In the design of Fast Multipole Methods (FMM) for the numerical solution of
scattering problems, a crucial step is the diagonalization of translation operators
for the Helmholtz equation. These operators have analytically simple, physically
transparent, and numerically stable diagonal forms. It has been observed by sev-
eral researchers that for any given precision ¢, diagonal forms for the translation
operators for the Helmholtz equation are not unique, and that some choices lead
to more efficient FMM schemes than others. As is well-known, original single-
stage FMM algorithms for the Helmholtz equation have asymptotic CPU time
requirements of order O(n%/ %), where n is the number of nodes in the discretiza-
tion of the boundary of the scatterer; two-stage versions have CPU time estimates
of order O(n#/3); generally, k—stage versions have CPU time estimates of order
O(n(k+2)/(k+1)) " However, there exist choices of diagonal forms leading to single-
stage FMM algorithms with CPU time requirements of order O(n*/3), two-stage
schemes with CPU time requirements O(n%*), etc. In this paper, we construct
such diagonal forms in two dimensions. While the construction of this paper is in
no sense optimal, it is rigorous and straightforward. Our numerical experiments
indicate that it is within a factor of two of being optimal, in terms of the number
of nodes required to discretize the translation operator to a specified precision .
The procedure is illustrated with several numerical examples.
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Sparse Diagonal Forms for Translation Operators for the Helmholtz
Equation in Two Dimensions

1 Introduction

In the design of Fast Multipole Methods (FMM) for the numerical solution of scattering prob-
lems, a crucial step is the diagonalization of translation operators for the Helmholtz equation.
These operators have analytically simple, physically transparent, and numerically stable diag-
onal forms. Once the latter are constructed, the design of FMM schemes is straightforward;
the simplest “single-stage” algorithms have CPU time requirements of order O(n3/2), where
n is the number of nodes in the discretization of the problem. Two-stage schemes have CPU
time requirements of order O(n*/3); generally, k—stage schemes have CPU time requirements
of order O(n{k+2)/(k+1)), ~

It has been observed by several researchers (see, for example, [4, 2, 3]) that for any given
precision €, diagonal forms for the translation operators for the Helmholtz equation are not
unique, and that some choices lead to more efficient FMM schemes than others. In fact,
there exist choices of diagonal forms leading to single-stage FMM algorithms with CPU time
requirements of order O(n*/3), two-stage schemes with CPU time requirements O(n%/4), etc.

Due to space limitations, we will not describe here the FMM for the Helmholtz equation,
referring the reader to [6], [7). We will observe that the functions b2, : [0,27] — C defined
below are a generalization of functions v, : [0,27] — C of [6]. However, while the functions v,
(see (3.25) in [6]) are nowhere small on the interval [0, 2], the functions b? . are negligibly small
on most of their interval of definition. The cost of this sparsity is a somewhat higher frequency
content of the functions bZ; both the functions vy, b? . are trigonometric polynomials of finite
order, and the order of b2, is 1.5 times higher than the order of v, under similar conditions.
Thie result of this trade-off is a reduction in the cost of the algorithm (see the preceding two
paragraphs). For a more detailed motivation for the development of improved translation
operators for the Helmholtz equation, we refer the reader to the papers [4, 2, 3.

The purpose of this paper is to construct such diagonal forms in two dimensions. The con-
struction is intended to be reasonably rigorous; it is also quite simple. However, the proof that
the resulting translation operator is sparse is quite long and somewhat technical. Thus, discus-
sion is deliberately conducted on two levels. First, we formulate the problem (Subsection 1.1),
and describe a solution (Subsection 1.2). The solution of Subsection 1.2 has been chosen for
analytical simplicity, rather than for its numerical properties. A more numerically attractive
solution is described in Subsection 5.1 and illustrated in Subsection 5.1 by numerical examples.
Thus, a reader who is not interested in the proofs may want to read Subsections 1.1, 1.2, and
turn to Subsections 5.2, 5.2, possibly after reading Subsection 1.3 (informal description of the
construction). '

Otherwise, the structure of the paper is as follows. In Section 2, we summarize the known
facts from analysis to be used in the remainder of the paper. In Section 3, we develop the




requisite analytical apparatus. In Section 4, we prove that the functions b2, introduced in this
section do in fact satisfy the conditions 1. - 3. of this section. Finally, Section 5 contains a
slightly modified construction of the functions b2, (quite similar to that of this section, but
leading to somewhat faster computations), illustrated by several numerical examples.

