A. H. Sherman is at the Department of Computer Science, University
of Tllinois, Urbana, Tllinois 61801.

Applications of an Element Model
for Gaussian Elimination

S. C. Eisenstat, M. H. Schultz
and A. H. Sherman

Research Report #54

This work was supported in part by NSF Grant GJ—43157 and ONR Grant
N00014-67-0097-0016.

1. Introduction

Consider the system of linear equations
(1.1) Ax=0b

where A is an NxN sparse symmetric positive definite matrix such as those that arise in
finite difference and finite element approximations to elliptic boundary value problems
in two and three dimensions. A classic method for solving such systems is Gaussian
elimination: We use the kth equation to eliminate the kth variable from the rémaining
N-k equations for k = 1,2, ...,N-1 and then back-solve the resulting upper triangular
system for the unknown vector x. Equivalently, we form the UTDU decomposition of A and

successively solve the triangular systems
(1.2) U z=b,Dy=2,Ux=y

‘Unfortunately, as the elimination proceeds, coefficients that were zero in the original
system of equations become nonzero (or fi1l-in), increasing the work and storage required.
The purpose of this paper is to introduce a new graph-theoretic model of such £ill-in;

to establish lower bounds for the work and storage associated with Gaussian elimination;
and to present a minimal storage sparse elimination algorithm that significantly reduces

the storage required.

In section 2, we review the graph-theoretic elimination model of Parter and Rose
and introduce a new element model of the elimination process. In section 3, we use this
model to give simple proofs of inmherent lower bounds for the work and storage associated
with Gaussian elimination, generalizing similar results of George and Hoffman, Martin,
and Rose. Last, in section 4, we show how the element model, combined with the rather
unusual idea of recomputing rather than saving the factorization, leads to a minimal
storage sparse elimination algorithm that requires significantly less storage than regular
sparse elimination (e.g. O(nz) vs. O(n2 log n) for the five- or nine-point operator on an

nxn mésh).

2. An Element Model for Gaussian Elimination

In this section, we shall review the graph-theoretic elimination model of Gaussian
elimination suggested by Parter [6] and extensively developed by Rose [7] and introduce
a new element model, cf. Eisenstat [1], Sherman [9].

Given an irreducible NxN symmetric positive definite matrix A = (aij)’ we can
represent the zero-nonzero structure of A by a graph G(A) = (V,E) as follows: The vertex
vy of G(A) corresponds to the ith row/column of A; the edge (Vi’vj) is an edge of G(A) if
and only if aij # 0. We shall model Gaussian elimination on the matrix A as a sequence

G(k) of such graphs.

(k+1) (k)

Let G(l) = G(A). Then the graph G is derived from G as follows: Corre-
sponding to using the kth equation to eliminate the kth variable from the remaining N-k
equations, we add any edges necessary to make all vertices adjacent to the kth vertex Vi
pairwise adjacent and then delete Vi and all edges incident to it. Thus the graph G(k)
represents the nonzero structure of the lower N-k+l x N-k+l submatrix of A just before the
kth variable is eliminated. From this observation, the following operation and storage

counts are immediate:

Theorem (Rose [7]): Let dk denote the degree of vertex Vi in the elimination graph G(k),

" j.e. at the time it was eliminated. Then the number of multiplies required to form the
UTDU decomposition of A is given by
N1

W= :1 5 dk(dk+3)

and the number of off-diagonal nonzero entries in U is given by

The element model emulates Gaussian elimination as a sequence of transformations

on the graph G(A) and the collection E of maximal cliques of vertices in G(A) which we

5(1) E(1)

= G(4), = E, and all yertices are

® 4 g

shall refer to as elements. Initially,

marked uneliminated. Then é(k+l) and E(k+1)

are derived from G and as follows:
Corresponding to using the kth equation to eliminate the kth variable from the remaining
N-k equations, we mark th kih vertex v, as eliminated and add any edges necessary to make
all vertices adjacent to Vi pairwise adjacent (no vertices or edges are deleted); all the
elements of E(k) containing v, are merged into a new element and then deleted from E(k).

