Neural Net Applications

Willard L. Miranker
February 2004
TR-1273

Table of Contents

1. Using Neural Networks to Model Competitive Behavior
Vladimir Barash 1

2. A Simulation of Neurogenesis in a Neural Network
Michael Bell 19

3. Distinguishing Prosody in Speech with a Liquid State Machine
Anthony Di Franco 23

4. A Neural Network Implementation of the Rescorla-Wagner Model
Byron Igoe 31

5. Lexical Memory: Identification of Verb Forms
Jose R. Rivera 37

6. ’Kohonen Maps for Automated Microarray Gridding
‘ Thomas E. Royce 61

7. A Multi-Stage Technique for Determining Head Orientation from
Monocular Images using Neural Networks Frederick Shic 77

8. Self-supervised Learning of Saccade Control with a Feed-forward
Neural Network Hao Wang 97

Using Neural Networks to Model Competitive Behavior

Vladimir Barash
Yale University, Computer Science Department
New Haven, CT 06520

Abstract

A model of competitive behavior, consisting of actors descending a mathematical
‘problem space’ to a ‘decision space,’ is built. Simple algorithms for descending the
problem space are surveyed and rejected. A feed-forward back-propagating neural
network is used as an alternative algorithm. Several functions are implemented to add

complexity to the model and to test the network’s performance in non-standard
mmnmzatlon environments.

Keywords .
competitive behavior, neu_ral networks, descent, simulation

1. INTRODUCTION

This paper proposes to model competitive behavior. That does not imply, however, that it
will model active, aggressive competition between individuals. The sort of competition to
be analyzed involves actors working aggressively towards a common goal, but not
necessarily impeding each other’s progress along the way. Students at college, for
example, are all aggressive and competitive; this does not imply that students at college
push each other doer down and hurt each other’s academic record as they strive for
diplomas and graduation. Similarly, armies seeking to occupy a strategic landmark may
exhibit competitive behavior without ever fighting (fighting in this “race for the hill”
situation usually begins after one army has occupied the landmark in question).

Competitive environments have three crucial characteristics: the actors populating
them; the problems those actors are trying to solve; and the solutions to the latter
. problems. These three characteristics surface in, for example, the competitive
environment at a four-year American un1vers1ty The actors are the students; the
problems they are trying to solve can be ass1gnments for a given class, or extracurricular
commitments, or something else. Each of these problems corresponds to a solution.

When analyzing these and similar environments, one can organize actors,
problems, and solutions within them in the following manner: every actor starts out with
a set of unsolved problems; the solutions to those problems help the actor reach an

“ultimate goal,” an event or condition where all problems are solved. In the university

example, all students start out with a certain number of assignments to complete,
extracurriculars they want to sign up for, and so on. As they complete assignments and
finish classes, students slowly work their way towards a diploma — the “ultimate goal”
that marks the end of their college problems (and their departure from the environment).

A good model of competitive environments, organized in the manner just
described, might yield insight into the factors, determmmg individual success; the effect
of other actors on individual performance; and the effect of irrational factors (such as
stress, hope, or anxiety) on the ability of actors to cope with problems as they slowly
proceed towards their “ultimate goal.” In the case of the university, these results may help
determine what helps, and what hurts the individual student’s chances of graduating, or
how stress affects his or her progress A general enough mathematical model would allow
one to draw similar results for any applicable environment.

The model proposed situates actors, problems, and solutions in a 3 (or higher)
dimensional manifold, which has strong local maxima in one portion, and flattens out to a
global minimum everywhere else. The maxima represent the problems to be solved;
actors (0-dimensional points) are placed at or near these maxima, and, in the course of the
simulation, descend towards the global minimum (which stands for the actors’ “ultimate
goal”). In the course of descent, an individual .actor’s behavior is determined by three
factors: his knowledge of problems he is currently attempting to solve; similar
‘information from the rest of the actors; and the value of the actor’s stress function. These
factors are processed and weighed in a system of neural networks that computes the
progress of all the actors over time. '

2. THE MODEL

2.1 Manifold and Actor Setéup

The model consists of a three-dimensional manifold (a manifold of n dimensions may be
used, but 3-D lends itself well to visualization) with the following characteristics; the
manifold has enough discrete local maxima to situate as many actors as desired, and the
manifold gradually slopes off to a flat “solution plane.” The actors on the manifold are
represented as individual points. Throughout the simulation, the actors are initially aware
only of four pieces of data: the numerical gradients in the four cardinal compass
directions around them. In other words, an actor at point (m,n,0) on the manifold is aware
of (dz(m+1, n)/dx; dz(m-1, n)/dx; dz(m, n+1)/dy; dz(m, n-1)/dy) — where z is the variable
name for the function describing the manifold. This restriction of local-only awareness is
suggested by March and Olsen’s (1972) work on organizational choice: the actors in
March and Olsen’s simulations are never aware of the entire scope of problems to be
solved, but only of the problems immediately before them at a given point in time.

The manifolds used in this experimeit fall ifito two categories: initial, the ofes

used to train the system of neural networks; and experimental, the ones the trained system
was used on. The surface equations of the manifolds in the first category are: -

)] z =sin(x)/ x +sin(y)/ y
@) - z=y*sin(y)+x*sin(x)

The surface equations of the manifolds in the second category vary; most are
deterministic and given by trigonometric functions of x and y; some are non-
deterministic, for example:

(3) z=sin(x)/x+sin(y)/ y +k*rand(0,1)}
(4) z=y*sin(y)+x*sin(x)+k*rand(0,1)

where k is a constant between 0 and 1 (several different values were used in the course of
the experiment).

- 22#4ctor Decision-making

‘Sititilation on the model is done in fixed-step time. Each time step consists of two parts:-
first, every actor on the manifold evaluates the information he has and uses it to make a
decifion; second, the actor positions are updated according to the decisions they have-
made. The simulation ends when no actor makes a decision to move. At that point, the
results were recorded quantitatively (in tables and figures) and qualitatively: any actors
that came within the vicinity of the “ultimate goal” were considered to have nearly
succeeded, while those who reached the “ultimate goal” itself succeeded completely.

It is important to note that the actors never impede each other’s progress, in
accordance with the assumptions outlined in the Introduction; if two actors ever meet,
they go over the same ground (just as two students at college might take the same classes)
without affecting each other’s input data, decision-making, and so on.

The actors’ decisionmaking ability was developed in the course of the experiment
in roughly three stages. Originally, each individual actor made his or her own decision
without the aid of a neural network, using a simple algorithm, sketched out below:

Evaluate(gradient_north, gradient_south, gradient_east, gradient_west),
If(laverage(gradient_north, gradient_south)| >= |average(] gradient_east,
gradient_west)|)

Newposition = greater(gradient_north, gradient_south);
Else

Newposition greater(gradient_east, gradient west);

where greater is a function that picks out the greatest element, among two, by absolute
value. This stage was tested on its own manifold, defined by:

5) z=@+5°+@)

as well as on first category manifolds, described by (1) and (2).

‘The second stage of development did involve neural network architecture, but the
actors still had no way to communicate with each other. Every actor corresponded to a
whole system of three back-propagating feed-forward networks. The first two networks
interpolated cardinal compass direction gradient data for each actor. Pre-formatting
allowed these networks (dubbed NorthSouth and EastWest) to calculate the more
favorable direction gradient (see Appendix 1). The networks then sent their outputs, in
gradient format, to the third network, to be stored as elements of its weight matrix. The
third network produced a final, most favorable gradient, and thus indicated the direction,
in which the specific actor should move.

‘After the actor’s position was updated according to the direction indicated, an
external teaching source checked the net’s progress-by-evaluating the distance above the
solution plane for each actor at his updated position. If this distance = 0, the actor had
reached his goal, and made no more movements: for the rest of the:simulation. If not, the
third network was trained, via back propagation, with targets set at some constant 0<k<1
* the absolute value of its outputs. The tfaining yielded new weights, which were then
passed on to the first and second network, respectively, as training targets. The weights
were multiplied by a relatively large (of the order of 10> * the weight values) positive
constant. This ‘growth factor’ resulted in a large numerical difference between the
weights, which prevented the system from getting stuck in a spot where the numerical
differences between input data were very small. As the networks were trained, their
weight matrices changed, creating a network-intrinsic preference for one direction over
another. This stage was trained on training manifold (1) and generalized to a sequence of
non-deterministic manifolds of the form of (4), with k raised incrementally by from .1 to
9.

The third stage had a neural network architecture similar to the second, but actors
could now communicate and influence each other’s decision-making. The inputs to each
of the first two networks were north-south and east-west data for all actors, respectively.
The initial weights were set so that the data, corresponding to an actor’s cardinal compass
direction gradients, was given the most influence over the actor’s decision-making
(roughly fifty times the data, corresponding to other actors’ gradients). Furthermore, the
third network was trained with targets set as the most negative of its outputs (which

4

corresponds to the actor curremtly z approaching "tlﬁ““iilﬁiﬁéfé’"'g'fiiil”"”tlié"'fﬁt_e's”t)f'FiiiéiIISi;"'""W“—WW" N

the biases sent to each neuron in the first two networks were given values corresponding
to the neuron’s stress function (Appendix 2) at the given time'!, This stage was trained on
all three manifolds in the first category separately, creating three trained network
systems. The systeins were then generalized to six second-category manifolds: three
deterministic and three non-deterministic. |

3. RESULTS
3.1 Stage One
Stage one decision-making served as a baseline for actor performance in this experiment:
actors in this stage acted by a set of simple, constant rules and underwent no learning at
all. The learning-based models in stages two and three of decision-making had to perform
better than this baseline, or there would be no cause at all to use neural networks instead
of simpler methods in the experiment.

The simulations of stage one decision-making used a set of nine randomly chosen
actors, who performed descent in fixed timé until they were either successful or 100
simulation steps had elapsed. The actors’ progress was collected as distance from zero vs.
time in a table, and represented graphically by slightly elevating points on the manifold’s
suiz_isface_ where the actors were located in the course of the simulation. o

The manifold stage one decision-making was first simulated on (described by (5))
did:not meet the model requirements described in 2.1, and was used entirely to test the
validity of stage one’s algorithm on some surface. The algorithm used allowed eight out
of ten actors to perform nearly successful descent, reaching a distance of .05 units from
zero in at most thirteen simulation steps. The remaining two actors did not descend
successfully past a distance of .75 units from zero.

Next, stage one decision-making was simulated on first category manifolds,
described by (1) and (2). On manifold (1), five out of ten actors performed nearly
successful descent; on manifold (2), six actors stopped their descent at the local minimum
near the origin, and one of the remaining actors got stuck somewhere between the local
minimum and the “ultimate goal;” only the last three actors performed nearly successful
descent.

The tables and figures corresponding to this stage of decision-making are marked
la and 1b — corresponding to simulations on manifolds (5) and (2), respectively.

Table 1b

Table la

n|l— |Nloo o T |O|T (T
16053343@4
S N {00 AN |en [en O foo O
HIlQ |5 e v |= S |= S |S
BT (T | i[O in O |©O
—_— [N N | o e~ o
xS N fr= = 00 jJoo |n oo |O
sl |eoin |vn vV jn |~ |on
Flel2lRiFIgElRee

vy oo |ON [N oo |\ I+ |oo {00
g
< [N |en [[[0 |~ |oo [on

00 n jes |— |~
v— O <F |V OO |~

< N o~ NN e
R=! < — S (N {2
Mool |o|loj—~ | lo |

%9 — I~ <t = I |en
o IS | = | loo |on oo | {en {1~
cinijolTs ivoin|o i]|O |
g (RIS N [\ o0 [N = b |
m011112111
Yot
8
15 .
< | |Njen i jn [0 |~ |oo |

...

S A e

........................

ated on Ma

..................

9l

‘

e FH o

T 1 7 7 I &
© ~ © u w N +«~ O

wf60D ajBWRIN, 0} SIUBISP

W X

.‘._

-0.5

0

finel actor locations

-1

Yy

Figurelb

o

Stage

H
L

final ackor iocatlbgs

n
u goef
N o N

Z

1
E-3

distance to “ulimate

5

3.2 Stage Two

Stage two decision-making involved a system of neural nets that was trained on first
category manifolds, described by (1) and (2), and simulated on the non-deterministic
versions of those manifolds — (3) and (4), as well as on two deterministic manifolds:

(6) z=x*sin(cos(2*x))+y*cos(sin(2*y))
@) =c0s(x/110*log(x))+sin(3/110*log(y)).

The number and initial locations of actors were kept constant throughout the simulations.
Training was run for fifty steps; the simulations were run for varying lengths of time —
from thirty to a hundred steps — depending on the point where the majority of the actors
would cease descending and further simulation would achieve nothing new.

The network system trained well on manifold (1) — two of the eight actors
performed completely successful descent, reaching a distance of 0 from the “ultimate
goal,” and three others made a progress of .6 units in the course of their descent. Two
actors, however, did not descend at all, and got stuck at point close to their initial
positions.

The network system trained far worse on manifold (2) (no successful or even
semi-successful descents), and performed very poorly in all simulations. The only
exception was the simulation on manifold (7) of the system, trained on manifold 2). In

7

the Tatier case, one actor, initially positioned close to the “ultimate goal,” did perform

nearly successful descent. The tables and figures corresponding to this stage of decision-
making are marked 2a , 2b (for the two training manifolds) and 2¢ (for the simulation
with one successful descent). '

Table 2a Table 2b ‘Table 2c

Actor | Initial Final Actor | Initial 'Final Actor | Initial Final

23797 |0 1 0..81853 |2.2931 23797 | 1.19972

35316 |0 95895 |13.1583 3.5316 | 1,9972

2.9925 | 1.2869 1.2869 | 1.5602 2.9925 1.1004

2.3268] 0.8139 1.6279 | 2.3268 2.3268 | 1.1969

0.74473 | 1.1095 1.7968 | 0.7447 0.74473 | 1.1969

2.7593 {22734 22734 | 2.7593 2.7593 1.9099

3.5715 1.6681 1.7084 | 3.5657 3.5715 [3.9808

Oof | OV W] A W N =
O NN |] A W
CO[2] A} i B W D] =

1.3741 | 0.8542 Error” | Error’ 1.3741 2.3412

Figure 2a

Stage Two, Trained on Manifold (1)

7\"".."..“' .~..~"‘“ """"""""""""""""

6.

‘‘‘‘‘‘

giobal mit
4

-4 -4global minimum

Figure 2b

Stage Two, Trelned on Manifold 2)

actor final iocations e

Sey

. ey

. ‘.

b ‘e,

.

b o
.

s PERE TS
. b4
s .
T .
N H
b .
: :
H H
. :
. . :
. a, s
. -y
. .
b .

y -4 dlsbal minimum

Figure 2¢

Stage Two, Trained on Manifold (2), Simulated on Manifold (¢p]

selicsenreavannases?

~33 Stage e
Stage three decision-making was trained and simulated on the same manifolds as stage
two decision-making, so that surface equations acted as a control for the last two stages
of decision-making in the experiment. The initial locations of actors coincided with those
from stage two, as did training and simulation times (fifty for training, varying from
thirty to a hundred for simulation).One new actor was added to stage three simulations to
test the effect of the number of competitors on individual progress; their locations were
kept constant for all manifolds trdil;ed/simulated on. :

Stage three decision-making performed significantly better than stage two, both in
training and in simulation. Its training on manifold (1) resulted in five actors performing
nearly successful descent (final distance from “ultimate goal” ranged from .6 to 1.15
units); its training on manifold (2) resulted in one completely successful descent and two
nearly successful descents (final distance from “ultimate goal” ranging from 1.0 to 1.4
units; furthermore, as the appropriate figure shows, these actors are located only a few
squares off the absolute minima of the manifold). The training on manifold (2) was also
remarkable, because every actor avoided the local minimum near the center of the origin
—even the actors that started near the local minimum-ascended away from it and towards
the global minima of the manifold. The nets, trained on manifold (1) performed with
similar-to-training results in simulation on manifold (3), and worse on manifolds (4) and
(6), but achieved one nearly successful descent on manifold (7), with a final distance

- from “ultimate goal” of 0.87. The nets, trained on manifold (2), resulted in one successful

- .descent and four near-successful descents when simulated on manifold (3); in seven near-

successful descents when simulated on manifold (4) (with one point just .08 above

“ultimate goal”); and in another seven near-successful descents when simulated on

manifold (7). The tables and figures corresponding to this stage of decision-making are

marked 3a and 3b (for the two training manifolds), 3c, (for net, trained on manifold (1),

simulated on manifold (7)) and 3d and 3e (for nets, trained on manifold (2), simulated on

manifolds (4) and (7)).

During training on manifold (2), one of the actors descended successfully before
the entire span of the simulation was over, and, due to a glitch in the program, caused the
training to stop. For the purposes of further simulations, the networks were left as trained
when the successful descent happened. One more simulation was made at the very end of
the experiment: the final positions of the actors, minus the one that was located at
“ultimate goal,” were re-inserted into the networks and training was continued; the
removal of the successful actor allowed another actor, previously stuck some distance
from “ultimate goal,” to descend successfully — but nothing further of interest was gained
by this simulation or by subsequent simulations of this kind.

10

B

T

Wj;able 3e

Actor |Initiel [Final ||Actor | Initial | Final ||Actor | Initial | Finel
1 0.81853 | 0.6027 ||1 57799 [14117 |[1 .|3.0717 |1.5082
2 0.95895 | 0.8284 [|2 8.5462 |3.0372 |2 1.8987 | 10486
3 1.2869 | 11134 |3 9.586 | 7.8331 ||3 0.88942 | 0.6928
4 16279 | 1.3706 |4 9.0469 |5.1508 |4 2.5406 | 1.4969
5 1.7968 | 1.6662 ||5 83812 (48059 (|5 |3.5291 |2.6333
6 22734 22602 [|6 |6.7991 |6.2499 |6 |18724 | 13486
7 1.1763 | 1.1763 ||7 42498 | 1.0668 |7 3.9798 | 2.0088
8 1.6745 |1.6745 ||8 85574 |6.7594 ||8 2.7587 | 1.8959
9 1.7084 | 1.7084 ||9 88137 [7.4340 ||9 2.1681 | 0.8783
Table 3dl Table 3e

Actor | Initial Final Actor | Initial Final

1 [5.6338 |41537 |11 3.0717 | 1.7486

2 |85723 |3.7781 |2 1.8987 | 0.7289

3 |9.6498 |7.8833 |3 0.88942 | 0.1635

4 [9.2657. |57574 |4 2.5406 | 1.4969

5 |84745 [73939 ||5 |3.5201 23137

6 165571 |6.0809 |6 1.8724 | 14954

7 44461 | 2.8979 |7 3.9808 |2.9572

8 8.6036 | 6.8007 |8 2.7587 | 1.3231

9 8.9049 |7.5058 |9 2.1681 | 1.8879

11

- Figure 3a

Stage Three, Trained on Manifold (1)

PEL RS TN

actor final locations

. .
. .
. e,
et -y N .
o . .
et e A ‘e < .,
eeet? aee Ceel - : ‘.
et ta hCY .
. . b
. e, i
. L . .. :
e . : . N
o) . . : ..t
..... AT Seal s ‘o
~- POTE .~ L2 S
E N
. e, .
N Srel b
s ..t
..... : .o
...... S .