Remark 1.1 The mathematical techniques used in this paper are limited to elementary anal-
ysis; however, the constructions we use are fairly involved. Thus, the proof of the principal
analytical result of this paper (Theorem 1.1) consists of a fairly long sequence of definitions and
lemmas. Most of the latter follow immediately from the preceding ones and from the relevant
_definitions, and in such cases the proofs are omitted.

1.1 Statement of the problem

In agreement with standard practice, we will denote by J,, the Bessel function of the first kind
of order m, by H,, the Hankel function of order m, and by I, the modified Bessel function of
order m (see, for example, [1], Chapter 9).

Suppose that r, p, e are three real numbers, such that

0<4:-7<p, (1)
and

0 < e < 1/10. (2)
We will denote by v the smallest of all positive integer numbers such that -

Ji(r) < e. (3)

for all j > v. The purpose of this paper is to construct a function b2, : [0,27] — C, satisfying
the following conditions.

1. There exist a positive integer A (independent of p and r, but possibly dependent on ) and
Complex Ay O dpdly Qopp42," 0 Ao, QQ, Oy 0 * 0y A)p—1y O).yy such that

Av
6= Y aj-e?, (4)

j=—A-v
for all 8 € [-7, 7).
2. Forall j€[-2-v,2.v],
| a; — Hi(p) |< e. (5)
3. There exist two numbers ?,q, independent of r and p (though possibly dependent on €),

such that v
|b7(0)|<e (6)




for all 6 € [-7, ] such that

y4 T
|9|>;+q ; (7)

Remark 1.2 From the point of view of asymptotic CPU time estimates, it is sufficient to
construct functions b2, satisfying the conditions 1. - 3. above. In terms of actual computation
times, it is critical that the coefficients A, p, ¢ be as small as possible. In the construction of the
following subsection, A = 3; Theorem 1.1 formulated in the following subsection (to be proved
in Section 4) provides values p = 8- +/2-log(1/¢), ¢ = 8. The actual values are considerably
smaller, as can be seen from the numerical examples presented in Section 5.

Remark 1.3 In this paper we construct several solutions of the Helmholtz equation that are
negligibly small over most of the complex plane, without being equal to zero. We will also
be dealing with restrictions of such solutions on circles and lines in the plane. Abusing the
terminology somewhat, when we say that the support of some function is contained by some
region, we mean that outside that region, the absolute value of the function is smaller than a
preselected ¢.

1.2 Construction of the functions b2,

In this subsection, we construct functions b? . satisfying the conditions 1. - 3. of Subsection 1.1.
We will denote by p the smallest integer such-that

p>(r54eorTiR, (8)
with
-1/3
=4, (9)
1 .
6= Iog(g), (10)
and by u the real number defined by the formula
2
r
U= 8—'3. : (11)
We will define two positive integer numbers m, n via the formulae
m=6- 7 (12)
5
n= "2' st : (13)
respectively, and by f, . the function [-7,7] — C, defined by the formula
sin((n+3)0) L conio)-
Jor(6) = 22 E ) 0 uiconteyn) ”
sin(3)




Finally, for each p > 4 - r, we will define the function b7, : [-7,7] — C by the formula

m/2 - .
02.0)= Y. (Fer)i- Hj(p) €?, (15)
j=—m/[2

where (f;)] denotes the j — th Fourier coefficient of the function f,, : [-7,7] — C.

