformation of the molecule changes as

11

the program runs. Hence, the workload on each atom changes. An
atom that is relatively “easy” at one point in the computation may
become hard later on. In short, the initial partitioning must reflect
the character of the input data, and that initial partitioning must -
self evolve as the application runs. Clearly, some sort of dynamic load
balancing will be required; but load balancing must be carried out in
a sensible way. The conformation of the molecule may change slowly.
Load-rebalancing should be carried out only when the conformation
has changed enough to make the overhead of rebalancing worth the
trouble.

Linda’s tuple space provides abstractions that make it easy to ac-
complish these goals.

In order to accomplish the dynamic partitioning of atoms, pro-
cesses consult a tuple. They grab the tuple using in. The first element
of the tuple is an string serving as an identifier; the second element
holds some atom’s id value:

INC’brd filt atom id’, ? NEWID)

(Syntactic conventions reflect the fact that this code is in Fortran-
Linda.) When this operation completes, some atom’s id value will
have been assigned to a local variable called NEWID belonging to this
process.

The process now “owns” a series of atoms beginning with that id.
(The number of atoms it owns—the “chunk size”—is adjustable. A
chunk size of 1 conduces to the finest-granularity load balance, but
by handing out atoms in chunks instead of one-at-a-time, we can still
achieve a good balance and at the same time hold down the overhead
of the load balancing operation itself.) The tuple is now replaced in
tuple space, with its atomic-id value duly incremented by the chunk
size:

OUT(’brd filt atom id’, NEWID+CHUNK)

The process now goes to work computing interactions based on
the atoms it has acquired. When it’s finished, it grabs the atom-
assignment tuple again and acquires another chunk. A process that
has been assigned (by the luck of the draw) an easy-to-compute chunk
will grab a second chunk while unluckier fellow processes are still hard
at work on their first, hard-to-compute chunks.

12

The shared counter tuple makes a simple but important point:
when you want a shared variable, it’s nice to have a shared variable.
(Not that it’s essential—of course this same application could be pro-
grammed using a message passing system. The point hinges rather on
aptness and convenience, on closeness of fit between the programming
model and the programmer’s way of thinking.) Linda applications of-
ten use shared objects or data structures to carry out dynamic task
distribution. X-PLOR is a particularly simple example; the owner-
computes character of this code makes it possible to assign a task
merely by (in effect) pointing to it. Other codes use distributed data
structures whose elements are task descriptors. Sometimes an un-
ordered bag is the right structure; sometimes tasks must be started in
order and some sort of ordered structure is called for, for example a
stream of tuples. These and many other cases are discussed in [CG90].

At the end of the iteration, processes circulate a table in which the
results of the iteration are accumulated. This table-circulation opera-
tion is in essence identical to the circulating token example discussed
above. Processes use in to grab the table from the preceding process:

IN(’brd filt merge data’, WID, ?DXL:, ?DYL:, ?DZL:,
+ 7LEVDW, 7LELEC, 7LEVDWV, ?7LELECV, 7MINTIM,
+ ?MAXTIM)

and out to pass it on.

OUT(’brd filt merge data’, NEXT, DX:NATOM, DY:NATOM,
+ DZ:NATOM, EVDW, ELEC, EVDWV, ELECV, MINTIM, MAXTIM)

This operation could of course (as the previous example makes
clear) be accomplished using message passing. But it can be carried
out more straightforwardly in Linda; more important, it can be car-
ried out using the same operations that also support shared variables.
Sometimes shared variables are right and sometimes message passing
is right; Linda easily supports both, using one model and one set of
simple operations. We regard this as, in most cases, clearly preferable
to a set of operations that support only message passing, or (worse) a
coordination system that includes two entirely separate coordination
mechanisms.

The table represented by the “merge data” tuple serves as the ba-
sis for adaptive rebalancing. Each process keeps track of the amount

13

of time each iteration requires. The circulating table records the min-
imum and maximum times required for the iteration previous to the
just-completed one. When those times differ by more than a pre-
determined percentage, the next iteration starts out with a rebalanc-
ing: each process goes back to the atom-assignment tuple and draws
a fresh load of chunks.