(k) so that

Note that the subgraph of é(k) induced by the uneliminated vertices is just G
the number of uneliminated vertices adjacent to Vi at the time it is eliminated is dk as
above. Also, elements in E(k) are cliques in é(k) (though not necessarily maximal

5 (k)

cliques). A vertex will be said to be an exterior vertex in G if it belongs to more
than one element; otherwise it belongs to exactly one element and is said to be an
interior vertex.
As an example, consider the elimination process for the nine-point operator on
a 3x3 grid:
1-5-2
11
Figure 2.1 7-8-9
I 1]
3-6-4
Initially, the elements correspond to the individual mesh squares or elements, since these
form the only maximal cliques in G(A). Hence the name "element model" (cf. George 4.
When we eliminate vertex Vs there is no change in the element graph (except to mark vy
_ eliminated) since it is an interior vertex. The same is true when we eliminate Vos Vg3s
and V4 When we eliminate Vs, however, the two elements containing vy are merged, as also
happens when we eliminate Vg* Now eliminating v, causes the two remaining elements to be
merged into the final element which consists of all the vertices. Eliminating vertices
Vg and Vg has no further effect Qince they are interior vertices.
We note the following properties of the element model for future use. Throughout

the elimination process, the number of elements that contain a given vertex never increases.

Thus an eliminated vertex is necessarily an interior vertex, and, correspondingly, an

exterior vertex is uneliminated. (However, an interior vertex need not have been
eliminated.) Initially, the largest element contains at most dmax vertices, where dmax
is the maximum degree of any vertex in G(A) and no vertex belongs to more than zdmax

)

= -1
elements. (See Eisenstat [1] for an example where a vertex actually belongs to 22 ‘max

elements.) At the end of the elimination, the only element consists of all the vertices.

3. Lower Bounds for Gaussian Elimination

In recent years, there has been a great deal of interest in computational complexity,

particularly in analyzing the number of fundamental operations inherent in a computaion.
Along these lines, George [4] and Hoffman, Martin, and Rose [5] have used the elimination
graph model to prove lower bounds for the work and storage associated with Gaussian
elimination on symmetric positive definite matrices whose graphs are certain regular
planar grids. 1In this section, we shall describe how the element model can be used to
give simpler proofs of these results that extend easily to some irregular grids in two and
three dimensions. For further details, see Eisenstat [1].

First we shall define the model of computation in which these lower bounds are
valid. Given an irreducible NxN symmetric positive definite matrix ‘A, we seek to solve
the system of linear equations (1.1) using Gaussian elimination. The work associated with
. the elimination process will be taken as the number of multiplies to factor A; the storage
. as the number of nonzero entries in the matrix U.

The work and storage required for Gaussian elimination is directly related to the
order in which the variables are eliminated. Thus, instead of solving the original system

(1.1), we might prefer to solve the permuted system.

[3.1) PAP y=Pb, Ply=x

'for some given permutation matrix P so as to reduce the associated work and storage.
Indeed, a great deal of research has been done toward discovering good ordering strategies

(e.g. minimum degree [7] and nested dissection [4]). Note that the permutation P does not

change the structure of the graph G(A), other than relabelling the vertices and thus
changing the order of elimination. Since the lower bounds we shall derive will be
independent of such considerations, they will be valid for all possible orderings.

As in section 2, let G(A) = (V,E) denote the graph associated with A, and let d .

denote the maximum degree of any vertex in G(A). We shall now make the following additional

assumption about the matrix A or, equivalently, the graph G(A):

"Tsoperimetric” Inequality: There exists constants K > 0 and 0 < a, 8 < 1 such that,

given any subset S of V with lS] < B N, we have

las| = k |s|®
where
98 = {ve S :3w € V-S such that v and w are adjacent in G(A)}

is the boundary of S.

This assumption is closely related to the classical isoperimetric inequality, which

relates the area A and perimeter P of a plane figure

and the isovolumetric inequality, which relates the volume V and surface area S of a

three-dimensional region

83 2 361rV2.

Indeed, proofs of this property for particular grids follow the classical proofs. As an

example, for the five- or nine-point operator on an nxn grid, we have

1/2 a2
/ if Isl s &5,

las] 2 |s]
while for the seven— or twenty-seven—point operator on an nxnxn grid we have

2

6 ’

2/3

13s] = Is} if |s] <

cf. Eisenstat [1].

Lemma (Eisenstat [1]); Assume that the graph G(A) satisfies an isoperimetric inequality.

Then there exists a K(BN/deax)a clique in some elimination graph G(k).