The following theorem states that the function b2, satisfies the conditions 1. - 3. of the
preceding subsection, and provides estimates for the coefficients p, g in (7). Its proof is the
principal purpose of Sections 3, 4 of this paper.

Theorem 1.1 Sﬁppose that r, p, € are three real numbers satisfying the inequalities (1), (2),
and the function b2, is defined by (15). Then

1. Forallj€[-2-v,2 V],

| (6e); — Hilp) |< e. (16)
N 152.(6) < ¢ (17)

for all 8 € [-m, 7] such that

8.12 . log(}

161 (18)

1.3 Outline of the proof of Theorem 1.1

Put informally, Theorem 1.1 states that given real numbers r, p such that 4-r < p, there exists
a function b: [-m, 7] — C such that

a. b is a trigonometric polynomial of order m, with m ~ 3 - r.

b. The first 4 - r coefficients in the Fourier series of b are defined by the formula
(8); = Hj(p) (19)

for all j such that |j|< 2 7.

c. b(#) is small for all 8 outside a small neighborhood of the point § = 0. More specifically, the
size of the region around 0 where b(6) > ¢ may depend on ¢, but has to be of the order r/p.

In this formulation, it is clear that Theorem 1.1 is not at all obvious, except when p ~ 72,
or greater. Indeed, in this case,

Ho(e) [l -0 F (20)

(see (39)), and the problem.of finding a function satisfying the conditions a. - c. of this section
becomes a classical problem of designing a low-pass filter that is (almost) band-limited in both
time and frequency domains.




When p is considerably smaller than r2 (which is normally the case in situations involving
the FMM), such simple asymptotic techniques do not work. In this regime, Theorem 1.1 is
a consequence of detailed analytical properties of Hankel functions, and its proof has to take
these into account. In this paper, we observe that (4) can be rewritten as

m/2
b(p,0)= Y ;- Hj(p) €?, . (21)

j=-m[2
with the condition (5) assuming the form
[vi=1|<e. (22)

Now, we change our point of view, interpret the pair (p,0) in (21) as polar coordinates of a
point in R?, and define the mapping @ : R? — C via the formula

Q(z,y) = b(p, ), (23)

with (p, 6) the polar coordinates of the point (z,y) € R2. Clearly, in this interpretation, Qisa
solution of the Helmholtz equation (24) satisfying the radiation condition (27). Thus, the proof
of Theorem 1.1 has been reduced to constructing a solution to the equation (24) possessing
certain properties. Once such a solution is found, the function b2 .(6) is obtained as a restriction
of @ on the circle of radius p.

The conditions to be satisfied by Q follow immediately from the conditions a. - c. above. In
addition to (22), @ must look like a beam to satisfy (17). Fortunately, beam-like solutions of the
Helmholtz equation are well-known; a typical example are the so-called Gaussian beams (see
Section 3 below). In this paper, we obtain functions (21) as linear combinations of Gaussian
beams (see Section 4, where the resulting function R? — C is denoted by Q).

The last problem we encounter is the fact that Gaussian beams are not sufficiently sharp to
satisfy the condition c. of Subsection 1.1; put differently, a Gaussian beam that is sufficiently
sharp to satisfy the condition c. is singular on a region too large for the condition a. to be
satisfied. Fortunately, Gaussian beams can be modified to reduce the size of the singular region
dramatically, leaving the beam almost intact away from the singularity. Section 3 is largely
devoted to this construction, which is referred to as Modified Gaussian Beam.

2  Analytical Preliminaries

In this section, we summarize several facts from analysis to be used in the sections below. All
of these facts are either well-known, or follow immediately from well-known facts.