.

.
.
.
.
.
+
.
.
.
.
.
ssscebecassstocsncafonsonastiacssashanasnat
N
.
.
.
R

seatasesaclosnancdecnnes

global mint

Figure 3b

S UL P itb
. - Stagé. Thfee; Trained on Manifold 2y ™.
4.7 et EPES A e BN .
. actor finpl locations .|~ : et : - : c-
N Lot : : : oS ‘ :
12 R

-
Q
Z

[+] -]
Z L

s

distance from "ultimate goal"

12

20

18

5 16y

14,

actor fi L’gc\tl

10

Figure3¢ .

Stege Three, Trained on Manjtold (1), Sinylated on Manifold (7)
'.,é"" ..‘.', . 2 ’.‘s -.“:
actor final locetions ;.- z *

.
4
4
>
B
:
:
:

$eeagal

cswlecnnsotana.

o “
s §
[N
LRSI
PR .
:
RS B
. \, %
PRV A
AT AN
LR I
BRI S
o e
“ :

ERTR /P PPVPN IL TP DU

2 =
= X
e o v annes
SIS SRS S X X
SIS RS LS
ey
'S
e X
-

iy //jl, 2
““‘t

»

;

.

2
weisepiisngtiiinte.

g .
.. “ctor final locatic
ITNCUE AN

A
", //w KA .
X BN Xoad / .
'g‘@%%@@” TR
ST DN
ol Y
S5 FTATINNRA
130, 00 U i LIRTHAN :
-2 G -\\‘\\\\\Q\‘:\\:\\:J/ .
/r/,/’///,»l,,,f///////—-{ AT SRR, , <
: g SR / :
s ///" % . RV
A R/
"o’,l/) R\
‘og % \'

: ':l minimum

13

Figure 3e

ettty

«
.
.
o v,
H
H
.

Stege Three, Trained on Manifold,(2); Sifiated o) Menifold (7)

R
:

o
Z

E 3
ya

distance from “ultimate goaf™
(>}

1. CONCLUSIONS

There is a clear progression from stage one to stage three of actor decision-making. Stage
one yields the best results for simple manifolds, like the ones defined by (5) and M1). In
the case of even slightly more complex manifolds, however, stage one decision;making
fails to locate the global minimum, as its simulation on the manifold, defined by),
clearly shows: all actors descended towards the local minimum — representing a false
solution to their problems (in reality, the furthest point away from their “ultimate goal” in
manifold (2)) — with the exception of those that started out far away from and below it.
For the sake of compactifying the data presented, additional simulations of stage one are
not shown here, because the results of those simulations only confirm the conclusion
drawn from stage one’s performance on (2) — without the ability to learn and generalize, a
decision-making algorithm will not be able to adapt to complex environments.

Stage two performs worse the worst of all three stages, possibly because it lack
both the simplicity of stage one decision-making and the complex learning involved in
stage three decision-making. Perhaps this failure is due to faults in the technical
implementation of stage two; yet there may be another reason: individuals, whose
behavior stage two can be said to model, attempt to succeed in competitive environments

14

~ without interaction with other individuals. Many reai-world examples indicate that such

attempts are doomed to failure; consider the student, for example, who attempts to go
through a college in the USA without talking to his professors, or interacting with his
peers, or anything of the sort. There is a small chance such a student might succeed, but
his or her inability to receive valuable feedback about his or her progress effectively
reduces this chance to zero. The same can be said of the army that attempts to secure a
strategic position without interacting with friendly forces in the area, the civilian
population, or the intelligence community: its endeavor is underprepared and will fail
miserably if a more communicative force moves to prevent the army’s attempts. Stage
two, then, may be useful as a model despite its poor performance in the experiment, if
only as an indicator of failure in the model where failure is expected in the real world.
Stage three’s performance varies from poor -on the simple manifolds to
exceedingly good on the complex ones. Visually, the huge bulge in figure 3e indicates the
collective movement of most actors towards an area very near the global minimum (no¢
any of the local minima) in the course of the simulation. Similarly impressive is the
progress shown in figures 3b and 3d: in training and in simulation, all actors avoided the
local minimum of manifold (2), and left the minimum’s vicinity even if they were nearby
initially. This behavior indicates a high probability of learning by the model’s stage three
decision-making algorithms. The neural networks those-algorithms .are made up of
interpolate data from all actors on the manifold, and thus are able to “realize” some actors
-are located in false minima without any external: knowledge. Those actors are then
encouraged to leave the false minima and-head for the: true, global minima, which is what
‘happens in figure 3d (notice the large number of final actor locations near the four global
minima of the manifold). Thus, despite its sub-par performance on simple manifolds,
stage three decision-making seems to be the best model of competitive behavior
developed in this experiment. It represents the behavior of individuals who attempt to
succeed in a competitive environment not by simply headiné for the goal, but by
communicating with and aiding each other. Alone, these individuals get stuck and fail;
together, they can all (or almost all) succeed, or nearly so. '
Of interest is the successive training described at the end of the Results section.
While clearly beyond the scope of the present experiment, this idea may be the next step
in developing the models presented here; if the entrance and exit of actors into a
competitive environment helps actors who stay in it, it may be worthwhile to apply the
three-stage model complex to a constantly changing environment, with free actor entry
and exit. On the practical level, such a model may be of use specifically in the economics
of competitive markets with free entry and exit.

15

ty °

. REFERENCES

1. M. D Cohen, J.G. March, and J.P. Olsen(1972) A Garbage Can Model of
Organizational Choice. Administrative Science Quarterly, v17 pp.1-25. . .

3. APPENDIXA
6.1 Data Pre-formatting ' :
Stages two and three of actor declswn-makmg mvolve a system of three neural networks

the first two of which accept cardinal compass direction gradient data for actors or whole

sets of actors. The data is pre-formatted as follows: the first element of each of the two
direction gradient pairs (north-south and east-west) is designated a, the second b. Four
cases are singled out:

(8) a <0, b<0
(9) a>=0, b>=0
(10) a<0, b>=0
(11).a>=0, b<0

The sweights of the first two networks were so arranged that the greater element passed on
to them would be chosen as the output. In case (8), the absolute values of a and b were
passexd on to the network: this meant that the greater (by.absoluté value) gradient among
a anid-b, corresponding to the direction of steeper descent, would be chosen. In case (9),
the order of a and b was switched: this meant that the smaller gradient among a and b,
corresponding to the direction of slowest ascent, would be chosen. In cases (10) and (11),
the element >= 0 became 0, so the direction it corresponded to would not be chosen, and
the actor would go down instead of up.

4. APPENDIXB

7.1 Tables and Figures

The figures are x-y-z graphs of actor progress on an individual manifolds, created in
Matlab 6.0 using the mesh command. The “ultimate goal” areas are not drawn into any of
the figures, but the global minimum/minima is/are marked to indicate the areas
connecting the “uitimate goal” to the rest of the manifold. The points traversed by the
actors are slightly elevated above the surface of the manifold; this visualization does not,
regrettably, allow for differentiation between the paths of individual actors, but indicates
the general trends of progress in the course of the simulation. The ends of actor paths are
elevated higher than the rest of the paths (they look like “jagged peaks” on the surface of
the manifold).

16

T The tables give clearer indication of mdividual actor progress: they record the
initial and final distances from “ultimate goal” for each actor, The first column lists the
actors, the second the initial distances, and the third the final distances,

 Three final tables give sample weight matrices for stage two and stage three
depision-making network systems. The first two tables are from stage two decision-
making, and give the north-south and east-west matrices when the system is trained on
manifold (1). The last table is from stage three, and gives the east-west matrix when the
system is trained on manifold (2). |

17

!

! Rational number, randomly chosen from normal distribution on [0,1}, ‘

¥ Rational tiuinber, randomly chiosen fromm hormal distribution on [0,1),

* The neuron stress function, which basically multiplied the gradient of descent in the direction, currently
chosen by an actor, by the current simulation step, did not have a significant effect on the results of any
training or simulation, and thus was left out of the final write-up. :

¥ MATLAB yielded negative values for this row, which is theoretically impossible.

"MATLARB yielded negative values for this row, which is theoretically impossible.

18

A Simulation of Neurogenesis in a Neural Network

Michael Bell
Yale University Department of Computer Science
New Haven, CT 06520

Abstract : . _

Neurogenesis is an observed phenomenon in which new neurons and synapses
are formed in parts of the adult brain. In a neural network, we can simulate the
death and rebirth of neurons by occasionally resetting the weights of synapses
between a neuron and any neurons it is connected to. This throws away all
of the old data that the neuron had accumulated over time and stored in the
weights of connected synapses, and replaces it with that of a neuron in its
initial state. This model should inherit some of the benefits of the young
neural net - nodes that have not yet become saturated - while continuing to
make use of the majority of the information that it has already learned. Here
we examine several rates for neuron growth/death in a threée-layered neural
network. The network uses Hebbian learning to adjust its weights and classify
‘elements of an input set. Once the elements of the set are classified consistently
(that is, as the element is repeatedly exposed to the network, its classification

no longer changes), the network is exposed to a new, similar data set. We

investigate how the rate of neurogenesis affects how long it takes for this new
data set to be classified consistent_ly.

Keywords - neural networks, neurogenesis, Hebbian learning
1. INTRODUCTION

Over time, synaptic weights in a neural network become saturated and
resistant to change. This resistance to change makes learning new data sets
inefficient or impossible. Neurogenesis is an observed phenomenon in which
new neurons and synapses are formed in parts of the adult brain. By introduc-
ing new, unsaturated synapses, neurogenesis allows the brain to inherit some
of the benefits of a young neural network - nodes that have not yet become
saturated - while continuing to make use of the majority of the information
that it has already learned. We can simulate this by occasionally resetting
the synaptic weights between a neuron and any neurons it is connected to,
as if it were the death and rebirth of the neuron. This model should inherit
some of the benefits of the young neural net - nodes that have not yet become

19

20

saturated - while continuing to make use-of the majority of the information
that it has already learned. :

Our simulated neurogenesis model has its foundation in an observed bio-
logical phenomenon. Kornack and Rakic [1] have found signs of neurogenesis
in the hippocampus of the adult macaque monkey, and estimate that at least
one neuron per 24,000 existing ones have been generated in the past day. That
is to say, 0.004 percent of neurons are newly generated each day. This result
lends itself to the probabilistic model of neurogenesis that we implement for
our simulation; during each. iteration of the network, neurogenesis occurs with
some probability p (such as 0.00004).

2. PROBLEM SETUP

~The basic structure for the neural network that we test our hypothesis on
is that of a a three-layered network where any two neurons in adjacent layers
are connected by a synapse. At some time ¢, the neurons in the first layer are
presented with input values of -1.or 1. The value n; for & given neuron n in the
remaining two layers is calculated as the sum of the values of the neurons in
the preceding layer, weighted according to the synapses between the neurons
and n. If the value of the weighted sum calculated at n is above zero, then
n; = 1, otherwise the n; = —1.

The values of the neurons in the third layer, the output layer, are based
on the input values and can be thought of as the network’s encoding for that
particular input. When the network consistently gives the same encoding for
a given input, we will consider it to have “learned” that input. The network
accomplishes this through basic Hebbian learning. After an input has been
ptresented to the network, and the values of each of the neurons in the network
has been determined, the weights of all synapses are adjusted. When both
neurons on either side of a synapse are active (both have a value of 1) or both
are inactive (have a value of -1), we have a change in the weight w of the
synapse corresponding to dw = 5 (where 7 is the learning rate); when the two
neurons don’t have the same value, we weaken the strength of the synapse
between them by dw = —n. ’

For the implementation of neurogenesis in the network, we take a simple
model for neuron death and birth. Rather than construct a network which
allows variable numbers of neurons, we simulate the death and simultaneous
rebirth of a neuron by resetting the weights of the synapses to and from the
given neuron.

- We use a probablhty P for resetting nodes in this manner, and test p as
it varies over certain values. Since we have no other way of measuring time
intervals; we apply this p-probability death at each lteratlon of the network;
after every input presented.

3. WORK

The network inputs are stnngs of 35 numbers, 1 or -1 to represent Whlte
and black pixels respectively on a 5 by 7 plxel-grld When given a pixel-grid
as input, the network will calculate values for the neurons in the output layer
which represent some encoding of this plxel-grld We can then measure how
quickly (if at all) the network “learns” the pixel-grid inputs when consistently
presented with a set of grids.

We proceed to expose the network to grids that represent the English
characters a, b and ¢ for some number of iterations. During each iteration,
the network is exposed to each of the inputs in turn.

We stop after some fixed number of iterations, and verify that for each
input, the network. produces a consistent output over several iterations. The
network has now “learned” the entire initial input set. The input set is then
changed to be that of Greek characters. This new input set is then fed into
the network for a number of iterations, and we examine how the value of p
(our probability of Neurogenesis) affects how quickly and accurately the new
set is learned.

4. RESULTS

Inltlally, the welghts for the network were set up to simulate locality in
the network space. A “nearness” value was assigned to each of the pairs,
and weights were calculated using a Gaussian distribution based on how close
pairs of nodes were. This didn’t work particularly well. After as few as ten
iterations, the nodes had reached a repeated output where all inputs were
classified the same way. The Gaussian wouldn’t work for this experiment.

Instead, the weights for the network are assigned random values ranging
from -1 to 1. This seems to work much more accurately. After between 70 and
80 iterations, the network settles down on a repeated output patterns with a
relatively high degree of accuracy. '

At p = 0, we have a model with a zero probability of node death, or a
model w1thout any neurogenesis. This model gave a relatively good degree
of accuracy for the English letters, and approximately equal accuracy for the
Greek letters. It was expected that the Greek letters would fare worse than

" the English ones, and I suspect that there is a flaw in the underlying design
which leads to this result.

For p = 0.00004, the value observed in macaque monkey hippocampus, we
had results that were basically identical to those for p = 0. With only slightly

21

2

more than fifty neurons in our network only a smgle neuron in 480 1terat10ns S

was expected to be reset.

For p = 0.001 and p = 0.005, we had high accuracy in all of the test
cases for the Greek letters. Approximately the same fairly good accuracy was
observed for the English characters.

At higher values of theta (p = 0.01), the coded classifications for the net
would not stabilize on a consistent output. Even for very large numbers of
iterations (10000+), the network would still not give consistent output for the
English characters.

We can see that for the theta~values within the range (O 001 < p < 0:005),
the Greek characters are more effectively learned. However, the model seems
flawed in the initial learning of the English characters. I would expect some
model which learns the English characters more reliably is necessary to gwe a
more deﬁnltlve result about the usefulness of neurogenesis.

BIBLIOGRAPHY

1. D.R. Kornack and P. Rakic. Continuation of Neurogenesis in the Hip-
pocampus of the Adult Macaque Monkey, Proc. Natl. Acad. Sci. USA,
96:5768-5773, 1999. '

2. S. Haykin. Neural Networks: A Comprehensive Foundation (2nd Edi-
tion). Prentice Hall, 1998.

Distinguishing Prosody in Speech with a Liquid State Machine

Anthony Di Franco
Yale University, Computer Science Department
‘New Haven, CT 065 20

Abstract
The liquid state machine architecture is central to a proposed non-Turing theory of real-
time computation, and its implementations give performance comparable or superior to
non-realtime methods in applications where the results of a computation on time-varying
inputs are immediately necessary. These characteristics among others make it a prom-
ising candidate for use as an online speech classifier. I apply the liquid state machine to
determine the prosody class (one of praise, prohibition, soothing, suggesting attention,
and neutral) of speech directed at a robot so that the robot might modify its behavior ac-
cordingly. In a software implementation, the classifier shows performance likely to be on
par-with the best methods available in recognizing the prosody class of an utterance as
early as possible during the utterance. Implementatlons suitable for online use and re-
E quiring only modest computational resources are bneﬂy d1scussecL

Keywords — prosody, feature extraction, speech processing, liquid state machines, neural
networks, artificial intelligence.

1. INTRODUCTION
- 1.1. Background

 As carly as the first week of life, humans can distinguish speech by its prosodic
content, that is, classify utterances according to the general intent of the speaker. Since
this occurs without any kind of knowledge of language, more general features of the
sound itself are thought to be the basis of this distinction. In her thesis, Breazeal (2000)
uses a combination of twelve features of the spoken waveform, seven statistical functions
of pitch and five of energy, to make these distinctions. She achieves 70-90% accuracy in
distinguishing whether a given utterance is in either of two given prosody classes, using a
generally different subset of the features to make each such pairwise distinction.

We note that Breazeal's method directly demonstrates the role of many different
mathematical features of the waveform of an utterance in determining its prosody class.
In 2002, Maass et. al. introduced the liguid state machine (Maass, 2002), an artificial
neural network architecture modelled on (highly recurrent) cortical microcircuits, and
placed it in a theoretical framework for general computation in real time. The general
features of the liquid state machine are discussed and diagrammed below; for a detailed

23

discussion, (Maass, 2002) should be consulted. Among its most remarkable and appeal-
ing features is the firm separation it develops between a so-called computational liquid
(or simply liquid hereafter), whose state unambiguously distinguishes time-series of in-
puts, and the readout, a map from the state of the computational liquid to the desired out-
- put. In practice, Maass and coworkers find that readouts can be trained to simultaneously
compute a wide variety of arbitrarily chosen functions of input without any kind of
change to the liquid.

Theoretically speaking, the liquid state machine transforms a time-varying input in-
to a spatial firing-rate pattern. It can be rigorously shown (Maass, 2002) that this pattern
distinguishes between practically any distinct inputs, and thus implicifly computes all
possible functions of the input. By performing pattern recognition on the state of the li-
quid, one can in principle learn any function of the input so long as the function has van-
ishing dependence on inputs remote in time.

Most relevant to the task at hand, in (Maass, 2003) excellent results are presented
for the task of distinguishing the spoken digits zero through nine from their waveforms.
Maass et. al. show that the liquid state machine slightly outperforms all the networks de-
signed to distinguish the spoken digits for a well-publicized competition (Hopfield,
2001). The liquid state machine solution used approximately 30 times fewer neurons
than the network custom-designed by Hopfield and Brody for the task; moreover, it was
not customized in any way for the task. The liquid state machine also performed compet-
itively using only the 10 readout neurons of its 145 total neurons. It could cope equally
well with more than one input spike per input neuron per utterance, while the limit to one
such spike was a limitation in the design of the custom network. It was also trained for
the more general task of distinguishing the digits at any time during the utterance, rather
than just at the end, or 450 ms after the end as was required by the custom-designed ar-
chitecture. This also required no customization to the liquid. Instead, the readouts were.
trained at intervals during the utterance instead of only at the end.