Although our main focus in this paper is Linda and message pass-
ing, this example makes a point worth considering with respect to the
relationship between both Linda and message passing on the one hand
and parallel languages based on data-partitioning on the other. These
languages, particularly High Performance Fortran, have emerged as
the main software focus of those high-performance computing efforts
that focus on massively parallel processors (“big iron”) versus net-
worked clusters. Data-partitioning operations are unquestionably valu-
able and convenient in some contexts. In others, they are inappropri-
ate. The routine discussed here would seem to be a perfect fit to data-
partitioning languages; after all, it uses data-partitioning to control
parallel execution. But note that the data-partitioning required was
easily accomplished in Linda. More important, Linda provided the
flexibility that was essential to achieve the “multi-way adaptive parti-
tioning” upon which the application depends. Mere data-partitioning
alone is clearly not sufficient; the flexibility provided by systems like
Linda or message passing is essential.

Although parallel X-PLOR is an ongoing project in the early stages,
preliminary results suggest that the code described here performs well

[CG93).

...and storing data We take up one more simple example of the
way real Linda programs use shared objects. One major use for such
objects is in task distribution; another is in storage of state informa-
tion that characterizes and ongoing application. “LINKMAP” [Ott9]1]
is another owner-computes application discussed in [CG93]. The pro-
gram helps determine the location of a gene responsible for some ge-
netic trait, given inheritance information pertaining to this trait and
others of known location.

Our intent here isn’t to describe the algorithm or parallelization
method, but merely to draw attention to another typical Linda pro-
gramming pattern. Information under development by many parallel
processes must be adjusted relative to information characterizing one

14

end-point of the genetic interval in question. This information is stored
in a tuple (using out), and consulted by interested parties using the
tuple read operation, rd. Thus the operation

out("like table", thisped, like);

creates a shared object. The value bound to the variable 1ike consti-
tutes the actual datum; the first field is an identification string, and
the second one allows processes to locate the right entry in a table.
The operation

rd("like table", thisped, 7 *like_p);

copies the value of like into the corresponding local variable. Note
that both the first and second fields are used for matching (“thisped”
means “this pedigree”).

Again, more complex examples exist (see [CG90]). But this simple
one captures the basic point: shared data structures are a useful pro-
gramming technique, and Linda applications rely on them routinely.

4 Linda Performance

A great deal of Linda performance data has been published. Each
of the “real application” reports cited above includes performance
data, and much other data has appeared besides. These reports show
that Linda is an efficient tool for the particular applications under
discussion. But in the current context, performance comparisons are
particularly interesting, particularly comparisons between Linda and
message-passing systems. In this section we review two such studies.

Deshpande and Schultz [DS92] compare the performance of Linda
and the native Intel message-passing library on distributed-memory
Intel multiprocessors, and of Linda and PVM on workstation LANs,
on the shallow water equations—an application they describe as “rep-
resentative of the types of problems that researchers in several disci-
plines are attempting to solve.” On 64 nodes of the multiprocessor,
the Linda version’s performance is within roughly 10% of the native
low-level version. On the network, Linda and PVM are closely com-
parable.

We focus here on another study, conducted by Clemens Cap and
Volker Strumpen of the University of Zurich in 1992. Having discussed

15

PVM and Linda with respect to expressivity, this case study allows
us to cite some data, reported neither by the Linda nor the PVM
groups, in which the performance of the two systems is compared on
the same substantial problem. And this case study focusses, again,
on a message-passing style program. Again, in other words, we are
attempting to meet some prominent competing systems on their own
turf.

4.1 The Cap and Strumpen study

In [CS92], Cap and Strumpen investigate network parallelism in the
context of a PDE problem (heat conduction). The focus of their re-
port is Parform, a system of their own design. The Parform project
addresses an important aspect of local area networks in the role of
parallel-machine-of-the-masses: the project centers on the realization
of sensor-data-driven dynamic adaptability. These ideas were the in-
spiration for some of work reported in the X-PLOR example. Fur-
thermore, Cap and Strumpen conveniently chose to present Parform
performance data along with data on Linda and PVM.

Cap and Strumpen’s paper describes the Parform system as “a new
and optimized design, aiming primarily at high performance for special
applications” [p.2]. Accordingly their intent is, among other things,
to show that the special features of Parform make it particularly well-
suited to the sort of “special applications” in which they are interested.
They attempt to explain why (as one would expect) Parform, the
special-purpose system, is more expressive for this sort of problem
than Linda, the general-purpose alternative.