2.1 Notation.
For the Helmholtz equation

Vi + k=0 (24)




we will define the potential ¢f : R?\ {zo} — C of a unit charge located at the point zo € R?
by the formula

¢k, () = Ho(k||z — zol)), (25)

where Ho denotes the Hankel function of order zero. We will define the potential ¢I;o,h of a
unity dipole located at zo and oriented in the direction h € R? by the formula

k(z - g, h)

k _— — G ——————————
¢z‘o,h(z) = Hl(k”z 2)0“) ”.’B — 30” ’

(26)
where H; denotes the Hankel function of order one. In most cases, a potential ¢ satisfying the
equation (24) in an unbounded region, also satisfies the radiation condition at oo, i.e. for any
z € R?, there exists ¢ € C such that

tlim P(t-z) el 1= ¢, (27)

and will refer to functions satisfying the equation (24) (and in unbounded regions - also the
condition (27) ) as radiation potentials.

Remark 2.1 In the remainder of the paper, we will be assuming that the Helmholtz coefficient
k in (24) - (27) equal to 1, unless explicitly stated otherwise.

For an arbitrary set D € R? and a point z € R2, we will denote by Tx(D) the set of all
points y in R? such that y — z € D.

Given a set D C R? and a positive real number 7, we will denote by S,(D) the set of all
points 2 € R? such that z = zg + y, with zo € D, and y some vector in R? such that ||y|| < r.
The following obvious lemma provides a bound on the radius of S,(D) given the radius of D.

Lemma 2.1 Suppose that D is a subset of R?, and p > 0 is a real number, such that ||zo|| < p
for all zo € D. Then ||z|| < r + p for any z € S,(D)

In Subsection 2.2, we will need the following lemma; its proof is an exercise in elementary
calculus, and is omitted.

Lemma 2.2 For any positive real z,t and natural k,

e%'(1+%+z:k k2 k4
TR ST (28)
z




2.2 Elementary properties of Bessel functions

As is well-known, there exist two functions a,8: C — C, such that

Ho(2) = a(z) + B(z) - log(=2) (29)
for all z € C; the functions Hg, H; are connected by the formula

Hy(z) = —diz.Ho(z). (30)

The following lemma provides a crude (but sufficient for our purposes) estimate of the absolute
values of the Hankel functions Hy, H;. It is an immediate consequence of 9.1.12,9.1.13, 9.2.1,
9.2.7 in [1].

Lemma 2.3 For any z € C,

e~ Im(z) .
| Ho(2) |[< —7— (31)

Viz]’

and

| Hy(2) |< emIm@) -(ﬁ + Ti—ﬂ' (32)

As is well known (see, for example, [8]), J,, are analytic on the whole complex plane for
all integer values of m, while H,, have a branch cut along the negative real axis, and become
infinite at the origin. The asymptotic behavior of the functions J,,, H,, for large m is given
by the formulae

Jdim Jn(z)- (2 - flemm) =1, (33)
Jim B () (- Y0 = (31)

(see [1], 9.3.1, 9.3.2, 9.1.3). It is immediately clear from (33) that the functions Jm(2) decay
rapidly when z is fixed and m is large. However, (33) is an asymptotic statement, understating
the actual rate of decay of (33) when m is only slightly greater than | z |. For purely imaginary
z, a dramatically stronger estimate is given by Lemma 2.7 below; for purely real 2, a fairly
tight estimate is provided by the following lemma, which can be found in (8], pp. 227, 255.

Lemma 2.4 Foranyreal0 <z <1 andv > 0,
V. eu-\/(l—:ﬁ)
(27 0)2 - (1-22)% - (14 (1 - 2?))

The following lemma provides a simplified version of (35). Given (35), its proof is an exercise
in elementary calculus, and is omitted.

(35)

Ju(v-z)<




Lemma 2.5 For any realr > 10 and 0 < ¢ < 0.1,

Ja(r)<e (36)
for any

n> (r% +c- r‘%)g’, (37)
with ¢, § defined by (9), (10).
Remark 2.2 Obviously, if n satisfies the inequality (37) and v is defined by (3), then v < n.