~ Because Breazeal's work demonstrates the role of many basic features of the wave-
form in the determination of prosodic classes, without suggesting that any particular clas-
sification scheme is definitive, the ability of the liquid state machine to implicitly distin-
guish according to any feature is ideal. Moreover, the elaborate design work, experi-
mentation, and parameter adjustments required in Breazeal's ad-hoc classifier have no
analog for a liquid state machine classifier. That is, given a training set and objective
function, familiar and relatively simple methods to associate the state vector of the liquid
to the desired output in the sense of supervised learning, such as linear regression or sup-
port vector machine fitting, obtain good results in practice. In effect, the liquid subsumes
much of the complexity of the computation in a general way, and the remaining task — to

24

distinguish between liquid states and associate the desired outputs with them ~ is compu-
tationally and conceptually straightforward. :

1.1. Problem Statement

Given a training set of recordings of utterances with varying speakers and linguistic

content, which are pre-sorted by human listeners into distinct prosodic classes, the task is
to use the set of training examples to develop an automatic classifier, which is to be able
to correctly distinguish new examples.

We adopt the approach of training a liquid state machine, and compate its results
with those of Breazeal's on the prosody task, and Maass's results on the digit classifica-

tion task. Criteria are classification accuracy and suitability of possible implementations
for online use in a robot. :

2. NETWORK ARCHITECTURE

}Input spike

Vector

Computational Liquid

%? v

Readouts

Praise

O

Prohibiton

O

Soothing

O

Neutral

Figure 1. The liquid state machine architecture. The time dimension of the dynamics is not
depicted. For each stimulus waveform, the preprocessing stage generates a set of spike times,
one per input neuron. At the time so determined, the simulation generates a spike on the

proper input neuron. The input neurons are randomly connected to neurons in the

computational liquid, and the neurons in the computational liquid are randomly, recurrently
interconnected by spiking synapses. The neurons in the computational liquid are fully
connected to each of the readouts (only one set of connections is shown for clarity). A low-

pass filter is applied to the spiking activity of the computational liquid to make it compatible

with readouts that operate on continuous-valued domains. See text for details.

The network was constructed using a Matlab package freely available at the Neural

Microcircuits Website (http://www.lsm.tugraz.at/), one specifically designed to support
experiments of this type with liquid state machines. The simulation code used was based
directly on the code developed using that package for the digit classification task in

25

(Maass, 2003). It must be noted that the package is fairly new, and as such the package's
circuit simulation and learning features are largely undocumented. Moreover, the digit
classification application itself was completely undocumented and coded in an ad-hoc
style, and so I was unable to modify it to perform the prosody recognition task at the end
of the utterance, which is most direcﬂy relevant to the task at hand. As such, the results
presented below, while appearing consistent with good performance, beg further verifica-
tion, perhaps with a future version of the package accompanied by adequate documenta-
tion. Currently, no other viable alternatives exist for carrying out such a simulation in
full, and writing one from scratch is a significant undertaking,

The architecture used begins with a preprocessing phase to produce a set of spike
times, distinctive with respect to different waveforms, that can be fed into the liquid
(since it is composed of spiking neurons). Waveform files corresponding to utterances
are encoded by the pre-processing phase into vectors of 40 time points corresponding to
the earliest of 3 types of events in certain frequency bands, omitting some (type, band)
classes that are relatively invariant in speech in general. The events are onset, peak, and
offset of the energy of the waveform, and the frequency bands covered the range from
200 Hz to 5 kHz, where all the significant energy of typical speech lies.

Each of the 40 event times is then used to. generate a single spike at that time on
one of 40 distinct inputs to the liquid state machine.- These inputs are randomly connec-
ted to the computational liquid. The "liquid' of the. liquid state machine consists of a pool

-of 135 spiking neurons connected randomly and récmrehtly among themselves, whose in-

- terconnection statistics follow data from rat cortex-as-in’ (Maass; 2003)". “The ‘weights
from input neurons to the liquid were also randomly determined to make the inputs dis-
tinguishable. To make the spiking activity of the pool compatible with a continuous-do-
main readout, a low-pass filter* was applied to the activity of each of the neurons in the k-
quid before sending their activities to the readouts. Readouts based on: ‘both linear regres-
sion on the state vector and support vector machine classification of the state vector were
used. ’

A set of 5 readouts was used, one for each of the prosody classes. (These were one
of praise, prohibition (weak scolding), soothing, suggesting attention, and neutral. Scold-
ing was left out due to having insufficient examples.) The readouts were fully connected
to the neurons in the liquid so as to have access to the complete state, and were trained to
read one if the utterance was in the corresponding class, and zero otherwise, at the end of

lParametezfa were identical to those used in (Maass, 2003), and were based on data from rat cortex cited
there,

2The low-pass filter, besides bemg necessary to allow the use of linear regression and support vector ma-
chine readout, was meant to correspond with the equivalent low-pass filtering effect of transmission across
a cell membrane of definite capacitance. A biologically realistic time constant of 30 ms was used.

26

w13

the utterance. - Training was carried out on a randomly-selected subset of 300 of the 500
files (100 of each class); the remaining 200 were used to test pelformapce.

3. RESULTS

Prosody LR LR Test ;
Class Training |Set Error

SVM SVM
Training | Test Set

| Set Error Set Error | Error
Attention 0284 0.759 0.938
Approval 0.322 2.619
Praise 0.379 1.464
Prohibition 0.340). 1.650

Soothing 0.424

“The error score is defined as in (Maass, 2003) as number of false pos1t1ves (Ng) di-
v1dled‘by number of correct positives (Ng) plus number of false negatives (N) divided

N,) _
+—N—- . The figures in the overall

o @ P
rowsare the means of the corresponding columns, and the figures in the overall columns
are the weighted means of the corresponding rows. (weighted for 300 training examples
vs. 200 test examples out of 500). A score of 2 would be expected for unbiased random
guessing, and a score of 0 would indicate perfect performance.

by-number of correct negatives (N,,), that is,

4. DISCUSSION

The results obtained were only for the 'anytime' speech recognition task described
in (Maass, 2003). Paraphrased here, in the ‘anytime' recognition task, a readout for a giv-
en class is trained to fire at each of a set of times spaced evenly between the beginning
and end of the utterance, if this utterance is in the class it is meant to recognize, and as
little as possible otherwise. This is opposed to the standard task, where there is only one
set of readouts that is trained to make the distinction only at the end of the utterance,
which is more relevant to the task at hand since our robot need not react in mid-utterance.
On the 'anytime' task, an overall test set score of about 1.2 was obtained using support
vector machine readouts. For comparison, a score of 1.4 in (Maass, 2003) on the
‘anytime' digit-classification task was found to correspond with a score of 0.14 in the
standard task, which is equivalent to over 90% classification accuracy, and is competitive

27

with Breazeal's classifier. Because the code used was undocumeénted, largely uncommen-
ted, large, and written in an ad-hoc style, and the original author unreachable, I was un-
able to successfully modify it to perform the standard task. ,

_ If we assume that a similar relationship between 'anytime' performance and stand-
ard performance exists for our prosody task, then we may expect to be able to construct a
similar classifier designed to work at the end of an utterance with an error rate competit-
ive with Breageal's classifier, and likely superior. The main distinction to be drawn
between them in the context of online use in a robot is then ease of implementation, eco-
nomy of computational resources used, and online performance,

* A software implementation of Breazeal's classifier requires the recording of a com-
plete utterance before feature extraction can begin, and uses a complex multi-stage al-
gorithm to classify based on different subsets of the determined features. It requires ex-
treme care in design to achieve real-time performance, and is computationally expensive
in any case. Constructing the feature-extraction filters in analog hardware would intro-
duce significant additional costs in design effort and power consumption, while providing
better for fast online performance, while using dedicated digital DSP hardware would al-
leviate some of the design cost while somewhat decreasing speed. . However, the design

-remains dependent on having the features of the entire waveform determined before clas-
sification can begin, which places a lower bound on the online performance of the al-
gorithm, that is, it must always provide its answer at some time after the end of the utter-
ance.

On the other hand, the liquid state machine-classifier gives-its-decision-exactly at
the end of the utterance in the worst case. As for effective implementations, though soft-
ware processing is admittedly quite slow, spiking neural networks have simple, well-
known, and very fast realizations in analog hardware, which is complemented by the fact
that the liquid state machine architecture calls for almost no design effort — merely ran-
dom connections among neurons and between pools of neurons following a particular
distribution, so that the detailed layout could be determined autornatically. Moreover, the
theory of the liquid state machine is compatible with implementations using not only
spiking neural networks, but also many other devices which are more easily implemen-
ted, such as systems of tapped delay lines. For discussion, see (Maass, 2003). Also, it is
easy to envision a linear readout trivially implemented in hardware after being trained in
software, or a software support vector machine could run on the output of the liquid hard-
ware while introducing a delay on par with that of Breazeal's classifier.

2.
5. PRELIMINARY CONCLUSION AND FUTURE WORK

Because the liquid state machine is a new architecture with only a new, largely un-
documented software implementation available, only tentative results could be obtained

28

,,,,,,

with existing experimental tools. However, it is also an exciting and intriguing architec-
ture, both in theory and apphcatlon and in keeping with that, the results obtained were
encouraging, and strongly suggested the possibility of a classifier combining good online
performance with simple, direct, and efficient implementation.

It remains to conclusively determine the performance of the liquid state machine

for the standard recognition task, and consider in detail the many options for its imple-
mentation.

ACKNOWLEDGEMENTS
I would like to thank Prashant Joshi of Wolfgang Maass' reseach group for provid-
ing in timely fashion the simulation code used in (Maass, 2003), and Thomas
Natschlédger, the original author or the code.

REFERENCES
1. Breazeal Cynthia (2000). Social Machines: Expressive Social Exchange Between
‘Humans and Robots. Unpublished doctoral dissertation, Massachusetts Institute of
Technology. ‘
2. Hopfield, J.J. & Brody, Carlos D. (2001). What is a moment? Transient synchrony as
a-collective mechanism for spatiotemporal integration. Proceedings of the National
Academy of Sciences, v. 98(3), pp. 1282-1287.

3. Maass, W., Natschldger, T., & Markram, H. (2003). Computational models for generic

:eprtical microcircuits. In J. Feng, editor, Computational Neuroscience: A Compre-
hensive Approach, ch. 18. CRC-Press. To appear. -

4. Maass, W., Natschldger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations. Neural
Computation, v. 14(11). pp. 2531-2560.

29

30

A Neural Network Implementation
of the Rescorla-Wagner Model

‘ Byron Igbe
Yale University, Department of Computer Science
New Haven, CT 06520

Abstract

The Rescorla-Wagner model of learning in operant conditioning is the current paradigm.
By constructing a neural-network simulation of a lab rat in an operant chamber, we can
test the validity of this, and other models. It has already been hypothesized, by Rescorla
himself, that the model is incomplete. Using the simulation to test the validity of new
models is quicker, easier, and more reliable than using real rats.

Keywords — operant conditioning, Rescorla-Wagner, lab rat, reinforcement learning,
neural networks,

1. INTRODUCTION

The type of learning described by the Rescorla-Wagner model (1972) is
conditioning. When two events are paired proximally in time, they become associated
with each other in the brain. For example, we learn to expect thunder after we see
. lightning. The first of two events is the conditioned stimulus (CS). The second of the
two is either a conditioned response (CR) or an unconditioned response (UR). UR
usually refers to behavior that is instinctive, such as food-seeking or pain-avoidance. The
‘Rescorla-Wagner model attempts to describe the rate at which the association between
stimuli and responses takes place. Additionally, it accurately predicts certain properties
of learning, such as blocking and conditioned inhibition.

Learning has long been studied by psychologists using rats. To study
conditioning, they place these rats inside an operant chamber. The chamber has two
stimuli, a light and a speaker that emits a tone. The chamber also has a bar that the rat
can press. The first training that must occur is associating a bar press (CR) with receipt

of food (UR). Thereafter, rats can be trained to correctly learn any of a number of
complicated rules.

2. NEURAL NETWORK MODEL: LLABRAT

Any neural network model has inputs, an output, and a learning rule. The neural-
network implementation of the Rescorla-Wagner model is called LLABRAT (the first L
is for Linux, the operating system on which it was developed). The inputs to LLABRAT
are the stimuli present in the particular trial in the operant chamber. The output is the
contingent bar press. The learning rule-used by the neural net is adapted from the
Rescorla-Wagner model of learning.

The number of repetitions, or trials, is logarithmically proportional to the change
'in associative strength of the relevant stimuli. In LLABRAT, you choose the number of
trials to run. The first step in a trial is to generate random stimuli. The “rat” will press

31

the bar contingent upon the strength of the associations between the stimulus, and receipt
of food in the past. That is, the rat will learn that pressing the bar after the presentation of
certain stimuli is futile.
If the rat presses the bar, 'LLABRAT decides whether to prov1de the rat with food.
Food is the reinforcement that stimulates learning. If the rat is given food, then the
strengths of the present stimuli are increased. If the rat is not given food, then the
 strengths of the present stimuli are decreased. The increase is an asymptotic one that
approaches a maximum. The decrease is proportional to the strength of the input. This
change in strength is described by the following equation:

AV = ar-1V)

Here AV is the change in associative strength of a stimulus, o is the salience of
that stimulus (Salience is pre-determined. For example, rats respond more to light than
sound due to their evolution.), A is either 1 or 0 (1 signifying an increase, and 0 a
decrease), and TV is the sum of the strengths of all inputs present in the trial. Salience is
a measure of how important an input is, relative to the others.

There are many learning scenarios built into LLABRAT that you can choose
among. The range of “tricks” shows the power of the Rescorla-Wagner model. The rat
can be trained to respond just to one stimulus, ignoring the other. The rat can learn to
respond only when both stimuli are present. Most interestingly, the rat can learn to press
the bar when one stimulus is present in the absence of the other (conditioned inhibition).

Unfortunately, much like the Perceptron, the Rescorla-Wagner model cannot
explain the exclusive-or operation. Rats, however, can learn XOR. Additionally,
Rescorla’s recent work (2000) points to another fault with the current system. The
change in associative strengths of stimuli with different salience depends on their status
as either an exciter or inhibitor.

Knowing these shortcomings of the Rescorla-Wagner model, we can use
LLABRAT to help develop a more complete equation. It is easier to program tentative
learning rules into LLABRAT and run hundreds of trials, than to go through the process
of training hundreds of real rats. Another way in which the simulation is better is the
repeatability of results. If a certain sequence of stimulus presentations causes a problem,

you can re-simulate that exact sequence many times as you adjust the learning rule to
handle it.

3, RESULTS

The graphs that follow show associative strength of the two stimuli as they
change over hundreds of trials. The solid line represents the associative strength of the
Light stimulus, and the dashed line represents the associative strength of the Sound
stimulus. In Options 1 and 2, one stimulus is ignored (the associative strength drops to
0). In Option 3, neither stimulus is strong enough to cause a response when presented
alone. When they are presented together, however, they add up, causing the rat to bar
press. In Options 4 and 5, one stimulus is driven negative, i.e. to be an inhibitor, When
presented together, the mhlbltor will subtract from the strength of the exciter, suppressing
a response on the part of the rat.

32

0.9? 1
08
0;1 b

5 it A e W o e 9 . JOS—
g
i

0.2 -+t

Trials

33

34

Option 3 - Light and Sound

Option 5 - Sound wio Light

Sl ——— M b

— e
2 i
——d

-

 Trials

4. DISCUSSION

" Many rats have been trained to do the five discrimination tasks in LLABRAT by
students in introductory conditioning and learning courses. The way rats will behave
over many trials of each of these tasks is predictable within a margin of error. The
Rescorla-Wagner model was created to attempt to predict other behavior before real rats
were trained on those new tasks.

The learning rule currently used in LLABRAT successfully “trains the rat” on all
tasks except for those of exclusive-or and the anomaly discovered by Rescorla (2000).
The Rescorla-Wagner model does not account for XOR or certain properties of joint
stimuli with different associative strengths. The model must be modified to account for

these new features, but it is a good start. A possible change would include higher order
terms.

5. CONCLUSION

The best way to test hypotheses of learning rules is by using an artificial neural
network model like LLABRAT. Once the model causes the simulation to accurately
imitate a real rat in all dimensions that we’ve studied, we need to develop more
sophisticated tests. Training an actual rat takes much more time, and introduces many
more possibilities for error,

35

36

REFERENCES

1. Rescorla, R. A. (2000). Associative changes of excitors and inhibitors differ
when they are conditioned in compound. Journal of Experimental Psychology:
Animal Behavior Processes, 26, 428-438.

2. Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning:

Variations in the effectiveness of reinforcement and nonreinforcement. Classical
Conditioning II: Current Theory and Research, 64-99. New York: Appleton-
Century-Crofts.

.3. Wagner, A. R. & Rescorla, R. A. (1972). Inhibition in Pavlovian Conditioning:

Application of a theory. Inhibition and Learning, 301-336. London: Academic
Press.

Lexical Memory: Identification of Verb Forms

José R. Rivera
Department of Computer Science, Yale University
- New Haven, CT 06520 ‘

Abstract
Our understanding of human language has led to various attempts to reproduce aspects of
human linguistic cbmpetence. Most of these models, however, are implemented using
traditional computational systems. The human brain is a dynamic and complexly parallel
system. Any work, then, that would model a human cognitive function would benefit
from a similarly parallel system. Thus a neural network architecture seems an ideal
choice for implementing such a model. ' _

The human linguistic systeni seems to implement a lexical memory for the retrieval
of semantic information, e.g., ineaning, associated with a particular word. Any system
purporting to interpret language must be able to reach this semantic data from any of the
various morphological forms in which a particular word can manifest itself. Because the
system can extrapolate what the various forms of a word that it has never encountered
might be, it is conjectured that the lexical memory references an abstraction of the
differential parts of a word when searching for data.

The following work implements a Syntactic-Lexical Memory System using neural
networks that, given a language, models this behavior.

Keywords — neural networks, lexical memory, self-organizing map, feed-forward
network, back-propagation, Hopfield network

1. INTRODUCTION

1.1 Linguistic Considerations

The human linguistic system supports phonological, syntactic, and semantic processes
(Levelt, et al. 1999). Lexical access research has shown that phonological processing
must occur prior to syntactic processing, which must, in turn, occur prior to semantic

37

processing (Levelt, et al. 1999; Canseco-Gonzalez, et al. unpubl.). The semantic
processes are believed to interact with a lexical memory that stores the semantic
information associated with a particular word (O'Grady et al. 1997). Syllabification of
the English pronunciation of the phrase escort us, e.g., yields e-scor-tus’; thus, before any
syntactic or semantic manipulatioﬁ of the phrase occurs, the phonological process must
yield escort and us to the syntactic (Levelt, et al. 1999); furthermore, some syntactic
process must compute the representation expected by the semantic processes to fetch a
word’s semantic data for any given form, e.g., escorted (Canseco-Gonzalez, et al. 1998).

In authoring their lexicons, Eblaite scholars of the 3™ millennium and Akkadian
scholars of the 2™, referenced verbs by their infinitives (Hallo 2004). As Eblaite and
Akkadian are among the earliest languages?, it seems reasonable to select the infinitive as
the basis for lexical organization of verbs in this work. We recognize that the actual
lexical organization within the brain may not use such a representation, though barring
further insight into the representation we present it as a possibility.