Egggf; At the start of the elimination process, the maximum size of any element is dj .,
the maximimum degree of any vertex in G(A). At the end of the elimination process, there
is exactly one element of size N, namely the set of all vertices. Therefore, at some point
during the elimination, the first element of size > BN was created. This element was
created by merging all the elements containing some vertex Vier As we saw in section 2, Vi

zdmax

could belong to at most elements at this point and thus at least one such, say e¥,

must contain more than BN/deax vertices. Consider the boundary vertices of e*. There
are at least K(BN/deax)a'such vertices by the isoperimetric inequality, all are unelimi-
nated vertices at this stage, and they are all pairwise adjacent. Thus they form a clique

in ¢9, _ QED
Corollary: The bandwidth of the matrix A is at least
K(B/deax)a N

Corollary: The total work. required to factor the matrix A using band elimination is at

least
%-K?(B/2dmax)2a N(2a+1);

the number of nonzeroes in the band of A is at least
k(8/2%max)@ y(o+1),

The proof follows directly from the standard operation and storage counts for band

elimination invterms of the number of equations and the bandwidth.

Corollary: The total work required to factor the matrix A is at least
%-K3(3/2dmax)3u N3a;

the number of nonzeroes in U is at least

%_KZ(B/deax)Za NZa.

The proof follows from the Lemma as in Hoffman, Martin, and Rose [5].

We shall now examine the consequences of these simple results. For planar grids
with ~n2 vertices and bounded degree, such as the five- or nine-point operator on an nxn

grid:

(1) the bandwidth is at least 0(m)

(2) the work and storage are at least 0(n4) and 0(n3) respectively for band elimination

(3) the work and storage are at least 0(n3) and O(nz) respectively for sparse
elimination (a more careful analysis gives O(n2 log n) for the storage; see

Eisenstat [1]).

For three dimensional grids with ~n3 vertices and bounded degree, such as the seven— or

twenty-seven-point operator on an nxnxn grid:

(4) the bandwidth is at least O(nz)
(5) the work and storage are at least 0(n7) and O(n6) respectively for band elimination
(6) the work and storage are at least 0(n6) and O(na) respectively for sparse

elimination.
4. Minimal Storage Sparse Elimination

One of the major disadvantages of Gaussian elimination for solving sparse systems
of linear equations %s the amount of storage required. For example, to solve the nine-point
finite difference operator on an nxn grid requires at least O(n2 log n) storage whereas an
iterative method would require only O(nz) storage. In this section, we present a variation
of sparse Gaussian elimination that trades a significant reduction in storage for a modest
increase in work. For ease of exposition, we shall restrict attention to the nine-point

operator on an nxn grid with n = 2t—1, but the results are valid for more general finite

element grids, cf. Eisenstat, Schultz, and Sherman [3], Sherman [9]. For similar results
on band elimination, see Eisenstat, Schultz, and Sherman [2], Sherman [9].

Two basic concepts are used in achieving.this reduction: First, rather than save
the entire factorization, we shall throw most of the nonzero entries of U away and re-
compute them as needed during the back-solution; second, we use an element merge tree to
specify a divide-and-conquer elimination ordering and to keep track of those entries of U
that are being saved during each step of the calculation.

Suppose we were to perform Gaussian elimination in such a way that the last 2n+l
variables to be eliminated correspond to the vertices on a dividing cross as shown in
Figure 4.1. At the end of the elimination process, we would have generated all the
coefficients in the upper triangular system of equations that remains, and we have merely
to solve this system. for the vector of unknowns x. Yet suppose we had saved only those
coefficients in the last 2n+l rows. Then we could only solve for the last 2n+l variables,
i.e. the values of the unknowns on the dividing cross. This is’ enough, however, to split
our original nxn problem into four smaller ~n/2 x ~n/2 problems of the same form, which we

can now solve in the same fashion.

1
[Dt - qQ j
Figure 4.1. “‘f'*zé)

Of course, we wili have fo do more work than we would have had we saved the entire
factorization. But how much more? The nested dissection ordering of George [4] orders
the variables on the dividing cross last and requires approximately Cn3 multiplies for
some fixed constant C. Thus the cost of the whole procedure is just Cn3 plus the cost of

solving four ~n/2 x ~n/2 problems. Letting 6(n) denote this cost, we have that
. 3
6(n) = Cn~ + 46(n/2)

~ and that o(n) = Cn3 for n sufficiently small. (After all, whenvthe amount of storage for

the factorization gets small enough, we may as well save all of it.) The solution to this

recurrence relation is
o 3
6(n) = 2Cn”.

Thus we are doing twice as much work but, as we shall see, the savings in storage will be
much more significant.

The element merge tree is based on the element model introduced in section 2.
Recall that initially there were a number of elements, or maximal cliques of vertices, and
that as the elimination progressed these elements were merged into larger and larger
elements until only a single element containing the entire set of vertices remained.
Given an elimination ordering, we construct the corresponding element merge tree as follows:
The nodes in the tree represent elements that were created during the elimination process;
the root of the tree is the final element consisting of the entire set of vertices; the
node (i.e. element) ey is a son of another node e, if and only if e, was merged into e,
when some vertex vy Was eliminated. The merge tree for the 3x3 nine-point operator of

Figure 4.2a is given in Figure 4.2b.