Cap and Strumpen’s interests center on experimenting with a va-
riety of strategies for load balancing, ranging from a simple fixed-sized
static partitioning of the work, to static but variable partitionings, to
a dynamically reconfigured partitioning.

4.2 The performance data

Cap and Strumpen’s second concern was performance’:

1Cap and Strumpen re-examined this issue as a result of exchanges with members of
our group. As we will see, they hold a decidedly different view now. A new version of
their report has been issued[CS93].

16

The main bottleneck of [Linda] in a distributed environ-
ment is the concept of tuple space, especially the necessary

scanning operation to find tuples of certain formats.[page
4]

and later

The poor performance of the [Linda] implementation POSYBL
[POSYBL is one public-domain implementation of a por-
tion of the Linda model] can thoroughly be explained by
the overhead of tuple space management. With 10 to 20
processors the speedup essentially remains constant. Al-
though work on high speed tuple space implementations

is in progress, tuple space management is a principle bot-
tleneck of the [Linda] approach, rather suited for shared
memory architectures than for distributed systems.[page
12]

These views are paradigmatic of a widely held assessment: (1) tu-
ple matching must be expensive, and (2) in a distributed environment,
managing tuple space must be a bottleneck. Both assertions are in
general false. Cap and Strumpen’s own data provide an excellent illus-
tration of the fact. As their statement indicates, their initial “Linda”
data was gathered using a Linda variant called POSYBL [Sch91]. This
system is completely unoptimized. Cap and Strumpen’s initial data
set amply reflects the consequences of using such a naive system (table
1; see [CS92] for a complete description of the experiment).

To explain why optimizations are particularly important in this
case, we must first describe the program in a bit more detail. The
problem being solved, a heat conduction PDE on a grid, was paral-
lelized by decomposing the grid into strips. Boundary values must be
communicated between adjacent strips. Mapping strips to processes
yields a chain-shaped logical process structure. The chain results in a
stable communication pattern that is captured by runtime heuristics
designed to detect these patterns. Communication within the system
is reconfigured in order to support them efficiently. In the event, ac-
tual message traffic is virtually the same as if the program had been
written using a message-passing paradigm.

We arranged with Cap and Strumpen to retest using SCA’s Linda.
They did, and reported the results to the “comp.paralle]” bulletin

17

Heat Conduction Timings (POSYBL)

Processors POSYBL | PVM | Parform
1 1370.6 | 1370.6 1370.6
2 737.2 | 648.0 654.8
4 442.6 | 328.0 332.3
6 339.3 | 219.0 221.7
8 284.6 | 168.4 170.2
10 260.2 | 143.6 137.4
12 244.7 | 116.6 116.0
14 242.7 | 100.1 103.5
16 239.5 90.0 89.0
18 242.6 97.5 80.9
20 241.6 85.8 73.5

Table 1: Cap and Strumpen’s original data

board on the internet. We reproduce the table for Linda, PVM and
Parform (static, homogeneous partitioning) in table 2.
We leave the summary to Cap and Strumpen:

This result verifies, that SCA Linda’s runtime system can
handle regular problems like a PDE solver very well. Cer-
tainly, a heap of work went into the optimizers of this sys-
tem.

5 Adaptive Parallelism and Piranha

“Adaptive parallelism” refers to parallel computations on a dynami-
cally changing set of processors: processors may join or withdraw from
the computation as it proceeds.

Any parallel application might in principle gain if it is built as
an adaptive program. In any computing environment (including a
dedicated multiprocessor), such a program is capable of taking ad-
vantage of new resources as they become available, and of gracefully
accommodating diminished resources without aborting. An adaptive
parallel program might grow or shrink within a single multiprocessor,
or encompass processors both within a multiprocessor and in a LAN.