1.2 Requirements of the Syntactic-Lexical Memory System
The proposed system means to identify the lexical-entry corresponding to a-given verb
form. Retrievable lexical entries will exist in an implemented memory (in emulation of
the lexical memory described in'§1.1). Since lexical access studies suggest that the
human brain retrieves the lexical data of verbs differently than that of nouns (Caramazza
and Hillis 1991; Damasio and Tranel 1993; Silveri et al. 2003); there exists a precedent to
treat both forms separately, which justifies the system’s specialization on verb retrieval.’

This system will not attempt to perform any processes prior to the syntactic (e.g.,
phonological processes). As a result, the verb forms presented to this system will
correspond to the representation of the word once it is ready for syntactic manipulation.
Since the system only implements syntactic and lexical processes, it is hereafter referred
to as the syntactic-lexical memory system (S-LM).

The S-LM must function as a universal system, i.e., just as native speakers of English
or of Arabic can successfully retrieve the infinitive of a given verb form for their
respective languages, so should the S-LM behave for its native language®.

1.3 - Language Choice

To satisfy, by inference, the imposed universality constraint (§1.2), the language chosen
for this instance of the S-LM must present sufficient morphological alterations to the
infinitive of a given verb that none of the set of forms considered for a given verb are

! , This example is taken from Level, et al. (1999).

2 Sumerian and Chinese are the earliest documented written languages dating to the early 3" millennium
(Insler 2004).

3 Verbs generally have more distinct forms than nouns,
4 The native language of the system represents the language chosen for its instantiation.

38

trivially® related to the infinitive. The language must also provide enough verb forms to
demonstrate the validity of the system over the many verb forms that different languages
may present.

Akkadian® seems a suitable candidate for this exercise. Not only does each
Akkadian verb have approximately 370 verbal forms (the_re" are nominal and adjectival
forms for each verb as well), the morphological alterations to the infinitive of the verb are
significant. The G-Stem’ Preterite form of parisum is presented as an example:

3rdSing C: iprus 3rd Plur M: iprusii-
2nd Sing M: taprus 3rdPlur F: iprusa
2nd Sing F: taprust 2ndPlur C: taprusa
IstSing C: aprus IstPlur C: niprus

In addition to this morphological complexity, Akkadian presents morphological
alterations that result from phonological processes. As per the discussion in §1.2 these
alterations fall outside the scope of this work. :

- As mentioned above, we will consider only those forms which are not trivially
- related to the infinitive. Consequently, we chose to focus on the Present, Preterite, and
Perfect tenses which account for 192 forms of the Akkadian verb. Of these 192 forms,
twelve 1% person singular forms are indistinguishable from their corresponding 3™ person
singular form; this brings the total to 180 distinct forms.

s A

2. SYSTEM DESIGN

2.1 Architecture _
The S-LM is implemented using three neural networks: a self-organizing map,
responsible for performing syntactic classification, a feed-forward network, which

performs syntactic manipulations (discussed in §2.4), and a Hopfield network acting as
the lexical memory. -

* Triviality, in this context, refers to verbs for which the greater part of the infinitive is a substring of the
form in question; many English verb forms are all trivially related to their infinitive in that the infinitive is a
substring of any such forms. ~

¢ Akkadian is a Semitic language that was spoken in the Middle East from around 2500 BCE to 0 CE.

7 Akkadian has 4 main stems (G, D, 8, N) and 2 additional derived stems (¢, -tn) for each of those, except
the N for which only the —tn seems to have existed (Caplice 1988). These stems all have the present,
preterite, and perfect tense, among others.

39

- &diagramrof the Syntactic=Lexical Memory Systerm follows:

Verp ———>) SOM

Hopfield

. 3 Infinitiv
Net ‘

Figure 2}1: Syntactic-Lexical Memory System Architecture

2.2 Inputs
Normalized Akkadian® has 32 possible characters: |
addbdedeghiifklmnpqrssittudowjz

Accordingly, the input sets selected assign a numeric representation to each letter in a
word that corresponds to its ordinality in the above list.

Each letter is represented by a 6-bit vector (the extra bit is needed to represent the
null value discussed below) where the bits of the vector are set according to the binary
representation of the ordinality for the letter being represented. The letter a is thus
represented: 000001.

Concatenation of the appropnate vector representations for letters in a word yields
the vector representation of that word.

iprus: [001011 010010 010100 010000 001011}°

For the network to function, all the inputs must be the same length; thus, a null value was
added to the list of available characters. These null values are inserted into the
representation of the verb forms as appropriate. As the 2 Person Plural (Masculine and
Feminine) $tn-Stem Present form, is the longest Akkadian verb form that this
instantiation of the S-LM will handle (it has 12 letters), and each letter is represented by a
6-bit sequence, the resulting input is a 72-bit vector.

N Normallzed Akkadian refers to a Romamzed representation of cuneiform Akkadlan text,
® The spacing is used only to illustrate the letter boundaries and does not appear in the implementation

40

The null value used was 100000 as the Hamming distance from this point to the -
representation of the *, the least used letter in Akkadian, is the shortest'®, Th
representation of iprus is provided as an example: o '

iprus: [100000 001011 010010 010100 010000 001011 100000 ... 100000]

2.3 Syntactic Classification : :
We divided the syntactic processing into two portions: syntactic classification and
syntactic transformation. A self-organizing map (SOM) implements the syntactic
classifier. This network receives the exogenous input. '

The SOM defines one neuron per tense in each stem (derived or not). Since a
developed human linguistic system, cannot, without training, process syntactic
information of unknown languages, this does not compromise the universality of the
system. ' _

Defining a neuron for each tense highlights three features of any Akkadian verb
form: the stem class (G, D, §, and N), the stem (root stem, -n, -tn), and the tense
(Present, Preterite, Perfect). Corresponding to these three features a 3-dimensional
hexagonal distribution of neurons was used to instantiate the SOM. A hexagonal
distribution was chosen to take advantage of the regularity of a traditional Kohonen map
‘while exploiting the sparser topography that the hexagonal distribution yields. We hoped
that the topography would help the system make more accurate classifications.

. The network was composed of 36 neurons (4 main stems by 3 stems per main stem
“by 3 tenses'"). It was trained on all 192 verb forms for 20 verbs, and was tested on a total
of 40 verbs totaling 7680 words.

The output from the network, the identifier of a neuron in the map, corresponds to
the network’s classification of the inputted verb form. As one neuron was defined for
each tense in each stem, we hypothesized that the classification would yield one neuron
per tense, regardless of person or number. This hypothesis does not consider the effect of
the additional neurons in the network, though we hoped they would serve to refine
classification within the various tenses (person and number).

24 Syntactic Transformation

Once a word has been classified, the same word and the output from the classifier are fed
to the feed-forward network. This network provides the appropriate syntactic
manipulations that transform the input word to its infinitival form (or the deterministic
components of the infinitive) for retrieval from our lexical memory.

' The Hamming distance from * [000000] to null {100000] is one bit. As none of the letter representations
defined use the highest order bit, the * presents the shortest Hamming distance to the null value.

'! Unfortunately, this architecture defines a number of neurons that, given the hypothesized results, would
not be used.

41

Knowledge of the language in question is necessary for this process, i.e., humans are
only able to identify verb forms forlanguages that they know, implying a body of
knowledge that is acquired during language learning. This knowledge is represented in
the feed-forward network’s training. Thus the exemplars against which this network is
trained must be chosen such that they deterministically identify the verb. As the
deterministic components for Akkadian words are its consonants, these are used as
exemplars. Because there is only one lexical entry for all the forms of a verb (see §2.5),
the target of any form is a representation of its infinitive, regardless of the output from
the syntactic classifier. The target of any form of parisum, e.g.,isp_rs .

The initial design of the network is illustrated in Figure 2-2:

No of neurons per layer: 73 .70 60 50

X7 Y

Figure 2-2: Design of feed-forward network used to mplement the syntactic
transformer.

This feed-forward network takes 73 inputs: the 72 bits representing the verb form in
question, and the identifying integer output from the syntactic classifier. As the example
of pardsum illustrates, the gutput of the feed-forward network is a 7 letter representation,
i.e., a 42-bit vector, similar tv the infinitive. The network was conceptualized as a five
layer feed-forward network. Since staging the processing through at least five layers -
would provide more computational power than otherwise, we believed that the system
would perform more 'accurately than with less.

2.5 Lexical Memory -
A Hopfield network serves as the lexical memory for the S-LM. As this exercise focuses
on the retrieval of a lexical entry given a particular verb form, the memory only contains

42

the infinitive of each verb. We assume tha, once the lexical entry can be retrieved any
data stored with it is also available, thus the addition of such data to the memory is
extraneous for the purposes of this implementation.

The spurious states that Hopfield networks can produce are actually a desired feature
for the memory, because these states might include accurate generalizations of infinitival
verb forms that are not stored in the memory, such as an Akkadian non-word'?. Just as
humans can identify a nonexistent verb by its form, so might the SL-M produce similar
generalizations. _

As introduced in §1.1, this Lexical Memory stores a 42-bit representation of the
infinitive forms of those verbs that it has learned. Given such a representation, the
Hopfield network should yield the same 42-bit representation. It should also correct any
corrupt versions of the infinitive. Thus the input that the Lexical Memory receives from
the Syntactic Transformer is such a corrupt value, e.g.,p_r s . This input set was
chosen to help simplify the work of the Syntactic Transformer. Rather than producing an
exact replication of the infinitive, the feed-forward network can disregard specific values
where the null values are inserted.

3. RESULTS

‘31 Syntactlc Classification
Reliable classification of various verb forms was possible. In this analysis reliability
refers to the extent to which a particular verb form was identified by one particular
classifier. It does not claim that the classification was unique to that form; in fact, the
number of neurons (36) cannot uniquely classify all the unique verb forms (180). From
the data compiled, the mode was selected as the neuron to whxch a particular form was
mapped. : :
A listing of modes for each verb form can be found in §A.2; a similar listing of
modes mapped to the percent reliability of each classification follows the mode listing in
§B.1. Further reliability data can be found in §B.2. As Figure B-5 (b) presents, reliable
classification occurred 84.91% of the time. §C.1 illustrates the percentage distribution of
classification among the various verb forms. Any further analysis uses the mode as the
referential point for each verb form. '
Contrary to the hypothesized results, the Syntactic Classifier did not produce a
mapping that would identify tense uniquely". The mapping did, however, distinguish
dependably among person.

12 An Akkadian non-word refers to a word that, ngen the structure of the lexicon, is possible, but
nonexlstent, e.g. the English non-word frub.
13 1t did uniquely identify the G-Stem Preterite Tense.

43

P P LT R P s 8 L PN e L2 L £ S ey LA SR HE e S e S e B8 Sk gt e

The anomalous classification of the G-Stem Preterite tense (see §A.2), poses some
analytical problems. Because this anomaly does not generate any useful analysis, we
‘have omitted it from the rest of this discussion and from any calculations therein unless
otherwise specified. Since each tense has eight verb forms, the total number of verb
forms thus considered is 184. Moreover, since the 1% Person Singular form in all
considered tenses of the D and §-Stem are identical to that of the 3™ Person Singular of
their respective stems, they will be conéidered, not as 1* Person forms, but 3" Person
forms.

In classifying the verb forms by person, the network produced some collisions.
When such was the case, the recurrence of the classification in other forms of the same
person was identified, and the person with the least number of forms identified by that
particular classification was taken to be in error. Figure D-1 shows the collisions that
occurred. As the data recorded in §A.2 demonstrates, all of the errors, except for two
distinct collisions with all three persons that have yet to be discussed, were 1st Person
misclassifications. The error of the collisions just mentioned was attributed to the 2™
Person and 1% Person as per the criterion outlined above.

With these considerations in mind, the network classified 84.55% of the.verbs forms
correctly by person. This low percentage results from the poor classification of 1* Person

~ forms (29.41% correct). 3™ Person classification was correct 98.77% of the time, and 2™
Person classification: 98.55% (see Figure D-2 (b)).

Revisiting the G-Stem Preterite classification, we can conclude that, given the length
of its forms (the Preterite forms of this particular stem has the shortest words that the S-
LM encountered), the classifier gave more weight to the null values of the words in this
tense than to the letters. Indeed, all of the words for this tense, except the form 2
Person Plural form which only had five, had at least six #ull values (half of their length).

3.2 Syntactic Transformation

Preliminary testing on a single verb within a single tense of a single stem yielded
promising results, but when the range of values the network needed to handle increased
memory limitations barred progress.

- The initial training set consisted of 20 verbs in all the forms tested. This totaled
3840 words, which, given their 72-bit representation, yielded a 34.56 KB (276,480-bit)
training set. The memory limitations imposed by the network simulator proved too
stringent for the size of the training set and the network.

To attempt to overcome the memory limitations we implemented 2 measures. First,
we reduced the number of verbs from 20 to 10, producing a 17.28 KB (138,240-bif)
training set. Second, we simplified the networks architecture moving from a 5 layer feed-
forward network to a 2 layer network. Unfortunately neither was successful at
surmounting the memory limitations.

44

o Since further attenuating the number of verbs would produce too few exemplars for
each tense from which the network could make accurate generalizations, further work on

this stage was halted.

33 Lexical Memory : :
As expected, the Hopfield network was able to retrieve any values with which it had been
trained; it also retrieved all of the verbs it had learned when given an input identical o
what the Syntactic Transformer would output, None of the spurious states found
corresponded to an infinitive that we explicitly requested but was not in the memory.

4. CONCLUSIONS AND BEYOND
4.1 Syntactic Classification

Given the classifier’s demonstrated ability to distinguish verbs by nuniber, further work
towards a complete classification layer seems warranted. Tmportant considerations for

- -such work include close attention to the input definition, possibly redefining some of the
- letter representations. Codes guaranteeing a specific Hamming distance, making

collisions less probable, may yield more accurate unique classifications of verb forms.

4.2 kajntacﬁc.Transformaﬁon

- Compression of the input vectors, possibly using LZW, or ahother such algoritlim,.should

sufficiently decrease the size of the input vectors to make work on this stage feasible.
The compression most likely to help would involve only whole letters (either alone, or in

. a group) since compressing sequences of bits that represent portions of letters, could yield

two representations of the differential parts for a particular verb form that differ-too
drastically for the syntactic classifier to identify reliably or for the transformer to draw
accurate generalizations. As the previous statement suggests, the compressed values

 should be tested with the syntactic classifier in hopes of achieving better overall

performance. . '

43 Lexical Memory

The lexical memory yielded adequate results, dependably performing the primary task
assigned to it. Manipulations of the input sets as described in §4.1 and §4.2, should be
tested on this portion of the system as well, as they might yield the generalizations
hypothesized at the on-set of this experiment,

45

5. REFERENCES

Caplice, Richard (1988). Mmmm 3% rev. ed. Rome: Biblical Institute
Press. .

- Caramazza, Alfonso, and Argye E. Hillis (1991). Lexical organization of nouns and
verbs in the brain. Nature, v. 349, 788-790.

Canseco-Gonzalez, et al. (1998). Processing of grarnrhétical information in Jabl;erwocky
sentences. Unpublished

Damasio, Antonio R., and Daniel Tranel (1993). Nouns and verbs are retrieved with

differently distributed neural systems. Proceedings of the National Academy of '.

Science, USA, v. 90, pp 4957-4960.

Haykin, Simon (1999). Neural Networks: A Comprehensive Foundation, Upper Saddle
- River: Prentice Hall. : .

Hallo, William W. (2004). E-mail to the author. 17 January.

Insler, Stanley (2004). Historical Linguistics Introductory Lecture. Yale University, New
Haven. 12 January.

O'Grady, William, et al. (1997). Syntax: The analysis of Sentence Structure.
Contemporary Linguistics: An Introduction, ch. 5, pp 163-221

Silveri, Maria C., et al (2003). Grammatical class effects in brain-damaged patients:
Functional locus of noun and verb deficit, Brain and Language; v. 85, pp. 49-66.

6. ACKNOWLEDGEMENTS

Many thanks to Professor Willard Miranker for his supervision of this project and
guidance throughout, to Professor William W. Hallo, for his support, Assyriological
expertise and tutelage, and to Elizabeth Payne for further help with Akkadian.

The font used to notate Akkadian normalizations, CuniTTGoe, was designed by
Dominique Charpin. o

46

APPENDIX A

Al Verb Forms: Parfisum _

The verb parfisum is provided as an illustration of the various verb forms used. -
. :

Present Tense Preterite Tense Perfect Tense

G iparras iparrasii Iprus iprus Iptaras iptarsd
‘ taparras Iparras& taprus Iprusé taptaras Iptarsa
taparras? taparras3 taprust taprusa taptars? taptarss
aparras niparras aprus niprus - aptaras niptaras
Present Tense Preterite Tense Perfect Tense
Gt | Iptarras iptarrast - - Iptatras iptatrast
taptarras iptarrasa - - taptatras iptatrasa
taptarrasT taptarrasg - - taptatras? taptatrasé
aptarras niptarras - - aptatras niptatras
: Present Tense Preterite Tense i Perfect Tense
Gtn | iptanarras iptanarrasG | - - | iptatanras Iptatanrasa
taptanarras iptanarrasa | - - taptatanras iptatanrasa
taptanarrasl taptanarrasa | - ' - ' taptatanras? taptatanrasa
aptanarras _ niptanarras | - - aptatanras _ niptatanras
S Present Tense —___Preterite Tense Perfect Tense
D uparras uparras@ uparris uparrisd uptarris uptarrisQ

tuparras uparrasd | tuparris uparrisé tuptarris uptarrisa
tuparrasTt tuparrasé | tuparrisT tuparrisd - | tuptarrist tuptarrisa

uparras nuparras uparris nuparris uptarris nuptarris
Present Tense Preterite Tense _ Perfect Tense
Dt | uptarras uptarrast - - uptatarris uptatarrisG
tuptarras uptarrasd - - tuptatarris uptatarrisa
tuptarrast tuptarrasa - - tuptatarrist tuptatarrisa
‘| uptarras nuptarras - - uptatarris nuptatarris
Present Tense Preterite Tense .__Perfect Tense

Dtn | uptanarras uptanarrasG | - - - -
tuptanarras uptanarrasa | - - - -
tuptanarrasl tuptanarrasa | - - - -
uptanarras _ nuptanarras | - - - -

Figure A-i: The G, Gt, Gtn, D, Dt, and Dtn stems for parsum. The dashes (-) stand in
for forms that are identical to one previously listed, e.g., the G-Stem Perfect and Gt-Stem
Preterite forms are identical.