For large z and fixed m, the asymptotic behavior of J,(2), Hy(2) is given by the formulae

Im(z)
VEIm(2) - \/(—g—)cos(z - -7)= 0(3|—£|——), | (38)
e—Im(2)

VElR() = (D) F D = o (39)

||

when z — 00, as long as Im(z) > 0 (see [1], 9.2.5, 9.2.7).
We will need the behavior of Bessel functions in one more asymptotic regime, as provided
by the following lemma, which can be found (in a slightly different form) in [8].

Lemma 2.6 For any integer n > 0,

1 I(3)
92 22/3.31/3. 1. p1/3

I'(3) _
22/3.31/3.1.91/3

< Ja(n) < 2. (40)

Furthermore,

_92/3.31/3. 4. p1/3
nango ) <Jn(n) = 1. (41)

As is well-known, the modified Bessel functions I,, are defined by the formula
In(z) =i Jn(i-2) (42)

for all complex z; we will need the classical formula

(o
A = S kg, (43)

. k=—c0
valid for all pairs z,t such that ¢ # 0.

It is well-known that once n > z, the functions J,,(z) decay rapidly with n (see (33), (35)),
for all complex z. What appears to be less well-known, is that when z is purely imaginary, the
decay starts at n ~ /(2 - z). The following lemma provides a somewhat crude description of
the behavior of I,(z) in the regime /{2 z) < n < z. We present an outline of the proof for
this lemma, since the author has failed to find it in the literature.




Lemma 2.7 For any integer n and real z such that 0 < n < z,

4

[N

n n

I(z) < e¥-e" 77 . €627, , (44)

Proof.
Since Ix(z) > 0 for all positive k, z, it immediately follows from (43) that
£.(t+l)
€2 t

Ik(z) < 1k (45)
for all positive real ¢,z and natural k. In particular, (45) holds for t = 1 + f, becoming

I e3(+i+5) 46

<T—.
Now, (44) follows from Lemma 2.2 above.
(]

The following technical lemma is obtained from the preceding one by elementary algebraic
manipulation.

Lemma 2.8 Suppose that r,u,8 are three positive real numbers, and n is an integer num-
ber. Suppose further that é,c,u are defined by (10), (9), (11), respectively, and n satisfies the
inequality (37). Then

I(u) < e*.e®. (47)

Finally, we will need two well-known integral expressions for Bessel functions, given by the
following lemma.

Lemma 2.9 For any integer n and complez z,

=T T .
Jn(z) = 21 - / et-z-ca&(e) . et-n'ede’ (48)
: 0
and
1 2 6) . inb
I(2) = 5o / ezcos(6) | ginb g © (49)
: 0




2.3 Green’s formula for the Helmholtz equation

The following theorem is a special case of the famous Green’s formula. It can be found (for
example) in [5].

Theorem 2.10 Suppose that the function ¢ : R? — C satisfies the Helmholtz equation (24)
outside the region Q with boundary T'. Suppose further that it satisfies the outgoing radiation
condition (26) at oo. Than for any z € R?\ (,

1 oG, 09
#z)= -5+ [60) S22 + oo())- Glta)dl, (50)
with
G(z,y) = Ho(k - ||z - y||) (51)
for any z,y € R? such that z # y; the integration in (50) is with respect to the arc length.

2.4 Partial wave expansions of radiation potentials

Suppose that a function % : R? — C satisfies the Helmholtz equation (24) outside the disk
D of radius R with the center at the point zo € R?, and that it also satisfies the radiation
condition (26) at co. Then there exists a unique sequence a = {a, },m = 0,1,2, - -+, such that
for any z € R?\ D,

+o00
$(@)= Y om- Hnlkp)- ™. - (582
m=-0o0
In the above formula, p = ||z — z¢|| and 6 is the angle between the vector z — zo and the z axis.
A derivation of the formula (52) can be found, for example, in [5]; we will refer to expansions
of the form (52) as H-expansions, and to the point zo as the center of the expansion (52).
The following lemma is a direct consequence of the formulae (33), (34). It establishes the
convergence rate of the expansion (52).