18

Heat Conduction Timings (SCA-Linda)

Processors SCA-Linda | PVM | Parform
1 1370.6 | 1370.6 1370.6
2 662.2 | 648.0 654.8
4 342.6 | 328.0 332.3
6 235.5 | 219.0 221.7
8 175.8 | 168.4 170.2
10 144.3 | 143.6 137.4
12 122.1 | 116.6 116.0
14 104.5 | 100.1 103.5
16 92.8 90.0 89.0
18 84.5 97.5 80.9
20 76.0 85.8 73.5
22 71.5 68.5 67.5
24 66.5 63.6 62.5
26 63.1 60.5 58.6
28 58.5 56.7 55.8
30 55.1 53.5 53.0
32 54.0 54.0 51.0
34 52.4 54.0 50.8
36 51.4 52.0 48.5
38 51.3 54.0 48.4

Table 2: Cap and Strumpen’s revised data, using Scientific’s Linda system
P g

19

Workstation networks are the most important setting for adaptive
parallelism at the moment. Workstations at most sites tend to be idle
for significant fractions of the day, and those idle cycles may constitute
a powerful computing resource in the aggregate. Ongoing trends make
“aggregate LAN waste” an even more attractive target for recycling:
desktop machines continue to grow in power; better interconnects will
make communication cheaper, and in doing so expand the universe
of parallel applications capable of running well in these environments.
For these reasons and others, we believe that adaptive parallelism is
assured of playing an increasingly important role in parallel systems
and applications development over the next few years.

Several ad hoc systems have been designed to solve specific compu-
tational tasks adaptively—for example testing primality or computing
travelling salesman tours [LM90]. Other approaches to adaptive par-
allelism have tended to center on what we call the “process model,” in
which an application is structure in terms of a set of processes that are
dynamically remapped among free processors: when a processor with-
draws, its processes are migrated somewhere else. Such an approach
was discussed as long ago as the “MuNet” project and the early stages
of Actors research [Agh86]; a variant of this approach formed the basis
of the “Amber” adaptive parallelism system [CAL*89].

Piranha, in contrast, is an adaptive version of master-worker par-
allelism (see [CG90]). Programmers specify in effect a single general
purpose “worker function.” They do not create processes and their
applications do not rely on any particular number of active processes.
When a processor becomes available, a new process executing the “pi-
ranha” function is created there; when a processor withdraws, a spe-
cial “retreat” function (which must be provided by the programmer)
is invoked, and the local piranha process is destroyed. Thus, there are
no “create process” operations in the user’s program, and the number
of participating processes (and not merely processors) varies dynami-
cally.

This approach to adaptive parallelism has a number of advantages.
Processes need never be moved around. The approach supports strong
heterogeneity: task descriptors and not tasks are the basic movable,
re-mappable unit in the computation. Task descriptors are stored in
tuple space, and tuple space is implemented by the underlying Linda
system in a heterogeneous way, allowing nodes of different types to
share access to a single tuple space. A process image representing a

20

task in mid-computation can’t realistically be moved to a machine of
a different type, but a task descriptor can be. In the Piranha system,
a task begun by a Sun node can be picked up and completed by an
IBM machine. (Industrial harmony in action.)

Our approach has the disadvantage that applications must spell
out explicitly what steps to take when a process is forced to vacate a
node. The process won’t simply be frozen and moved; the programmer
must supply a special exception handler (the “retreat” function) that
deals with the situation.

In practice, a variety of applications has executed successfully un-
der piranha, running the gamut from simple cases that are readily
piranhified to complicated ones whose inter-task dependencies require
rather complex “retreat” functions. The system has been available
for several years in a succession of research versions at Yale; applica-
tions from the departments of physics, electrical engineering, math-
ematics, human genetics and computer science, among others, have
executed successfully on waste cycles in the computer science depart-
ment’s LAN. The close relationship between the Piranha model and
the underlying Linda system should be clear.

Scientific Computing Associates’s latest Linda release is the first
to incorporate Piranha support in a commercial product. At Yale,
Piranha has been ported to the CM-5 distributed-memory multipro-
cessor, and research on this and related topics continues.

We conclude by affirming one of the few unambiguous lessons of
the history of programming languages: no one model will “win”. Our
goal is not to suggest that message passing is made obsolete by Linda.
On the other hand, efficient high-level languages have historically
faced challenges establishing themselves, but once established they
have been widely embraced. Our goal is to suggest the relationship of
Linda to message passing reflects this general pattern. That is, the re-
lationship between Linda and message passing is similar, say, to that
between efficient high level languages and assembler code. Assem-
bly code is not obsolete, and assembly coding remains an important
art. However, counter intuitive as it may appear, there exists a broad
range of computations that can be solved not only more easily but
with comparable efficiency using high-level languages. So it is with
Linda and coordination.