Preterite Ténse

Present Tense Perfect Tense
§ | uBapras uSaprasQ uapris ulaprisG | ubtapis uBtaprisd
tusapras ulaprasé . |tuSapris uZaprisd tuStapris . uBtapriss
tuSaprasT tuaprasa tuSaprisT tuSaprisa tustaprisT tuStaprisa
uSapras nusapras uSapris nusapris ustapris nustapris
Present Tense Preterite Tense Perfect Tense
St | ustapras utaprasQ - - ultatapris ustatapris0
tustapras uStaprasé - - tustatapris uStataprisa
tustapras? tustaprasé - - tustataprisT tustataprisa
ustapras nuitapras - - uStatapris__nustatapris
' Present Tense Preterite Tense Perfect Tense
Stn- | ustanapras ustanaprasQ | - - - -
tustanapras uStanaprasé | - - - -
tustanapras? tuStanaprasé | - .- - -
ultanapras __nuStanapras | - - - -
Present Tense Preterite Tense Perfect Tense
N -] inparras inparrasQ inparis inparsi intapras ~ intaprsQ
tanparras inparrasd - | tanparis inparsa tantapras intaprsa
tanparrasT tanpatrasd | tanparsT tanparsa tantaprasT tantaprasa
anparras ninparras anparis ninparis antapras nintapras
Present Tense - Preferite Tense Perfect Tense
Ntn | ittanapras ittanaprasl | - - ittatapras ittataprasa
tattanapras ittanaprasd | - - tattatapras ittataprasa
tattanaprasT tattanapraséa | - - tattatapras? tattataprasa
aftanapras _ niftanapras | - - attatapras __ nittatapras

Figure A-2: The §, St, $tn, N and Ntn stems for parisum. The dashes (-) stand in for
forms that are identical to one previously listed, e.g., the G-Stem Perfect and Gt-Stem
Preterite forms are identical.

48

A2 Mode for Verb Classification

The mode of the classification data was adopted as the identifier for a particular verb
form. '

Present Tense | Preterite Tense | Perfect Tense
G 23 3 18 18 6 3
11 36 18 18 14 3
11 1 18 18 14 14
11 11 18 18 6 6
Present Tense | Preterite Tense | Perfect Tense
Gt 4 4 - - 4 4
: 27 4 - - 27 4
27 27 - - 27 27
3 16 - - 3 15
Present Tense | Preterite Tense | Perfect Tense
Gtn 1 1 - - - 5 9
25 1 - - 25 9
25 25 - - 25 25
o 13 29 - - 13 29
R il Present Tense | Preterite Tense 1 - Perfect Tense
D - 24 36 24 36 16 16
o 12 36 - 12 36 28 16|
12 12 12 12 28 28
24 . 12 24 12 16 28
Present Tense | Preterite Tense | Perfect Tense
Dt 32 16 - - 21 9
28 16 - - 33 21
28 28 - - 33 33
32 . 28 - - 21 33
Present Tense - l Preterite Tense | Perfect Tense
Dtn 1 1 - - - -
34 1 - - - -
34 34 - - - .
1 - 34 - - - -

Figure A-3: The G, Gt, Gtn, D, Dt, and Dtn stems for parisum. The dashes (-) stand in
for forms that are identical to one previously listed, e.g., the G-Stem Perfect and Gt-Stem
Preterite forms are identical.

Paffect- Tense

Present Tense | Preterite Tense- | :
8 T 24 36 24 36 32 16
12 36 12 36 28 16
12 12 12 12 28 28
24 12 24 12 32 28
Present Tense | Preterite Tense | Perfect Tense
St 32 16 - - 21 21
28 16 - - 33 21
28 28 - - 33 33
32 28 - - 21 33
Present Tense | Preterite Tense | Perfect Tense
&tn 1 1 - 3 - N
34 1 -) ; -
34 34 - ; ; .
1 34 - - - .
: Present Tense | Preterite Tense | Perfect Tense
N 3 4 6 6 3 3
14 4 6 6 27 3
27 27 14 14 27 27
3 3 . .6 6 - 3 3
Present Tense | Preterite Tense | Perfect Tense
Ntn 5 1 - - 5 9
25 1 - - 25 9
25 25 - - 25 25
13 13 - - 13

13

Figure A-4: The §, St, $tn, N and Ntn stems for pardsum. The dashes (-) stand in for
forms that are identical to one previously listed, e.g., the G-Stem Perfect and Gt-Stem
Preterite forms are identical. -

50

B.1 Percent Reliability of a Classification

. APPENDIX B /

Reliability refers to the extent to which a particular verb form could be identified by one

- particular classifier. It does niot claim that the classification was unique to that form.
Uniqueness and reliability are distinct concepts.

G-Stem Mode to Reliabllity

Figure B-1: The G, Gt, and Gtn stems reliability percentage for each verb form
classification, by tense. The three columns represent the verb form, mode, and percent

reliability respectively.

3-8-C 23 70 3-8-C 18 100 3-8-C 6 75
2-8-M 11 975 2-S-M 18 100 2-S-M 14 55
o | 2SF 11 100 o | 2-SF 18 100 o | 2SF 14 625
g 1-S-C 11 60 g, 1-8-C 18 100 g [1SC 6 90
2 |3-P-M 36 100 2 3-P-M 18 100 g {3PM 3 70
~ | 3-p-F 36 575 3-P-F 18 100 3-PF 3 525
2-P-C 11 - 100 2-P-C 18 100 2-P-C 14 675
1-P-C 11 975 1-P-C 18 100 1-P-C 6 75
- Gt-Stem Mode to Reliability :
' 3-8-C 1 625 3-8-C 5 50
2-S-M 25 525 2-S-M 25 675
o | 2-SF 25 70 o | 2SF 25 775
g |1-SC 13 975 e [18C 13 525
e |3-P-M 1 525 g |3-PM 9 100
" | 3-PF 1 50 3-P-F 9 95|
2-P-C 25 675 2-P-C 25 775
1-P-C 29 50 1-P-C 29 70
Gtn-Stem Mode to Rellability
: 3-8-C 1 625 3-S-C 5 50
2-S-M 25 525 2-S-M 25 675
o | 2-SF 25 70 < | ZSF 25 775
g |1-sC 13 97.5 g {1s8C 13 525
e | 3-P-M 1 525 g |3-PM 9 100
= | 3-PF 1 50 3-P-F 9 95
2-P-C 25 675 2-P-C 25 7715
1-P-C 29 50 1-P-C 29 70

51

Figure B-2: The D, Dt, and Dtn stems reliability percentage for each verb form

classification, by tense. The three columns represent the verb form, mode, and percent
reliability respectively._

-

52

D-Stem Mode to Reliablility |
3-8-C 24 100 3-S-C 24 100 3.8.C 16 425
2-8-M - 12 975 2-8-M . 12 100 2-S-M 28 975
- 2-S-F 12 100 2-S-F 12 100 v 2-S-F 28 100
1-8-C 24 100 1-8-C 24 100 1-8-C 16 425
g_ 3-P-M 36 100 3-P-M 36 100 % 3-P-M 16 875
3-P-F 36 90 3-P-F 36 925 3-P-F 16 80
2-P-C 12 100 2-P-C 12 100 2-P-C 28 100
1-P-C 12 95 1-P-C 12 975 1-P-C 28 775
Dt-Stem Mode to Reliabliity
3-S-C 32 325 3-8-C 21 95
2-8-M 28 92.5 2-8-M 33 100
v | 2SF 28 100 o | 2-SF 33 100
g 1-S-C 32 325 g 1-8S-C 21 95
$ |3-PM 16 77.5 & |3-PM 9 725
3-P-F 16 65 3-P-F 21 625
2-P-C 28 100 2-P-C 33 100
1-P-C 28 75 1-P-C - 33 100
Dtn-Stem Mode to Reliability
3-S-C 1 100
2-S-M 34 925
o | 2SF 34 925
g |1-S-C 1 100
g [3PM 1100
= | 3-P-F 1 100
2-P-C 34 975
1-P-C 34 100

§-Stom Mode to Rellabllity . 2
.24 915 3-8-C 24 100 3-8-C 32 45

3.8-C
2-S-M 12 100 2-8-M 12 100 2-S-M 28 100
o | 26F 12 100 | 7 2-8-F 12 100 | _ |28F 28 100
g 1-8-C 24 975 |8 |1-8-C 24 100 1-8-C 32 45
¢ [3-PM 3 100(| & [3-Pm 36 100 % 3-P-M 16 100
= | 3-PF 36 80| |® |3PF 36 85 | 3-P-F 16 90
2-P-C 12 100 2-P-C 12 100 2-P-C 28 100
1-P-C . 12 100 1-P-C 12 100 1-P-C . 28 775
$t-Stem Mode to Reliability
3-S-C 32 40 ‘ 3-8-C 21 100
2-S-M 28 100 2-S-M 33 100
< | 25F 28 100 o | 2SF 33 100
3 |1-s-C 32 40 € |1-8-C 21 100
§ [3PM 16 100 g [3pM 21 875
™ | 3pP-F 16 90 3-P-F 21 100
2-P-C 28 100 2-P-C 33 100
1-P-C 28 775 1-P-C 33 100
$tn-Stem Mode to Reliability
“Ts-sc 1 100
| 2.8 m 34 100
< | 26F 34 100
g [1-8C 1100
2 |[3PM 1 100
™ | 3-P-F 1 100
2-P-C 34 100
1-P-C 34 100

Figure B-3: The 8§, St, and Stn stems reliability percentage for each verb form
classification, by tense. The three columns represent the verb form, mode, and percent
reliability respectively.

53

N-Stem Mode to Reliabllity

7.5

3.8-C 3 825 3-8-C 6 100 3-8-C 3
2-S-M 14 45 2-8-M 6 775 2-8-M 27 90
o | 2SF 27 85 2-8-F 14 50| | |2SF 27 95
- g 1-S-C 3 825 1-8-C 6 100 11-8-C 3 925
8 [3PM 4 05 3-P-M 6 625 §~3-P-M 3 80
3-P-F 4 80 3-P-F 6 875 3-P-F 3 715
2-P-C 27 715 2-P-C 14 65 2-P-C 27 90
1-P-C 3 625 1-pP-C 6 95 1-P-C 3 60
Ntn-Stem Mode to Rellabllity
‘ 3-8-C 5 425 13s-C 5 525
2-S-M 25 975 2-S-M 25 975
| o | 2SF 25 100 o | 28F 25 100
a3 |1s-C 13 95 g |1sC 13 60
' § 3-P-M 1 8§25 g |3PM 9 100
™ | 3-P-F 1 475 3-P-F 9 85
2-P-C 25 100 2-P-C 25 100
1-P-C 13 825 1-P-C 13 6525

Figure B-4: The N and Ntn stems reliability percentage for each verb form
classification, by tense. The three columns represent the verb form, mode, and percent
reliability respectively.

B.2 Percentage Reliability

_ % Reliabllity

| Stem Present Preterite Perfect
G 8531 100.00 6844
Gt 79.69 79.38
Gtn 62.81 73.75
D 97.81 98.75 7844
Dt 71.88 ‘ 90.63
Dtn 97.81

§ 96.88 98.13 82.19
&t 80.94 98.44
Stn 100.00

N 75.94 79.69 82.81
Ntn 77.19 80.94
Total 84.20 94.14 81.67

(a) Percentage Reliability by Tense

)

% Reliability
G 84.58
Gt 79.53
Gin 68.28
D - 91.67
Dt 81.26
Din 97.81
S 92.40
St 89.69
Stn 100.00
N 79.48
Ntn 79.06
Total 84.91 .

(b) Percentage Reliability by Stem

Figure B-5: (a) Shows the percentage reliability by tense of each verb form. (b) Shows

the percentage reliability by stem of each verb form.

>4

- APPENDIX C

C.1 Classification Reliability

The charts below illustrate the percentage rehablllty of cach category a particular verb
form had been assigned.

G-Stem Classification Rellabilty

Figure C-1: The G, Gt, and Gtn stems reliability percentage for each classification each
verb form was assigned.

D-Shm Classlification Rolllblllty

" Dtn8tem Classification ReRabikty

Figure C-2: The D, Dt, and Dtn stems reliability percentage for each classification each

verb form was assigned.

56

&eStem Cnaatfication Rettabttfty

I E

|

1 1

R i

| 1

| |

| |

| H |

1 |

Presont Tense Perfoct Tense

Figure C-3: The S, §t, and Stn stems re11ab111ty percentage for each classification each
verb form was assigned.

57

N-Stem Classification Reliabiiity

L l I -l
L -
L. .
A -t
n -l
" -
L =
" -
|, -

Figure C-4: The N and Ntn stems reliability percentage for each classification each verb
form was assigned.

58

APPENDIX D
D.1 Classification of Person

Classification of Person

~—a ~ 3d Person
—o—2rd Person
- -0~ 18t Porson

Figure D-1: Shows the various collisions produced by the Syntactic Classifier by
person. Collisions involving the 3™ and 2™ Person are circled to iltustrate the dependable
classification of these two persons. The proximity of collisions in the chart is meant only
to highlight them. Given frequency data for the classification of the various verb forms

showed that the collisions were primarily the result of a misclassification of the 1*
Person. .

D.2 Persoh Classification Data

Correct Total % Correct | Comrect Total % Correct
3¢ 80 81 98.77 3™ 71 84 84.52
2n 68 69 98.55 2M 55 72 76.39
1 10 34 29.41 1 10 36 27.78
All 158 184 85.87 All 136 192 70.83
(a) Percentages given Considerations (b) Percentages prior to Considerations

Figure D-2: (a) Gives the percentages of correct number classifications given
considerations for unanalizable G-Stem Preterite anomaly, and error assignment. (b)
Gives the percentages of correct number classifications prior to the considerations above.

59

60

Kohonen Maps for Automated Microarray Gridding
Thomas E Royce .

Yale University, Department of Computational Biology and Bioinformatics
New Haven, CT 06520

Abstract _

‘_ _An unsupervised algorithm for microarray gridding is developed utlhzmg Kohonen self-
organizing maps. The method identifies grids correctly in images' with well-formed spot
arrangements as well as in images containing missing or faint spots, occasional spot drift,
and global rotations. The proposed algorithm works well for finding grids that lack sub-
grid divisions.

Keywords — microarray, automation, gridding, Kohonen maps, self-organization

1. INTRODUCTION

Micrdarr_ay technology allows for the simultaneous measurement of tens of
thousands of genes” messenger RNA (mRNA) expression levels and is fapidly becoming
the experimental platform of choice for the field of functional genomics (Brown and ,
Botstein 1999). A microarray experiment is a multi-step process utilizing techniques
. from microbiology and molecular genetics (Nguyen, Arpat et al. 2002) as well as from
the computational s'cienc.es (Leung and Cavalieri _2003). The computational protocol of
microarray griddiﬂg, wh_ich, in general, is the identification ofa grid of spots within an
experimentally obtained scanned image, is considered here.

Scanned microarray images typically display thousands of spots, often organized in
regﬁiar rectémgular blocks (Figure 1). Each spot consists of several to hundreds of bright
pixels within the image. The goal of microarray gridding is to find a mapping fto a
potentially irregular grid of spots within the scanned image from a perfect grid of
idenﬁcal dimensi'onality. Each vertex within the perféct grid carries with it a spot
identiﬁer,' such as a gene.name, so that by identifying f, each spot in the scanned image
becofnes associated with its identifier. Once f is found, brightness measurements can

61

subsequently be taken for each identifier in the perfect grid. These brightness
measurements are the principle aim of a microarray experiment.

Irregularities such as grid rotations and spot drifting (Figure 2) make the automatic
gridding of these images a non-trivial task. Efforts toward aufomatiqn are hampered
further by the fact that some (or many) spots may be missing and that their brightness can
- vary by up to four degrees of magnitude from spot to spot. Yielding to these difficulties,

microarray gridding usuélly requires an experimentalist to define f manually using any

“one of several software packages in a ‘point and click’ fashion in which the ve_rﬁces of
the perfect grid are ‘dragged” onto the spots in the scanned image. This procedure can
take hours to days depending on the software used and the number of vertices to be
found. An mmmerﬁsed method of microarray gridding addressing these issues is
introduced here employing a modification of Kohonen self-organizing maps (SOM)
(Kohonen 1997). The method is able to automatically find grids in images containing a
sparse arrangement of spots, having non-perfect spot placement, and/or having global
rotations. The only inputs required of the algorithm are the microarray image files
themselves, and the expected number of rows and columns of spots to be found therein.

R A L oW N - -

S
)

"o
“é¢ e Do PTa 0 COoOR R O R

Figure 1: scanned microarray image showing block structure (A) and an example spot (B)

62

In Section 1.1, a brief introduction to the microarray technology is given. Section
1.2 outlines the computational aspects of the microarray experiment. This introduction
concludes with an account of previous work on the microarray gridding problem in
section 1.3. The SOM algorithm is developed in Section 2 followed by empirical results
in Section 3 and a brief discussion in Section 4.

Figure 2: rotated block (A) and drifting spots (B)

1.1 The microarray experiment

The central dogma of molecular genetics is that the creation of a new protein
- molecule (the molecular machines of the cell) is reliant upon the presence within the cell
of its corresponding mRNA molecule (Alberts 1994). Following a set of rules known as
the genetic code, the cell is able to process any given mRNA molecule and produce the
corresponding functional protein. The mRNA molecule, in turn, is a transcribed copy of
a specific piece of DNA within the organism’s genome. This specific piece of DNA is
_known as a gene and, therefore, it is usually extrapolated that each gene within the
genome codes for a particular protein.

Since the relative populations of proteins within a cell, along with their relative

abundance levels, determines the cell’s function (i.e. whether it is a nerve cell, blood cell,

63

tumor cell, etc.) it would be extremely useful for biologists to be able to monitor these
-populations of proteins under various environmental and physiological conditions. For
instance, identifying proteins that are present at high levels in tumor cells relative to their
healthy counterparts could lead to the discovery of useful biomarkers ~ molecules that
can provide evidence of cancerous tissue in seemingly healthy patients at early stages of
the disease (Dhanasekaran, Barrette, et al. 2001).

Unfortunately, defining technologies for quantitating the entire population of
proteins present within a cell is a difficult task. Nascent technologies exist with this aim
(Issaq, Veenstra et al. 2002; Washbum, Ulaszek et al. 2002; Yan, Devenish et al. 2002;
Ghaemmaghami, Huh et al. 2003; Peng, Elias et al. 2003), but the task remains an open
challenge of great interest to the biotechnology community. Microarrays, while they do
not quantify relative protein abundances directly, do provide insight into this problem.

- Microarrays are able to quantitate the cell’s population of mRNAs both for their presence
and for their relative expression levels. Since mRNA niolecules are the precursors to
proteins, as discussed above, global analyses of mRNA. populations within the cell can
provide useful insights into the molecular biology of cells in different tissues and under
different environmental conditions. | |

A microarray consists of a solid surface, typically a glass microscope slide, with
thousands of genes immobilized on the surface in an ordered fashion (Figure 1). The
microarray is utilized as follows (for a good review of the experimental protocol, see
(Cheung, Morley et al. 1999). First, a population of mRNA molecules is extracted from a
biological sample. Next, the molecules are labeled with a fluorescent dye. Then, this
sample is washed over the microarray. VmRNA molecules, or derivatives thereof, will
hybridize, or stick (via Watson-Crick complementa.rity), to their respective gene on the
microarray. Therefore, . interpreting levels of fluorescence for each gene on the
microarray serves as measurement of the abundance of each mRNA species within the
population. A common variation to this protocol is to obtain two different biological
samples, label them with different fluorescent dyes, and allow them to hybridize to the
microarray at the same time. In this way, it is possible to identify differences in mRNA

abundance levels for each gene between two biological samples (Schena, Shalon et al.
1996).