Lemma 2.11 If Dy C D is a disk of radius Ry > R with the center at o then there ezists
¢ > 0 such that for any z € R>\ Ry and N > |k|- R,

N ) R
RN ﬂm-Hm<kp)-e'""’|<c-<§;>N- (53)

m=-N

Remark 2.3 In numerical calculations, the expansion (52) is truncated after a finite number
of terms, and the resulting expression is viewed as an approximation to the potential 1. As is
well-known, if we want to approximate % by an expansion of the form (53) with accuracy e,
we have to choose ‘

N~R-|k|, (54)

i.e. the number of terms in the approximation is almost independent of ¢, and must be roughly
equal to |k|- R.

10




2.5 Far-field representations of radiation potentials

In this subsection, we introduce an alternative form of the expansion (52), possessing a simple
physical interpretation simplifying many calculations with radiation potentials.

For the expansion (52), we will consider a function Fy,(¢): [-7,7] — C! defined by the
formula

Fr@)(0) = Jim (-4 20) - Vi-eoit YOI o 5

with z = (cos#,sin §). Substituting (39), (52) into (55), we immediately obtain

+w . .
Fpo(¥)(8) = Y Brme™ 5 'e™, (56)

m=—0oo

which provides an explicit expression for F () via the coefficients {#,,}. Clearly, (56) defines
a unitary mapping connecting the coefficients {a;} in the expansion (52) with the with the
function F3 (%), and we will refer to F,(¢) as the far-field representation of the radiation
potential 9 with the origin at zo.

Obviously, given a radiation potential (52), its far-field representation (55) depends on the
origin zo. The following lemma describes the dependence; its proof can be found (for example)
in [6].

Lemma 2.12 Suppose that the radiation potential ¢ is defined by the formula (52), and zo,
z1 are two arbitrary points in R?. Suppose further that F, (), Fy,(¢) are the far-field repre-
sentations of ¢ with origins zo, 1 respectively. Then for any 6 € [-m, 7],

Foy (9)(8) = Fro (9)(6) - e+ ((Frmm0) ), (57)
with the vector w € R? defined by the formula
w = (cos(h), sin(6)). (58)

Remark 2.4 In fact, both the existence of asymptotic representations of radiation fields and
the above lemma are an immediate consequence of the radiation condition (27). A detailed
investigation of such issues can be found in [6] in the two-dimensional case, and in [7] in the
three-dimensional one.

The following lemma is an immediate consequence of the formulae (56), (52). It provides
an explicit formula for the evaluation of a radiation potential at a point, given its far-field
representation.

Lemma 2.13 Suppose that a function v : R? — C satisfies the Helmholtz equation (24) outside

‘the disk D of radius R with the center at the origin, and that v also satisfies the radiation

11




condition (26) at coc. Suppose further that o : [~7, 7] — C is the far-field representation of 1.
Then for any z € R?\ D,

+o0 .
W)= Y (B)m-€T ™ Hy(k-p), (59)

m=-—00

where (p, 0) are the polar coordinates of z, and (&), denotes the m-th term of the Fourier series
of o.

2.6 Gaussian Beams

Gaussian beams are solutions of the Helmholtz equation that are obtained as potentials of
charges with complex coordinates. Such a potential is small everywhere outside a region in the
plane that looks like a spreading beam, and inside that region the graph of the absolute value of
such a function looks like the normal distribution; hence the term “Gaussian beam”. Because
of their localized nature, Gaussian beams are used as building blocks for the construction of
other solutions for the Helmholtz equation. ' . ,

Suppose that u > 0 is a real number. We will define the function G, : R? — C by the
formula

Gu(z,9) = Ho(\ /(e — i w2 + 7)) - ¥, (60)

and refer to G, as a Gaussian beam with base u, oriented horizontally and pointing to the
right. For any zo € R?, we will denote by GZ° the mapping R? — C, defined by the formula

Gy’ (2) = Gu(z + 20). (61)

Obviously, G2 = G,,, and G%° will also be referred to as a Gaussian Beam.