21

References

[AC93]

[Aghs6]
[BA9O]
[BKS91]

[Bri92]

[BS92]

[Cag93]

[CAL*89]

[CCZ93]

[CG89]

[CGY0]

G. Agha and C. Callsen. Actorspaces: An open distributed
programming paradigm. In Proceedings of the jth ACM
SIGPLAN Symposium on Principles and Practices of Par-
allel Programming, San Diego, May 1993. To Appear.

G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, Mass., 1986.

M. Ben-Ari. Principles of Concurrent and Distributed Pro-
gramming. Prentice-Hall, Hertfordshire, U.K., 1990.

R. Bjornson, C. Kolb, and A. Sherman. Ray tracing with
Network Linda. SIAM News, 24(1), Jan. 1991.

A. T. Briinger. X-PLOR, Version 3.1, A system for Crys-
tallography and NMR. Yale University Press, New Haven,
1992.

J. L. Black and C. B. Su. Networked parallel seismic com-
puting. In 24th Annual Offshore Technology Conference,
pages 169-176, Houston, TX, 1992. Paper Number OTC
6825.

L. D. Cagan. Investment analytics on networked worksta-
tions. High Performance Computing Review, May/June
1993.

J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy,
and R. J. Littlefield. The Amber System: Parallel pro-
gramming on a network of multiprocessors. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems
Principles, pages 147-158. ACM SIGOPS, ACM Press,
December 1989.

L. D. Cagan, N. J. Carriero, and S. A. Zenios. A computer
network approach to pricing mortgage-backed securities.
Financial Analyst’s Journal, pages 55-62, March/April
1993.

N. Carriero and D. Gelernter. Linda in context. Commun.
ACM, 32(4):444-458, Apr. 1989.

N. Carriero and D. Gelernter. How to Write Parallel Pro-
grams: A first course. MIT Press, Cambridge, 1990.

22

#include "pvm3.h"
#define SLAVENAME "slavel"

main()

{
int mytid; /* my task id */
int tids[32]; /* slave task ids */
int n, nproc, i, who, msgtype;
float datal[100], result[32];

/* enroll in pvm */
mytid = pvm_mytid();

/* start up slave tasks */
puts("How many slave programs (1-32)7");
scanf ("%d", &nproc);

pvm_spawn (SLAVENAME, (char**)0, 0, "", nproc, tids);

/* Begin User Program */

n = 100;

/* initialize_data(data, n); */
for(i=0 ; i<n ; i++) datal[i] = 1;

/* Broadcast initial data to slave tasks */
pvm_initsend (PvmDataRaw) ;

pvm_pkint (&nproc, 1, 1);

pvm_pkint(tids, nproc, 1);

pvm_pkint(&n, 1, 1);

pvm_pkfloat(data, n, 1);

pvm_mcast(tids, nproc, 0);

/* Wait for results from slaves */
msgtype = 5;
for(i=0 ; i<mproc ; i++){

pvm_recv(-1, msgtype);

pvm_upkint(&who, 1, 1);

pvm_upkfloat(&result[who], 1, 1);

printf ("I got %f from %d\n",result[who],who);
}
/* Program Finished exit PVM before stopping */
pvm_exit();

Figure 1: PVM: master creates and sends data to a ring of workers, workers
send data to the the next and previous workers in the ring, then return a
result to the master. (Part 1 of 3)

25

#include <stdio.h>
#include "pvm3.h"

main()
{
int mytid; /* my task id */
int tids[32]; /* task ids */
int n, me, i, nproc, master, msgtype;
float data[100], result;
float work();

/* enroll in pvm */
mytid = pvm_mytid();

/* Receive data from master */
msgtype = 0;

pvm_recv(-1, msgtype);
pvm_upkint (&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkfloat(data, n, 1);

/* Determine which slave I am (0 -- nproc-1) */
for(i=0; i<nproc ; i++)
if (mytid == tids[i]){ me = i; break; }

/* Do calculations with data */
result = work(me, n, data, tids, nproc);

/* Send result to master */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_pkfloat(&result, 1, 1);
msgtype = 5;

master = pvm_parent();
pvm_send(master, msgtype);

/* Program finished. Exit PVM before stopping */
pvm_exit();

Figure 2: PVM: part 2 of 3

26

float

work(me, n, data, tids, nproc)
int me, n, *tids, nproc;
float *data;

int i, dest;
float psum = 0.0;
float sum = 0.0;

for(i=0 ; i<n ; i++) sum += me * datal[i]l;

/* illustrate node-to-node communication */
pvm_initsend(PvmDataRaw);

pvm_pkfloat(&sum, 1, 1);

dest = me+i;

if(dest == nproc) dest = O;

pvm_send(tids[dest], 22);

pvm_recv(-1, 22);

pvm_upkfloat(&psum, 1, 1);

return(sum+psum);

Figure 3: PVM version, completed.