64

1.2 Computational aspects
Following hybridization, the microarray is scanned for fluorescent emissions using a
specialized scanner. For each biological sample hybridized, an independent scan is
performed which results in a 16-bit grayscale Tagged Image File Format (TIFF) image
(Figure 1). -So, the common experiment in which two different biological samples are
measured on a single microarray simultaneously, results in two 16-bit grayscale images.
Once scanned images are obtained, a grid needs to be laid on top of them with each
vertex in the grid being aligned with bright regions (spots) of the image that cotrespond
to the genes on the microarray. As noted previously, the process of applying a grid to the
TIFF images can be an arduous task for the experimentalist as spots often appear in a
slightly warped, or rotated arrangement and spot spacing is not always entirely uniform
across the microarray. These imperfections, arising from the physical microarray
production process, have dampened attempts at automatic gridding. - Therefore,
- researchers have largely had to resort to applying the grids manually, a prbcess that can
take hours or even days.
Each vertex of the grid has an assigned gene identifier, and in this way, intensities
-can be extracted from each spot (gene) on the microarray once the grid is applied. These
intensities are used as measurements of mRNA abundance and serve as the raw data for
downstream statistical analyses.

1.3 History

Despite the obvious utility of developing an automated microarray gridding system,
few attempts to do so have been made. One approach builds histograms of horizontal and
vertical intensities from which a grid is deduced (Jain, Tokuyasu et al. 2002). Peaks 6f
the histogram correspond to the rows and columns of spots on the array. This system
works well for well-formed grids but its performance worsens as spot arrangements are
skewed or rotated and post-processing steps are needed to aid in these corrections.
Varying illumination across the image can also cause the histogram-finding algorithm to
falter.

65

An approach which relies on graph algorithms for gridding has also been proposed
(Jung and Cho 2002). First, the algorithm thresholds the image into foreground and
background pixels and then applies a variant on the k-nearest neighbor algorithm to
identify blocks of spots. Then operating on each block individually, a similar graph
algorithm is applied to align the grid to spots in the image. This algorithm does a good
job and detecting and accounting for grid rotation and skewedness. Requirements of
minimum block spacing and the requirement of “anchor’ spots, which are known to exist
a priori in the corner of each block, limit the method.

Techniques from the discipline of‘ mathematical morphology (Angulo and Serra
2003) have also been applied to this problem but warping and rotational flaws limit the
approach. This technique is mainly of theoretical interest.

An approach to solving the gridding problem is presented that utilizes Kohonen self-
organizing maps (SOM). The SOM approach is able to work for microarray images
containing both skewed regions and rotatidnal flaws.- The approach also remains robust to
images that are missing a large proportion of expected spots.

2. KOHONEN SELF-ORGANIZING MAPS FOR MICROARRAY GRIDDING
" The algorithm presented requires three inputs at its onset: (1) a set of micfoarray
TIFF images (2-D arrays of pixels and their intensities) defines the 1nput space in which
to search for the grid, (2) the number of expected rows of spots to identify, and (3) the
expected number of spot columns to identify. With these inputs, the microarray gridding
process is then automated. The algorithm is developed in the following sections and
demonstrated with sample images.

2.1 Pre-processing

Hereafter for clarity, we confine our attention to a microarray experiment utilizing
two biological samples, and thus two input 16-bit TIFF images. The process is easily
generalized to experiments using either just one or more than two samples (images).

First, the two input 16-bit TIFF images G and R are combined for gridding purposes.
The combining process follows from (Yang, Buckley et al. 2002) but will be included

here for completeness. First, the square root of each 16-bit pixel’s intensity in each

66

image is computed. Next, the median of the square-root transformed intensities is
calculated for each imdge.- These medians will be represented as meds and medj, for the
images labeled G and R, respectively.

An initial linear combination is taken of the two images’ square-root intensities at
each pixel i, the result being such that the two images are normalized té their medians
and summed. This is done to ensure that neither image dominates the combined image
and thus the downstream gridding process. For instance, consider in the extreme case,
two microarrays displaying non-intersecting sets of spots in their respective images. That
is, spots showing up in one image to not appear in the other image and vice-versa. If one
image has much higher pixel intensities than the other, then the gridding process would
be biased to identifying spots in the brighter image and not in the dimmer one.

For any given pixel normalized in this fashion, a summed value greater than 251 is
then set equal to 2%-1. This creates a single, combined 8-bit TIFF image. This linear
combination and thresholding is summarized in Equation 1 where C; is the value obtained
for pixel i in the new combined image and R, and G, represent the square-root
transforméd intensities for pixel in images R and G, respectively.

)y q:m{zs-l,c;,m,(ﬁid&)}

med,

Using the combined 8-bit TIFF (set of all intensities, C;) obtained from Equation 1,
foreground pixels are then separated from the baCkgrbund pixels based on their relative
intensities. To do this, Otsu’s histogram thresholding algorithm is used (Otsu 1979). The
thresholded foreground pixels’ (x,y)-coordinates are recorded and subsequently used to
guide the SOM algorithm.

2.2 Initialization of the SOM

An SOM consists of computational units (hereafter referred to as neurons) arranged
in a grid (Figure 3). For the application at hand, this grid is a rectangle where interior
neurons have four neighbors, edge neurons have three neighbors and corner neurons have

two neighbors. Besides storing information identifying its neighbors, a neuron also stores

67

two additional values representing x- and y-coordinates in the input (image) space. These
two values are traditibnally termed ‘weights,” and this term will be used hereafter. It is
convenient to represent these weights as a single two-element column vector m{f) where i
indicates that the ith neuron in the grid is being considered. This vector is commonly
referred to as the ‘weight vector’ of neuron i. Note also that each weight vector carries
with it a clock variable . This time-dependence will be specified later.

... Figure 3: SOM with representative interior (A), border (B), and corner (C) neurons

A priori, the expected number of spot columns and rows in the microarray image is
assumed known. A grid of neurons with an identical number of spots, rows and columns
is initialized to model the microarray as follows. Each neuron sets its weights such that if
all neurons’ weight vectors were plotted as nodes in two-dimensional space and
topological connections between neurons were plotted as arcs between the neutons, the
resulting graph would resemble a regular lattice, as in Figure 3. At onset, this grid is
positioned at the center of the input image space spanning the middle 10% of the image.

2.3 Self-organization
The goal of self-organization is to adjust the weights (x- and y-coordinates in input
space) of the neurons so that the net evolves into an accurate representation of where

spots lie in the original microarray. In the resulting net, the neurons are centered at each

68

spot in the image (or where the spot should be if it is missing from the 1mage) This net is
achieved through an iterative process described as follows.

First, a foreground pixel obtained from Otsu’s algorithm is chosen at random. Note
that each foreground pixel carries with it the (x,y) coordinate representing its location
within the microarray image. Let such an input pixel be denoted by this coordinate as the
two-element column vector X(¢) where ¢ again indicates a clock variable. ,

Next, all neurons in the grid compare their x-coordinate with the x-coordinate of
X(?). The goal here is to identify the column J within the grid that is closest to X(®) in the
horizontal direction and is formalized in Equations 2 and 3 where X(7) indicates the x-
coordinate of the input pixel and m,(f) denotes the x-coordinate of neuron i.

@ j=agmin{|X,()-m,)}

G J=fim, =m,}

Ties of minimum distance that are potentially obtained from Equation 2 are resolved
randomly.

Once J is found, the element within J that is closest to X(f) in the vertical direction is
then found. This neuron is labeled o, the latter specified in Equation 4. X{?) and m()
denotes the y-coordinate of the input vector and the ith neuron, respectively.

(4) a=argmin {x,@)-m,)¢ I

Next, all of the neurons in the column J have their x-coordinates updated according
to Equation 5.

) m,(t+1) =m, () +), ()X, () - m,. ()]

Equation 5 introduces the functions h and # that decrease the degree to which m, is
updated. Both of these functions depend upon the iteration step and are described in

Equations 6-11. Intuitively, the function / causes those neurons most proximal to a to be

69

moved closer to X{(f) than those less proximal to . The function # is a ‘forgetting
function,” which decreases in value at each iteration of the algorithm. Together, these
two functions aid in the convergence and eventual fine-tuning of the grid in that, as time
passes, a smaller ‘neighborhood’ of neurons adjusts their x-coordinates towards X(r).
Moreover, these adjustments trend smaller due to the forgetting function. In Equations 6
and 7, ITER is the number of iterations that the algorithm runs and, in Equation 8, y
indicates the number or rows in the grid. In Equation 10, a, denotes the y-coordinate of

ITER
6 =
() % cotumn logy
—ITER
(7)_ forge log0.001

@) Ccotumn = y €XP ™
-t

©) 7(t)=exp™™
(10) d, =|a, ~m,|

_4‘1

(11) by (1) = exp**=m

Following the weight adjustments called for Equation 5, an analogous operation is
performed whereby those neurons residing in the row closest to the input X(® (in the
vertical sense) have their y-coordinates updated in a manner following Equations 5-11.
The only differences are that vy is set to the number of columns in the grid and the neurons
in the closest row have their y-coordinates updated rather than their x-coordinates.

Figure 4 illustrates what a given horizontal update of the grid in Figure 3 might look like.

70

Figure 4: horizontal update of Figure 3 to input (black circle)
3. RESULTS

A formal proof demonstrating the validity and theoretical limitations of the SOM
approach to microarray gridding is not pursued here. Rather, the results of applying this
method to five simple test cases .are provided. The first test case is that of a simple
seven-by-seven block. Figure 5 illustrates the SOMs success in correctly identifying the
microarray’s grid. Figure 6 demonstrates that this approach continues to work well on a
larger twenty-by-sixteen spot microarray image. Note also that the number of missing
spots and increased noise in the thresholded image of Figure 6 appears to have a
_ negligible effect on correctly positioning the grid,

71

B

 XOE 3

TR

L

Figure 6: larger thresholded image (A) and its computed SOM B

A slightly more challenging test is seen in Figure 7. Here, a seven-by-seven block

was created by moving the upper-right spots of Figure § slightly to the right. Again, a
valid grid was identified.

72

Figure 7: thresholded image with drifting spots (A) and its computed SOM (B)
Another problem often encountered in microarray images is that they can often times

be globally rotated. In Figure 8, such an image is shown along with the SOM that still
correctly identifies the underlying spots.

Figure 8: thresholded image with rotation (A) and its coﬁputed SOM (B)
" When the SOM algorithm is applied to an image with the spots arranged in distinct
blocks, the results.are not so good, however. It happens that there are many instances in
which a single row or column in the SOM grid spans multiple rows or columns in the

microarray image (data not shown). This is likely due to the presence of noisy pixels

73

occurring between two blocks. Its possible that image processing techniqués for reducing
noise in the thresholded image may abate this problem.

4. DISCUSSION

Researchers in the biological sciences are increasingly becoming interested in the
development of high-tliroughput experiments. The microarray technology is‘ certainly an
enabling tool with this objective as several thousands of genes can be studied
simultaneously with a single microarray. A time consuming step in the microarray
protocol is labeling (assigning gene identifiers to) the spots visualized in a microarray
image. This ‘gridding’ procedure is typically done manually because irregularities
commonly found in the scanned image are obstacles to automated processing. The
algorithm presented here is a step towards such automation. Images containing spots of
fairly uniform spacing are handled readily, even if they contain spot drifting or global
rotations. The algorithm is not yet suited for typical microarray images-since these are
normally encountered as having several distinct blocks of spots rather that a single'large
block encompassing all of the image’s spots. We may expect the development of
algorithms that can first identify the block regions so that the described SOM algorithm
may be applied on a block-by-block basis. It is further conceivable that a similar SOM
algorithm is up to this task of block segmentation as wgll.

S. REFERENCES

Alberts, B. (1994). Molecular biology of the cell. New York, Gatland Pub.

Angulo, J. and J. Serra (2003). " Automatic analysis of DNA microarray images using
mathematical morphology." Bioinformatics 19(5): 553-62.

Brown, P. O. and D. Botstein (1999). "Exploring the new world of the genome with DNA
microarrays." Nat Genet 21(1 Suppl): 33-7. '

Cheung, V. G., M. Morley, et al. (1999). "Making and reading microarrays." Nat Genet
21(1 Suppl): 15-9. ' _

Dhanasekaran, S. M,, Barrette, T. R. , et al (2001). “Delineation of prognostic
biomarkers in prostate cancer.” Nature 412(6849): 822-6.

Ghasmmaghami, S., W. K. Huh, et al. (2003). "Global analysis of protein expression in
yeast." Nature 425(6959): 737-41,

74

Issaq, H. J, T. D. Veenstra, et al. (2002). "The SELDI-TOF MS approach to proteomics:
protein profiling and biomarker identification.” Biochem Biophys Res Commun
292(3): 587-92. A

Jain, A. N, T. A. Tokuyas, et al. (2002). "Fully automatic quantification of microarray
image data." Genome Res 12(2): 325-32. '

Jung, H Y. and H. G. Cho (2002). "An automatic block and spot indexing with k-nearest

: neighbors graph for microarray image analysis." Bicinformatics 18 Suppl 2:
S141-51. ‘

Kohonen, T. (1997). Self-organizing maps. Berlin ; New York, Springer.

Leung, Y. F. and D. Cavalieri (2003). "Fundamentals of cDNA microarray data analysis."
Trends Genet 19(11): 649-59. :

Nguyen, D. V., A. B. Arpat, et al. (2002). "DNA microarray experiments: biological and
technological aspects." Biometrics 58(4): 701-17.

Otsu, N. (1979). "Threshold Selection Method from Gray-Level Histograms." Ieee
Transactions on Systems Man and Cybernetics 9(1): 62-66.

Peng, J., J. E. Elias, et al. (2003). "Evaluation of multidimensional chromatography
coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein
analysis: the yeast proteome." J Proteome Res 2(1): 43-50.

Schena, M., D. Shalon, et al. (1996). "Parallel human genome analysis: microarray-based
expression monitoring of 1000 genes." Proc Natl Acad Sci U S A 93(20): 10614-
9.

Washbum, M. P, R. Ulaszek, et al. (2002). "Analysis of quantitative proteomic data

+ generated via multidimensional protein identification technology." Anal Chem
74(7): 1650-7.
- Yan, J. X, A. T. Devenish, et al. (2002). "Fluorescence two-dimensional difference gel
__ electrophoresis and mass spectrometry based proteomic analysis of Escherichia
"7 coli." Proteomics 2(12): 1682-98.
Yang, Y. H, M. J. Buckley, et al. (2002). "Comparison of methods for image analysis on

cDNA microarray data." Journal of Computational and Graphical Statistics 11(1):

108-136.

75

76

A Multi-Stage Technique for Determining Head Orientation
from Monocular Images using Neural Networks

Frederick Shic
Yale University, Social Robotics Group
New Haven, CT 06510

Abstract

A technique for determining the three-dimensional head orientation of a human subject
given a monocular digital image is described. The first phase of this technique extracts
skin tone from an image. The second phase uses the original image and the previously
detected skin tonal areas to determine head locations. Finally, the third phase combines
all previous information with a generalized feature detector to extract head orientation.
Each step relies heavily on solutions guided by feed-forward back propagation neural
networks.)

Keywords — head orientation, head gaze, face tracking, skin detector, flesh detection,
neural networks.

1. INTRODUCTION

The head orientation of a human subject can be used to determine the subject’s focus of
attention, gauge his level of interest, or even predict his future actions. In conjunction
with a robotic system capable of interacting with humans, such information could help in
the construction of intuitive man-machine interfaces. .

~ Previous work for determining head orientation from images includes feature
detection combined with geometric proof (Gee & Cipolla, 1994; Horprasert et al., 1996),
probabilistic texture modeling and matching (Pappu & Beardsley, 1998, Wu & Toyama),
and coarse image to orientation solutions using neural networks (Zhao et al., 2002;
Stiefelhagen et al., 2001). Each of these techniques performs well under a variety of
situations, but no one technique is suitable for all applications. We describe a technique
for determining head orientation in a situation in which:

1. The camera environment is fairly constrained in terms of both
background and lighting (e.g. the environment of a stationary robot).

2. The entire task, beginning with locating a face in an image and ending
with an estimate for head orientation, must be accomplished.

3. Training data is minimal and coarse.

4. The system runs in real-time on the computational equivalent of a

standard 2002 desktop computer (computational overhead is minimal).
In addition, we desire an approach that is both efficient and simple. We would like to

build a complete (constraint 2) system in which both the setup time is short (constraint 3)
and operation is fast (constraint 4). We impose constraints on the environment

77

(constraint 1) in order to try to reduce the complexity of the total task. The first step in
the head orientation system (HOS) is to determine which image pixels in an image
correspond to skin. Skin detection allows us to reduce the dimensionality of the search
over image space, allowing us to quickly zoom in on candidates which may be human
faces. From these potential human face locations, we select and isolate locations which
actually correspond to faces, allowing us to focus specifically on the general area of a
human head. Finally, from the general location of the verified faces, we automatically
locate salient features and reduce the orientation of these features into an orientation of
the entire head. Each of these steps is accomplished by training to a sub-task with neural
networks for two primary reasons:

1. Neural networks can effectively skip several preprocessing steps, such as color
space transformation and lighting normalization, which are normally used in
head detection/head recognition systems, as many preprocessing steps are
simple transforms.

2. Once trained, neural networks of reasonable size usually run extremely quickly.

We will begin, in section 2, with a discussion of the difficulties of detecting skin tones
from images and present a method that seems to adequately address these difficulties.
We continue, in section 3, with the presentation of a method for determining which
sections of an image correspond to faces when given several candidate skin locations.
Finally, we conclude, in section 4, with the presentation-of a technique for roughly
determining head orientation, given cropped images of faces.

2. SKIN DETECTION

- Before we can determine the head orientation of faces.appearing in the viewing frustrum
of a camera, we have to locate and categorize some initial targets. A good method for

- reducing the search space of the visual stream is to begin by using skin color as a feature
for localization. Using skin color as an initial feature has several advantages:

(1) Pixel-to-pixel reductions to skin are typically fast

(2) Accurate skin detection leads to a dramatically reduced search space

(3) The distribution of colors in skin, as determined by examining patches of skin, for
people with pigment in their skin (i.e. non-albino humans), has been shown to fall
within a very narrow range of color space, in comparison to the color distribution
of background features such as walls, chairs, and carpets.

Skin color detection also has several drawbacks:

(1) There is no universality of agreement on the choice of a proper color space in
which to perform skin detection. That is, there is no general agreement on
whether, for example, the HSV color space is superior to the YCbCr color space
for the purposes of discriminating skin color.

78

(2) Leatning methods for skin'detection depend on thé breadth of the training data.
For instance, it is likely that a skin detector trained solely under bright lightning
would perform poorly when presented with images of faces illuminated dimly.