1-5-2
111
Figure 4.2a. 7-8-9
I 1
3-6-4

Figure 4.2b. " {1,2,3,...,9} ‘

/
{?2,5.7,8,9} {3,4,6,7,8,9}
\
{1,5,7,8} {2,5,8,9} {3,6,7,8} {4,6,8,9}

We will now specify the ordering of vertices and the corresponding element tree
which we will use to make the storage required for our procedure O(nz) as opposed to the
O(n2 log n) for the factorization. Beginning with the entire grid, we break it into four
equal-size elements using a dividing cross as in Figure 4.1. (Note that the vertices on
the dividing cross belong to more than one element since they are exterior vertices.) The

last vertices to be eliminated will be the center vertex followed by the other vertices on

10

the dividing cross. We then order the interior vertices in element I, followed by those
of element II, element III, and element IV. The vertices within each of these are
eliminated in an analogous fashion: The last vertices to be eliminated are the center
vertex followed by the other vertices on a dividing cross; we then order the vertices in
each of the four subelements, and so on.

The ordering that results can be shown to be gquivalent to the nested dissection
ordering in terms of the work and storage required (cf. Eisenstat, Schultz, and Sherman [3],
Rose and Whitten [8], Sherman [9]), and the element merge trees are identical, although the
actual orderings are completely different. Thus the divide-and conquer order produces an
0(n3) elimination scheme. We now show that the elimination can be carried out in such a
way ;hat the coefficients in the last 2nt+l rows can be computed using only O(nz) storage.

Consider again the element merge tree. The nodes at the bottom or zeroth level
correspond to elements in the original graph G(A), all of which contain exactly 4 = (20+l)2
vertices. At the first level, the elements were formed by merging four bottom-level elements
anq thus each contains exactly 9 = (21+l)2 vertices. In general, at the kth level the
elements were formed by merging four elements on the (k-1)th level and, by inductionm,

. contain precisely (Zk-i-l)2 vertices.

We shall say that a particular element in the element tree is active at a particular
point in the elimination if it has not yet been merged into another element. Then the only
entries in the triangular factor U that we shall be saving at that point are those corre-
sponding to pairs of exterior vertices in active elements. Note that the final element
is active once it is created and is never deactivated, so that the coefficients in the last
* on+l rows of U will be available to solve for the unknowns on the dividing cross at the
end of the elimination.

Since there are at most four active elements at any level in the element merge tree
(other than the zeroth) at any stage of the elimination by virtue of the recursive definition
of the ordering, we can easily bound the total storage required: At the kth level from the
bottom, there are at most % = 4-2k exterior vertices per element, which require at most

2(2+1) /2 nonzero entries of U to be saved; thus the total storage is at most

t-1
E o432 (42 - 2.2,
k=0

A more careful analysis using two-way dissection show that the total storage can be reduced
to 9n2, cf. Eisenstat, Schultz, and Sherman [3], Sherman [9].

Note that this surprising result does not really violate the results of section 3;
the storage for U still is O(n2 log n) -- we just aren't saving all the entries. Another
point wotrth noting is that the algorithm can be implemented to run in time O(nlogZ 7) if
the elimination of variables on dividing crosses is done in blocks using Strassen's
algorithm for matri# multiplication and inversion [10]. Again, this does not violate

the results of section 3 since we are doing block rather than point elimination.

12

Ref?rences

1]
(2]

(31

[4]

[5]

(6]

(7]

[8]

91

[10]

S. C. Eisenstat. Complexity bounds for Gaussian elimination. To appear.

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Minimal storage band elimination.

To appear

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Minimal storage sparse

elimination. To appear.

J. A. George. Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis 10:345-363, 1973.

A. J. Hoffman, M. S. Martin, and D. J. Rose. Complexity bounds for regular finite
difference and finite element grids. SIAM Journal on Numerical Aralysis 10:364-369,
1973.

S. V. Parter. The use of linear graphs in Gaussian elimination. SIAM Review
3:119-130, 1961.

D. J. Rose. A graph—theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In R. Read, editor, Graph Theory and Computing,
183-217. Academic Press, 1972.

D. J. Rose and G. F. Whitten. Automatic nested dissection. Proceedings of the
ACM National Conference, 82-88, 1974.

A. H. Sherman. On the efficient solution of sparse systems of linear and nonlinear

equations. PhD dissertation, Yale University, 1975.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik 13:354-356,
1969.