27

float

work(id, n, data, nproc)
int id, n, nproc;
float *data;

int i, dest;
float psum = 0.0;
float sum = 0.0;

‘for (i = 0; i < n; ++i) sum += id*datali];

/* illustrate node-to-node communication */
dest = id+1;

if(dest == nproc) dest = 0;

out ("sum", dest, sum);

in("sum", id, ? psum);

return (sum+psum);

}
worker (id)

int id;
{

int n, nproc;
float data[100];

rd("init data", ? nproc, 7 n, 7 data);
out("result", id, work(id, n, data, nproc));

Figure 4: Linda version, same problem: part 1 of 2.

28

real_main()

{

}

int i, j, n, nproc;
float data[100], result;

/* Start up workers. */

puts("How many slave programs?");

scanf ("%d", &nproc);

for (i = 0; i < nproc; ++i) eval("slave", worker(i));

/* Begin User Program */

n = 100;

/* initialize_data(data, n); */
for (i = 0; i < n; ++i) datal[i] = 1;

out("init data", nproc, n, data);

/* Collect results. */

for (i = 0; i < mproc; ++i) {
in("result", 7j, ? result);

printf ("I got f from %d\n", result, j);
}

Figure 5: Linda: the rest of the solution.

29

#define NPROC 4

#include <sys/types.h>
#include "pvm3.h"

main()
{
int mytid; /* my task id */
int tids[NPROC]; /* array of task id */
int me; /* my process number */
int i;

/* enroll in pvm */
mytid = pvm_mytid();

/* find out if I am parent or child */
tids[0] = pvm_parent();
if(tids[0] < 0) { /* then I am the parent */
tids[0] = mytid;
me = 0;
/* start up copies of myself */
pvm_spawn("spmd", (char*x)0, O, "", NPROC-1, &tids[1]);

/* multicast tids array to children */
pvm_initsend(PvmDataDefault);
pvm_pkint(tids, NPROC, 1);
pvm_mcast(&tids[1], NPROC-1, 0);
}
else { /* I am a child */
/* receive tids array */
pvm_recv(tids[0], 0);
pvm_upkint(tids, NPROC, 1);
/* loop maps ’mytid’ to ’me’, a value in [0-(NPROC-1)] */
for(i=1; i<NPROC ; i++) if(mytid == tids[i]){ me = i; break; }
}

printf("me = %d mytid = %d\n",me,mytid);
dowork(me, tids, NPROC);

/* program finished exit pvm */

pvm_exit();
exit(1);

Figure 6: PVM: a ring of identical processes, with a single token circulated
once around the ring; part 1 of 2

30

dowork(me, tids, nproc)

int me;
int *tids;
int nproc;
{
int token;
int dest;
int count = 1;
int stride = 1;
int msgtag = 4;
if(me == 0) {
token = tids[0];
pvm_initsend(PvmDataDefault);
pvm_pkint(&token, count, stride);
pvm_send(tids[me+1], msgtag);
pvm_recv(tids[nproc-1], msgtag);
printf("token ring done\n");
}
else {
pvm_recv(tids[me-1], msgtag);
pvm_upkint(&token, count, stride);
pvm_initsend(PvmDataDefault);
pvm_pkint(&token, count, stride);
dest = (me == nproc-1)7? tids[0] : tids[me+1] ;
pvm_send(dest, msgtag);
}
}

Figure 7: PVM version, completed

31

#define NPROC 4

ring(id)

{
if (id) in("token", id);
out ("token", (id+1)%NPROC);
if ('id) in(“"token", id);

}

real_main()
{
int i;
for (i= 1; i < NPROC; ++i) eval("ring node", ring(i));

ring(0);
}

Figure 8: Linda: same problem.

32