(3) Pixel-level methods for identifying skin do not seem sufficient to segregate faces
and typically more advanced methods such as edge detection are necessary.

In order to weigh the importance of these drawbacks and advantages, we first begin by
examining the properties of skin tones in various color spaces, and try to build an
effective Gaussian model for skin (Section 2.1). We follow this analysis by building a
system that maps pixel colors directly to the classification of skin versus non-skin, using
neural networks (Section 2.2). Finally, we extend the neural-network model by
augmenting the knowledge available at each pixel by adding information concerning the
neighborhood around each pixel (Section 2.3).

2.1. Skin detection by color histogram analysis and Gaussian modeling

We first begin by investigating the color spaces that would be appropriate for skin
characterization on a camera system embedded on Nico, a robot currently in development
in the Yale Social Robotics group. We acquire 25 frames from Nico’s wide field-of-view
camera at resolution of 320x240 pixels and import the images into Matlab and investigate
manually selected regions of skin (shown in Figure 1). Each pixel in the selected region
contains numerous pixels, with each pixel represented by a color vector (for instance, red
value, green value, and blue value for the traditional RGB color space). For each axis of
the color vector, we can count the number of pixels that fall within a certain numeric
range (for instance we can count 30 pixels that have a green intensity value of 90 to 110
on an RGB scale) in order to build a color distribution map for the selected region- the
color histogram. If we make the assumption that the areas selected manually correspond
to representative distributions of skin color, then by examining these color histograms for
multiple sites we can draw some conclusions regarding the color properties of skin. We
examine several traditional color spaces in order to determine if any one color space is
superior to the others for the putposes of discriminating skin coloration: Red-Green-Blue
(RGB), Intensity-Chrominance (YCbCr), and Hue-Saturation-Value (HSV) (Figure 2).
That is we see if any of these color spaces has a compact representation when viewed as a
color histogram. The histogram of an axis of a color space is considered to be a compact
representation when it is not uniformly or randomly distributed across all possible values
of that color space axis (for instance we can see that the color space representation for
chrominance intensity 1 and chrominance intensity 2 occupy a very small area of the full
color range in Figure 2, indicating that skin has a compact representation for those two
axis in YCbCr, whereas the red, green, and blue axis of the RGB histogram are more
uniformly distributed across the possible intensity values). The minimum value for all
color spaces is 0, whereas the maximum value is typically either 1 (HSV color space) or
256 (RGB and YCbCr color spaces).

79

Figure 1a: ample image acqured Jfrom Nico and selected region for color histogram
analysis (box on the face of the rightmost figure)

Figure 1b: zoom of region selected in la

80

RGB histogram

100 200

_ . 100 200
red intensity green intensity blue intensity
YCbCr histogram
120 120 120
100 {100 {1 100
80 80
£ E
3 =
g 60 g §
20] 20
% 100 200 % 100 200
Inteslty intensity Chromiance 1 intensity Chromiance 2 intensity
HSV histogram
200 200
150 150
2100
50
0 -]
0 05 1 () 05 1 () 0.5 1

hue intensity saturation intensity value intensity

Figure 2: RGB (top), YCbCr (middle) and HSV (bottom) color histograms for the
selected region in Figure 1.

As evident by inspection of Figure 2, the distribution over all the axes of RGB, unlike
YCbCr and HSV, was uniform through its possible intensity values. For this reason we
believed that the RGB color space would be insufficient for building a skin
discrimination system that could segregate skin from non-skin and did not investigate it
further.

YCbCr and HSV both demonstrated clear peaks in non-intensity based color
space axes. For this reason, the axis corresponding to pure grayscale intensity was
removed, and the remaining two axes of both YCbCr and HSV were used to build
Gaussian probability models of the form:

~Gy-pg)® ~(-t4)

e 20',,2 20',,2

(g, x) = (1)

0,0,2%

where p(x1,x2) gives the probability that a particular pixel with color space coordinates x;
and x;corresponds to skin. 4, and g are the expected means of skin color in each color
axis, and o; and ; are the corresponding standard deviations for the distribution.

By investigating the color distributions of a number of skin locations in images,
we derived a good estimate for the parameters of the Gaussian skin probability model for
both the YCbCr color space (#4:=145, 6,=7.5 for axis 1, and 14=127, 6y=3.5 for axis 2)
and for the HSV color space (4=0.675, 6;=0.0875 for hue, and £4=0.25, t=1.0 for

saturation). Applying these parameters yielded skin probability maps of the form shown
in Figure 3.

Figure 3: YCbCr Gaussian skin probability map (left) and HSV Gaussian skin
probability map (right)
Note that the HSV skin probability map in Figure 3 yields much sharper skin
information, but that the noise is higher than that of the YCbCr skin probability map.

Also notice that HSV receives false positives for the khaki pants worn by the rightmost
figure in Figure 3, an effect that is not noticeable in YCbCr. For these reasons we

82

combine the two color schemes by multiplying their correspondmg probablhty maps and
normalizing;

p(x) = \/ Prescr Kyeoer) Prsv Xysy) ')

This yields the combined skin probability map shown in Figure 4:

Flgure 4 » Conjunctzon of YCbCr and HSV Gaussian skin probabzln‘y maps

Th1s skm probability map does not work well when the intensity becomes saturated. For
- instance if we apply (2) to the image shown in Figure 1, we obtain Figure 5:

Figure 5: Con]unctzonof Y CbCrand HSV Gaussmn skzn probability mapsor the image
shown in Figure 1. Note the error on the forehead of the rightmost subject.

83

The large missing segment in the forehead of the subjection the right of Figure 5 is black
as the result of intensity overflow (and subsequently ill-defined non-luminance data).
The results of attempting to localize skin using color histogram information
combined with Gaussian modeling were not wholly satisfying. In particular, the
application of (1) and (2) to images yielded probability maps that were unstable in the
vicinity of certain lighting effects (such as the fluorescent lights on the ceiling of the
figures). In addition, noise in both the background and in skin regions was fairly heavy.
These problems, taken together, suggested that a simple Gaussian model would not be

sufficient for detecting skin. For this reason we looked for better models for skin
detection. : ' :

2.2. Skin detection by training'neurél networks on image pixel color ,
Using a stand-alone graphics editing program, we manually marked the regions
corresponding to skin for a pair of images (Figure 6). o

Figure 6: Neural network skin detector training data. Skin regions correspond to the
lightly marked areas. Non-skin areas are not altered. Many of the skin detection
techniques we tried picked out the khaki pants (left) as a face color, so we included this
data to eliminate this problem. On the rightis a typical image that was also included.

~ Only two data sets were used in this analysis.

The images shown in Figure 6 were deconstructed into a set of flesh and non-flesh pixels.
As we desired to avoid the computational overhead associated with color conversion, the
original RGB color vector for each pixel was used as an input, testing against a binary
output (1 for flesh and 0 for non-flesh), in a feedforward backpropagation neural
network. Likewise, to save computation, we used only 5 hidden nodes (Figure 7).

The transfer function used in this neural network was the logsig function:

1
logsi = 3
0gsig(x) = | ©)

Levenberg-Marquardt (Press et al., 1993) was used for the network training function,
gradient descent with momentum (learning rate 0.01, momentum 0.9) was used for the

84

weight leamning function, and 100 iterations were used for training, Network recognition

of skin versus non-skin was set at a threshold of 0.5 on the output node range of (0,1).

- . This resulted in the detection shown in Figure 8, with corresponding statistics shown in -
Table 1. ' ‘

Original
Image
Input Pixel
(RGB) -
Output trained to
Skin Classification
from Marked up
Image
- Marked up
Image
Skin classification
(Skin/Not-Skin)—[]_|

Figure 7: Pixel-level neural network architecture. Every pixel of the two training images
shown in Figure 6 is used to train a neural network with 5 hidden nodes. The inputs are
the RGB values of each pixel. The training output is the corresponding designation of
skin or not-skin as determined by the manually marked up images of Figure 6.

85

Figure 8: testing and training images from using raw RGB in combination with a neural
network. Images are darkened so that the brightest areas correspond to skin Dixels. The
two top images correspond to the training data shown in Figure 6; the two bottom figures
are test images. Recognition is fair. Note that, in the lower left hand corner, the skin
detector completely fails to detect the slightly shadowed flesh of the rightmost subject.

Training Data Testing Data
Set Set

Accuracy (Skin) 52.2% 42.2%
Accuracy (Non-Skin) 99.6% 99.6%
Accuracy (Total) 98.0% 97.4%

skin pixels / image 2371 2988

non-skin pixels / image 74430 73812
total pixels / image 76800 76800

Table 1: NN performazice on skin detection using only RGB pixel information

86

Figure 9: test images from using HSV pixel information in combination with a neural
network. Note that there is almost no difference between this output and the output
obtained by using RGB pixel information only (Figure 8).

~Training Data .| . Testing Data
_ _ Set Set

Accuracy (Skin) . 51.0% - 40.7%
Accuracy (Non-Skin) | - 99.5% 99.6%
Accuracy (Total) 98.0% 97.3%

skin pixels / image 2371 2988

non-skin pixels / image 74430 73812
total pixels / image 76800 76800

Table 2: NN performance on skin detection using only HSV pixel information. Again,
note the similar performances on both skin and non-skin between results obtained using
HSV pixel information and results obtained using RGB pixel information (Table 1)

87

et

Compared with the performance. of the Gaussian probability maps (Figure 5), Wwe cansee -
that the ability to distinguish skin'from non-skin is vastly improved (Figure 8). There is
little noise in the background (99%+ accuracy), but performance on detecting skin is only
fair (52.2% on the training data, and 42.2% on the test images). This is problematic
because, at this level of accuracy, large skin structures such as a face or a hand could be

~ broken into several smaller patches, potentially causing malfunction in subsequent
~ algorithms for face detection, L o

We want to see if using another color space, such as HSV, can improve our
results because, as we noted earlier while studying the Gaussian probability maps, HSV
provides very sharp segmentation of skin. Also, there has been extensive research in the
appropriate choice of color space in skin detection (Zarit et al, 1999), suggesting that the

-~ choice of color space can play an important role in skin detection performance.

However, as far as neural nets is concerned, the use of even a “more appropriate” color
space does not seem to influence results as seen by the almost identical skin
determinations in images (Figure 9 compared with Figure 8) and statistical results (Table
2 compared with Table 1).

Finally, we tested using an input vector consisting of RGB, HSV, and YCbCr
channels combined. Though each of these three color spaces is transformable to the
others, we wanted to make sure that, due to the low number of hidden nodes used, some
keyiapriori information was not somehow being overlooked. After conducting this
experiment, however, we obtained results extremely similar to the results obtained by
using.the RGB or HSV color space alone (results not shown). - It is questionable whether,
in an adaptive technique, the choice of color space plays any role at all.

88

2.3. Skin detection by training neural networks on neighborhoods of color

We now consider the addition of local information to each pixel’s determination of flesh
versus non-flesh. In order to do this, we return to the RGB model and augment the input
color stream with the color stream of a Gaussian blurred (10 pixel square, standard
deviation of 5 pixels) version of the image. This proved to be exceptionally helpful, as
shown by the images in Figure 10 and the results in Table 3. Note that the color
oversaturation problem seen previously still remains (bottom right image of Figure 10,
forehead of the rightmost subject). This might be correctable by using more local
information. For example, we could use better choices for Gaussian blurring or
incorporate gradient information (Sandeep and Rajagopalan, 1999) in order to increase

the extent of neighborhood information available to the neural network at any given
pixel.

Figure 10: RGB channel combined with RGB Gaussian blurred channel. Note the finer
accuracy and better characterization of features in comparison to the single pixel
method.

89

Training Data | Testing Data
Set Set
Accuracy (Skin) 79.4% 1.7%
Accuracy (Non-Skin) 99.7% - 99.7%
Accuracy (Total) 99.0% 98.7%
#skinpixels /image | 2371 2088
non-skin pixels / image 74430 73812
total pixels / image 76800 76800
Table 3: NN performance on skin detection using RGB pixel and neighborhood
information

We should note that the output is highly dependent on the subjective mai-kup of flesh tone
as training input. For instance, if we didn’t Pay quite so close attention to the features of

faces, and used a coarser input (Figure 11), we would get the results shown in Figure 12
and Table 4. ' ' :

Figure 11: coarse manually-marked up input flesh data

Training Data Testing Data
Set ' Set

Accuracy (Skin) 80.7% ’ 80.2%
Accuracy (Non-Skin) 99.6% | 99.5%
Accuracy (Total) 98.9% 98.7%

skin pixels / image 2964 3211
non-skin pixels / image 73837 73589
total pixels / image 76800 76800

Table 4: NN performance on skin detection using RGB pixel and neighborhood
information on a coarse input (Note: results are not necessarily comparable to previous
results as the performance images have changed)

90

igur 12: results o raining on coarse inputs shown in Fig. 10.
Since we are interested in extracting head orientation, the use of coarse input is actually
more appropriate. All subsequent analyses use the coarse RGB neighborhood model.

We should note that designation of skin versus non-skin is determined by a
threshold on the output of our neural network. Without a threshold we get Figure 13.

Figure 13: Direct otput f the trained neural network on the two test images.

- 3. HEAD DETECTION

- Once we have discovered potentlal sltes of skin, we can examine these s1tes in
- order to determine if the skin sites correspond to faces. In order to do this we markup
. 1mages as we did prcvxously, only this time we only mark faces (Flgure 14)

Figure 14: Images with'only faces marked.” - -

We markup 85 images, a much larger sample than was used in skin detection, and
» spht the images between testing data and training data. The reason why so many more
- images were incorporated into this step was because we are no. longer working at the
local level, but instead, at a higher level of classxﬁcatlon For. each image we perform the
following pre processing algorithm:

1. Apply the skin-detecting neural network to an image.

2. Use 8-connected region growing to pick out areas corresponding to
patches of skin (Figure 15, top).

3. Throw out any regions with less than 200 total pixels. This is done
because beneath this threshold, images are too small to be accurately
detected and because they most likely correspond to noise (Figure 15,
bottom).

4. For every region passing the threshold test in step 3, send the minimal
bounding box incorporating the region to a feature extractor.

5. The feature extractor takes the image and segments the image into a series
of overlapping rectangles. All pixels in each rectangle are averaged
together in order to build a single coefficient. For each level L in the
system, the image was segmented into a L by L grid of rectangles. We

- used a level of 3 for this set of experiments (Figure 16).

After all data was processed, we split the sets of coefficients evenly into testing

and training data. Correct output was determined by checking for overlap in the marked-
up face images discussed previously. These coefficients were passed into a 5-hidden

92

L KR

) igur 15: Segmted eion skin corepoding to the two ig_es in Figure 14. The

node neural network, with the same parameters as were used in skin-detection, and
trained for 2,000 epochs. Finally, the output of the neural network was once again
compared against a threshold (0.5) in order to determine if it was classified as skin or
non-skin. The performance of the network during training, however, was extremely
unstable, resulting in training accuracies ranging from 65% to 100%, and testing
accuracies that ranging from 40% to 97%. In order to compensate for these effects, the
neural network was run in a loop until it met a threshold of at least 95% accuracy in
training and at least 90% accuracy in testing.

By looping on a measure of the testing data, we are effectively training on the
testing data. We need to find an independent source for comparison, or our results would
not be valid. We do this by examining 201 images that were not included in the original
training or testing sets. For each image, we segment skin regions as described above, and
then allow the neural network to classify each region. The results from this experiment

were an accuracy of 86%, starting from an original training accuracy of 100% and testing
accuracy of 97.2%. :

top figures here are segmented regions before removing regions failing to meet an area
threshold, and the bottom figures the reduced regions.

93

Figure 16: Dissection of a skin detected region. Each level L dtvzdes the image into an L
by L grid. Each rectangle of the grid is locally averaged in order to provide feature cues
to a neural network.

4. HEAD ORIENTATION o

Now that the preprocessing components have been built, we can begin head orientation.
Ideally we would like a system that can independently identify real valued components of
- pan-and tilt. However, in order to build such a system there needs to be some accurate
- method of measuring accuracy. Without a stand alone device to Judge onentatlon, we
.must rely on more primitive methods.

Using the same methods as for head detection, we assign, manually, to each
image that is to be used in training or testing, a category number.. This number
corresponds to the following orientations (from the viewpoint of the camera, Table 5).

Subject's Head is
Code Directed
1 left
2 - Forward
3 Right
4 | Down

Table 5: Coding for head orientation

The outputs were first vectorized so that the i entry of the output was a 1 if the output
code was i. The orily difference between this step and head detection, besides the fact
that the output format was different, was that the Gaussian map for detection (shown in
Figure 16) used 4 levels rather than 2. The motivation behind this was that it should be
able to, at some point, combine head/face detection and head orientation detection in
order to gain more throughput at execution.

Though the setup was fairly simple, there was a lot of instability in the network
convergence (as in Section 3). The network typically trained in upwards of 99%
accuracy, and had a orientation accuracy, based on the above signatures, of 73.8%.

94

_ : ~ 5.DISCUSSION

Many things in this experiment could be improved. Our method for detecting skin seems
to be fairly robust, but head localization and head orientation seem insufficient. ‘Using a
multi-scale average technique for input into the a neural network for both head
orientation and head localization may be unwarranted. For instance, we could use the
face detection/head localization step to further refine the image of the face, eliminating
spurious signals such as the neck and ears, by using a larger, more powerful model of
local information, but similar to the one employed in skin detection.

It is important to note that all the images and data collected for this experiment
revolved around very few subjects, and a very constrained environment. Not until the
project has been extended to include actually movement on the part of the observer and a

multitude of people of all different shapes, sizes, and pigmentations, will this project be
complete.

6. CONCLUSION
We have presented a model for head orientation that uses local color space information to -
successfully detect skin from non-skin, and, less successfully, to localize the head and
coarse orientation of the head. Future studies are warranted, as this is continuing work.

: REFERENCES
1:“Gee A & Cipolla R (1994). Determining the gaze of faces in images. Image and
Vision Computing, v.12, n.10, pp.639-647.
2. Horprasert T, Yacoob Y, & Davis L (1996). Computing 3-D Head Orientation
-+ from a Monocular Image Sequence. Intérnational Conference on Face and
-+ Gesture Recognition, pp.242-247.
3. Zhao, Pingali, & Carlbom (2002). Real-time Head Orientation Using Neural
Networks. IEEE International Conference on Image processing, 1.1, pp.297-300.
4. Stiefelhagen R, Yang J, & Waibel A (2001). Tracking Focus of Attention for
Human-Robot Communication. Proceedings of the IEEE-RAS International
Conference on Humanoid Roboti, 9(2):257-265.

5. http://www.ascension—tech.com/products/ﬂockofbirds.ghg, obtained December
15, 2003.

6. Pappu, R, & Beardsley PA (1998). A Qualitative Approach to Classifying Gaze
Direction. Proceedings of the Third IEEE International Conference on Automatic
Face and Gesture Recognition, pp.160-165.

7. Wu, Y. &Toyama K (2000). Wide-Range, Person- and Illumination-Insensitive
Head Orientation Estimation. Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, pp.183-188.

8. Zarit B, Super B, & Quek F (1999). Comparison of Five Color models in Skin
Pixel Classification. Proc. of Int. Workshop on Recognition, Analysis, and
Tracking of Faces and Gestures in Real-Time Systems, IEEE Computer Society, ,
pp. 58-63. ’

9. Sandeep K and Rajagopalan AN (1999). Human Face Detection in Cluttered
color Images Using Skin Color and Edge Information. :
http://citeseer.nj.nec.com/557854.html

95

96

10. Press W, Flannery BP, Teukolsky SA, and Vertterling WT (1993). Numerical
Reipes in C: The Art of Scientific Computing. Cambridge, UK: Cambridge
University Press.

Self-supervised Learning of Saccade Control with a
Feed-forward Neural Network |

Hao Wang
Yale University, Department of Computer Science
New Haven, CT 06511

Abstract

An approach to learn fast and accurate saccade control for a humanoid robot with a
feed-forward neural network is presented. We solve the visual tracking problem by using
a competent image correlation algorithm. The inconsistency in motor coordinates is
handled by scaling. Training of the feed-forward neural network is based on error
back-propagation learning. Simulation results are presented to demonstrate the
effectiveness of this approach.

Keywords — saccade control, sensorimotor coordination, visual tracking, error correction
learning, feed-forward neural network.

1. INTRODUCTION

Saccades are of current central interest in the field of active vision [1]. For
instance, saccades have been used to attend to salient features in the visual field and
pursuit of moving objects [2]. Yale Social Robotics Lab is building a humanoid robot
called Nico. Nico has two eyes, each of which has two degrees of freedom. Each eye
consists of two small color CCD cameras, one with a wide-angle low-resolution field of
view, and the other with a narrow-angle high-resolution field of view. If it is to obtain
more details about a visual target in the wide-angle low-resolution field of view, Nico
must center the target in this view so that the target shows up in its narrow-angle
high-resolution view. Therefore, saccade control is an integral component of Nico’s
vision system. Saccade control belongs to the broad field of sensorimotor coordination
[3]. We shall show how a feed-forward neural network can be utilized to learn fast and
accurate saccade control for Nico.

2. TASK OVERVIEW

In this paper, we consider the robotic task of learning saccade control for one of
the two wide-angle low-resolution cameras. This task can be formulated as learning a
saccade control function f that takes four arguments:

P, t — the current pan and tilt motor coordinates of the camera

r, ¢ — the row and column of the center of the object of interest (specified by other

modules of the robot, e.g. attention system) within the input image

and produces two results:

dp, dt ~ the change in the pan and tilt motor coordinates of the camera that will
center the object of interest within the field of view of the camera,

97

Figure 1 shows a schematic representation of the saccade control learning system

architecture. The system can be decomposed into four major components: visual tracking
subsystem, saccade generator, saccade control function, and a training program.

The visual tracking subsystem takes input images from one of the wide-angle

low-resolution cameras, and locates a visual target after a saccade. The saccade generator
controls the pan and tilt eye motors to generate saccades. The training program is the
central component of the whole system. It controls and coordinates with the other three
components to accomplish the task of learning a satisfactorily accurate saccade control
function f.

3
........ '.,.--..-----
7

r
5 Saccade

- Generator

r 1
13 [}
: :
' Visual Tracking i
: Subsystem !
H H
) [}
)]
1]

- - - - -

Saccade Control |
Function
(Feed-forward
Neural Network)

Figure 1: Schematic representation of system
architecture. Dashed boxes indicate processes.
Processes communicate through message passing.

A typical learning trial proceeds as follows:

1. The visual tracking subsystem takes an input image, which is referred to
as the pre-saccade image. The training program randomly generates a row
coordinate r and a column coordinate ¢. A small area centered at (r, ¢) in the
pre-saccade image is chosen as the visual target. The coordinate of a visual target
is taken to be the coordinate of its center.

2. (r, ¢), along with the current pan and tilt motor coordinates (p, 7), are
passed to the saccade control function fto generate the change (dp, df) in the pan
and tilt motor coordinates. '

3. The new pan and tilt motor coordinates (p’, ¢’), where p'=p+dpandt’
=t + dt, are sent to the saccade generator to perform a saccade.

4. After the saccade, the visual tracking subsystem takes a second input
image, which is referred to as the post-saccade image, and locates the row and

column coordinates (', ¢”) of the visual target in the post-saccade image. If the
saccade were perfect, (r*, ¢) would be the center of the post-saccade image.

5. The difference between (r’, ¢’) and the center of the post-saccade image
is transformed to an error signal (dp’, d’) in motor coordinates. In another word,
the desired output of the saccade control function is assumed to be (dp”, dt”),
where dp” =dp +dp’ and dt” = dt + dt’.

6. Finally, the error signal (dp’, dt’) is used to adjust the free parameters of
the saccade control function f,

3. VISUAL TRACKING

Theoretically, in order to learn the saccade control function f. only the coordinates
(. ¢) and (7", ¢’) of a visual target in pre-saccade and post-saccade images are needed.
Coordinate (r, ¢) is chosen by the training program in pre-saccade image to specify the
visual target, and is therefore readily available. After a saccade, the training program
must be able to determine coordinate (7, ¢’) of the visual target in the post-saccade image.
This is called the visual tracking problem. =

The simplest solution to the visual tracking problem is to determine (*, c’) by
hand. After each saccade, one could examine the post-saccade image, and determine the
coordinate (’, ¢’) of the visual target. This manual marking process must be performed
once for every training sample. Obviously, if a large amount of training samples, e.g.
1000. training samples, are needed, the amount of labor incurred will be unaffordable. In
addition, one of the goals of this project is to implement self-supervised, online learning,
which does not require human intervention. Thus it is necessary to automate the process
of determining coordinate (r’,) of a visual target in a post-saccade image. This
automation is achieved through the visual tracking subsystem.

~ The visual tracking subsystem takes as input a pre-saccade image, a visual target

location (r, c) in the pre-saccade image, and a post-saccade image, and returns the
location (7°, ¢’) of the visual target in the post-saccade image. _

There have been considerable efforts in visual tracking [4] [5]. There are two
major challenges for visual tracking in this project. First, even a slight movement of the
camera may cause variation in background luminance. Second, the geometric shape of
the visual target may also change due to camera movement. Our solution to these
problems is a trade-off of simplicity and reliability based on the particular constraints of
our task at hand. First, the variation in luminance is accounted for by a color space
conversion from RGB to HSI. In HSI color model, color information (hue) is separated
from luminance information (intensity). The visual tracking subsystem primarily relies on
hue information, which is largely independent of variation in luminance. In cases where a
target is of nearly constant color, intensity information is used as a substitute. Second,
due to the presence of a reasonably good estimate of the saccade control function (which
will be discussed later), the search for a target in a post-saccade image could be
conducted within a small search area, which alleviates the effect of changes in geometric
shape of the target. In addition, a limited search area greatly increases the speed of visual
tracking, although our application is not very time-critical.

More specifically, the RGB values of pixels in both the pre-saccade image and the
post-saccade image are converted to HSI values. The hue values Hp(i,) of a 40x30 area

- 99

around the visual target in the pre-saccade image are recorded. The hue values Hpos(i,)
of a 40x30 area around the estimated location of the visual target in the post-saccade
image are correlated against those in the pre-saccade image. In mathematical terms, we
seek to minimize the Manhattan distance of the difference of two image vectors:

g%n[ZZIHPN(i’ j)"Hpo,t(xo +i, Yot J)IJ 1
Y\ 15

In cases where the 40x30 area around the visual target in the pre-saccade image is
of nearly constant color, intensity information is used as a substitute formula. However,
to compensate for changes in background luminance as the camera moves, the intensity
vectors are normalized. Due to the normalization, formula (1) is no longer appropriate for
determining maximum correlation. Instead, we see to maximize the cross-correlation of
two image vectors:

max[zzlpre (l’ j).Ipost (xo +i’ yo +])) ’ (2)

X0+ Yo i j

A more sophisticated visual tracking subsystem may use these two methods at the
same time, and adaptively combine the two results based on their reliabilities, which are
indicated by the minimum Manhattan distance and maximum cross-correlation as given
by (1) and (2), respectively.

One example of visual tracking is shown in Figure 2a and Figure 2b.

o

Figure 2a: The pre-saccade image. - Figure 2b: The post-saccade image:

Visual target is the box at the bottom Detected visual target is the box near
left corner. the center of the image. '

4. MOTOR CONTROL

100

A problematic property of the pan and tilt motors is; the same motor coordinate
does not always lead to the same camera position. The inconsistency arises from
hardware initialization. After the robot is powered on, a motor must be calibrated before
it can be used. Depending on the initial motor position when the calibration begins, the
same motor coordinate may lead to different motor positions in different runs of the robot.
This difference, if not accounted for, will render the learned saccade control function
useless after the robot is rebooted.

A remedy comes as the result of experimentation. The motor calibration process
will first move the motor to its extremity in both directions, then position the motor half
way in between, and return the limit to which the motor can move in either direction,
Experimentation has revealed that although the limit returned by the calibration process
may change significantly, the extreme positions, and thus the middle position of the ‘
motor largely remain the same. - ‘

The above observation leads to the use of ‘proportional’ motor coordinates
instead of actual motor coordinates. The proportional coordinate p, for the pan mator is
defined as the ratio of the actual motor coordinate p to the limit of the motor b

p=f e

- A'similar definition applies to the proportional coordinate f, for the tilt motor,

. The saccade generator is in charge of the conversion between proportional and
actual motor coordinates. Essentially, it provides a consistent motor control interface to
the training program and the saccade control function.

S. TRAINING

The saccade control function fis represented by a feed-forward neural network.
The network is trained using an error back-propagation learning algorithm.

Before error back-propagation could proceed, however, a fundamental problem
has to be solved, i.e. to determine error si gnals for the outputs of the feed-forward
network. This is best illustrated in the following schematic representation of data flow.

Feed-

(]

(]

H
e of Saccade | | |
1 forwar -M")——. Generator |—tal

|~ d + !
2o .| Neural ' | Viswal | 1§ |
= > e (+ c

rﬁ

| Network > Tracking

Figure 3: Schematic representation of data flow. Dashed
box indicates the composite performance systeni.

101

Fa et
e

In Figure 3, the composite performance system consists of the feed-forward neural
network, the saccade generator and the visual tracking subsystem. A training example
consists of input (7, ¢, p, r) and desired output ('*, ¢’ *), where (r'*, c'*) is the coordinate
of the center of the post-saccade image. From the point of view of the composite

- performance system, the problem is a typical supervised learning problem. From the
point of view of the feed-forward network, however, the problem can not be solved by
supervised learning directly, because no desired output (dp*, dr*) of the feed-forward
network is provided, This is called the missing error, signal problem, because the error
signal for the output of the feed-forward network is missing,

The missing error signal problem has been studied extensively in the more general
context of distal supervised learning [6]. Although the general solution presented in [6]
could have been used, there exist much simpler solutions for this specific problem.
Kawato et al. [7] proposed to use an estimated error signal proportional to the error signal
for (', ¢’). This method has been successfully applied in (8] and [9].

The method used in [8] and [9] is very simple, but it only provides a very rough
estimate of the real error signal for (dp, df), which may cause the learning process to
converge slowly. Our approach improves the accuracy of estimated error signals, and
decouples the generation of training examples for the feed-forward network and the
actual training of it, .so that a standard error back-propagation algorithm could be used,

-instead of a customized one. This decoupling even facilitates the exploration of different
network architectures and learning algorithms, since the same set-of training examples
could be used many times. The basic idea is to divide the leaming process into two
phases, and use a fixed approximation f* of the saccade control function fin the first
phase. The approximation f* has to be reasonably good near the center of the field of view
of the camera. This is possible because, for the wide-angle camera, the saccade control
function is linear near the center of its field of view, but rapidly diverges towards the
edges. A few experiments could yield a linear estimate F of f which meets this
requirement. B

In the first phase, f” is used in place of f and remains unchanged. The sole purpose
of this phase is-to generate training examples using f°. One pass of this phase consists of
the first five steps in the typical learning trial. After a saccade, as long as f° does not
differ too much from f, we would expect the visual target location (r’, ¢’) to be near the
center of the post-saccade image. Therefore, a second application of f* would provide the

~ additional change (dp’, dt’) which is necessary to center the target in the post-saccade

image. Obviously; the desired output of the saccade control function fis(dp”, dt”),
where dp” =dp +dp’ and dt” = dr + dt’. It is easy to see that the error in (dp”, dt”)
largely depends on the error of f near the center of the field of view of the camera, which
by definition of f* is very small. After each learning trial, an input and desired output pair
is appended to a file. The first phase is repeated for as many times as needed to generate
enough training examples. ‘

The second phase then uses these training examples to train the feed-forward
network for the saccade control function. This phase is a standard supervised learning
problem. In this project, a standard error back-propagation leamning algorithm is applied
to a feed-forward network using MATLAB.

102

- 6. SIMULATION.

The visual tracking subsystem and the saccade generator have been constructed.
But due to some unexpected failure in the robot platform, there is not enough time to
implement the training program to put them together. Instead, a simulation is carried out
to demonstrate the effectiveness of the approach used in training the feed-forward
network.

The simulation is based on the following two simplifying assumptions:

1. The axes of the pan and tilt motors are orthogonal.

2. The axes of the pan and tilt motors coincide at the center of the lens of the

- camera,

The first assumption implies that a change in pan motor coordinate only causes a
change in column coordinate of a visual target, while a change in tilt motor coordinate
only causes a change in row coordinate of a visual target. This property enables the
decomposition of the saccade control function into two independent functions: a pan
control function and a tilt control function. The second assumption further implies that
the saccade control function is independent of the current pan and tilt motor coordinates,
Therefore it suffices to study the saccade control function when p =t =0. Furthermore,
the row and column coordinates can be scaled to be within the range between -1 and 1.
This‘is easily achieved by choosing the image center as the origin, and scale the row and
column coordinates by half of the height and width of the image. In summary, the
saccéde control function can be represented by a pan control function dp = f(c)and dr =
Jdr), whete -1 < r,¢ < 1and p =¢=0. The simulation is performed on the pan control
function f,.

.. ‘The function f, is taken to be:

f©)= 27L arcsin(c) 4)

where L is the maximum change in proportional pan motor coordinate required to
saccade to a point on the edges of an image. This form of Jp satisfies the requirement on
its linearity: it is nearly linear when ¢ approaches 0, and diverges when c approaches +1.

The linear estimate of f, is simply taken to be the first order approximation of (4)
near ¢ = 0:

L=)
¥4

Suppose the initial column coordinate of a visual target in the pre-saccade image
is ¢, the change in proportional pan motor coordinate for the saccade is given by:

dpl':fest(cl):g% (6)

However, due to imperfection in motor control, the actual proportional pan motor
coordinate after the saccade will be:

103

py=dp +e)
where ¢; is a small random variable with some probability distribution.

After the saccade, the actual column coordination c; of the visual target in the
post-saccade image satisfies the following condition:

fp(cz)+p1 =fp(cl) (®)

However, due to the error in visual tracking, the perceived column coordinate ¢’
of the visual target in the post-saccade image will be:

G =c te, ®

where e; is a small random variable with some probability distribution.
Our solution to the missing error signal problem defines the error signal for dp; to

be:
P, = for(3) = 2Ley (10)
Finally, the desired change in propqrtional pan motor coordinate is given by:
dp = dp, +dp, (11)
and the actual change in proportional pan motor coordinate is given by:
dp* = f,(c;) (12)

7. RESULTS AND DISCUSSION

In our simulation, L is set to 1, and e; and e, are set to Gaussian distributions with
zero mean and standard deviation 0.05.

Figure 4 shows the errors of the training examples generated by one simulation.

These training examples are used to train a 3-layer feed-forward network with 1
input node, 3 hidden nodes, and 1 output node. All nodes use the hyperbolic tangent
sigmoid nonlinearity as defined by:

2
tanh(v) = -1 13
) o7 | (13)

Figure 5 shows the performance of a trained network.
These simulation results confirm the effectiveness of the approach used to
generate training examples. Besides, these results illustrate how the performance of the

104

saccade control function is likely to degrade towards the edge of the field of view of
cameras. In addition, repeated simulations have revealed that as the deviation of the
random errors €; and e, increase to a significant level, such as 0.1, as depicted in Figure 6.
This phenomenon highlights the importance in accurate visual tracking and motor

control.

Eror in tralning examples
0.03 t T T T T T

0.025F

0.021

0.015}

0.01

0.005

<0.005

£.01H 4
.0’015-1 -010 -0:6 -0j4 -0:2 (lJ) 0?2 0.l4 0'.'6 ,0."8 1
column coordinate
= Figure 4: Error in training examples
s _ Performance of trained feed-forward network
0.1

0.05

“0.05

i 4 |
086 06 04 02 0 02 04 06 08 1
column coordinate

I ! i

EAR g L .
-4

Figure 5: Performance of trained network

105

106

Ervor Intraining examples with bigh notse leysl

¥

045+
018}
E~4.17 :

0.181

948 ;/____i
£2 i 1 1 1

1 1 1 1 1
| 0.8 0:6 04 02 ¢ 02 0.4 06 08 1
column coordinate

Figure 6: Error iﬁ training examples with high noise level

REFERENCES

Aloimonos, Y., Weiss, L., & Bandopadhay, A. (1987) Active Vision. Int. J.
Computer Vision, Jan. 1987, vol. 1, pp. 333-356.

Murray, D.W., Bradshaw, K.J., McLauchlan, P.F., & Sharkey, P.M. (1995)
Driving saccade to pursuit using image motion. Int. J. Computer Vision, vol.
16(3), pp. 205-228.

Massone, L. (1994) Sensorimotor learning. The Handbook of Brain Theory and
Neural Networks, M.A. Arbib, Ed., Cambridge, M.A. MIT Press, to appear.
Swain, M.J., & Ballard, D.H. (1991) Colour Indexing. ICV, pp. 11-32.
McKenna, S.J., Raja, Y., & Shaogang Gong. (1999) Tracking Colour Objects
Using Adaptive Models. Image and Vision Computing, Vol. 17, pp. 225-231.
Jordan, M.1,, & Rumelhart, D.E. (1992) Forward models: Supervised learning
with a distal teacher. Cognitive Science, v. 16, pp. 307-354

- Kawato, M. (1990) Feedback-error-learning neural network for supervised motor

learning. Advanced Neural Computers, Elsevier, Amsterdam, pp. 365-372.
Bruske, J., Hansen, M., Riehn, L., & Sommer, G. (1996) Adaptive saccade
control of a binocular head with dynamic cell structures. Proc. Int. Conf. Artificial
Neural Networks, Bochum, Germany, Jul. 16-19, LNCS, Vol. 1112, pp. 215-220.

. Marjanovic, M.J., Scassellati, B., & Williamson, M.M. (1996) Self-taught

visually-guided pointing for a humanoid robot. Proc. of the 4th Int. Conf. on
Simulation of Adaptive Behavior (SAB'96), pp. 35-44. :