The following lemma provides an explicit expression for the far-field representation for the
Gaussian beam (60). While its proof is very simple, we provide it, since it reveals important
features of the behavior of Gaussian beams at large distances from the origin.

Lemma 2.14 Suppose that u is a positive real number. Then the Gaussian beam (60) is a
radiation potential outside the subset B, of R?, consisting of all pairs (z,y) such that

z =0, ' (62)
-u <y<Lu ‘ - (63)

Furthermore, the far-field representation of (60) is given by the formula
Fo(G.)(8) = ev(cos(®)-1), | (64)
for all 6 € [~7,7].

12




Proof. We start with observing that the equation
(z—-i-u)l+y2=0 (65)
has exactly two solutions:
(= =0, y=-u), (66)
(z =0, y=u). (67)

Thus, the function Gy : R? — C has logarithmic singularities at the points (66), (67), connected
by a branch cut (see (29)); obviously, outside this branch cut the function (60) is analytic and
satisfies the equation (24).

Suppose now that z% + y?> >> u?. Using the Taylor theorem, we have

Ve —iuf +9%) =
\f<w2+y2>'ﬁ1-2;§fy'“ x2+y2)

z? 2y _ ;. z-
Ve 47) - i + Oy -

f—iou-cos(0)+0(—), (68)

with (r, ) the polar coordinates of the point (z,y) € R?. Now, (64) follows from the combina-
tion of (68), (60), (55), (39).

(m]
Remark 2.5 An exercise in elementary calculus shows that for any u > 0,
ewicos(ﬁ)-—l) < —evl | (69)
for all § € [-=, 7], and
max | e(es®)-1) _ < < _1., (70)
6€[~n,7] : u

Both bounds (70), (69) are quite crude, but sufficient for our purposes.

3 Detailed Analysis of Gaussian Beams

In this section, we develop the analytical apparatus to be used in Section 4 to prove Theorem 1.1.
The principal tool we use consists of the well-known Gaussian beams; however, the analysis we
use is somewhat more detailed than what appears to be present in the literature.
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3.1 Four elementary lemmas

In this and the following subsections, we analyze the spatial structure of functions of the
form (60) in some detail, in the process justifying the use of the term “Gaussian beams”. Lem-
mas 3.1 - 3.4 below provide the necessary analysis. Their proofs are an exercise in elementary
calculus, and are omitted. We start with several additional definitions.

For any positive real u, we will define the function f: R? — C by the formula

@)= (e =i 0P +97). | (71)
For any positive real u, 4 such that 8 < u, we will define two regions A, B in R?, as follows.

1. The region A, g consists of all pairs (z,y), such that

PIRU(Ca ﬂ’)ﬂ' (v - 67) (72)

2. The region B, g consists of all pairs (z,y), such that
24 32). (42 — (2

ly <

(see Figure 1).

Lemma 3.1 For any positive u, 8 such that 8 < u,

R®= Ayp|JBugs. (74)
Furthermore, for any (z,y) € Ay g,

Im(f(z,y)) < B, (75)
and for any (z,y) € By,

Im(f(z,y)) > B, (76)

The precedmg lemma describes precisely the part A, g, of the plane where the inequal-
ity (75) is satisfied; the following one provides a simplified approximate description of the
region A, g.

Lemma 3.2 Suppose that under the conditions of the preceding lemma, 6§ is a positive real
number, such that

B=u-5é, : (77)
and
u .
f+1< 3 (78)
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Then

Im(fu(z,y)) <u—6—2-log(u) (79)
for any (z,y) € R? such that
|y|>2-\/§-\/Z6+1)—£?27_}1‘32. - (80)

The following lemma provides a further simplification of the conditions (72), (73) when
2-Vu< /(22 +y%) <2

Lemma 3.3 Suppose that the positive real numbers z, u, é are such that

6 < 3 v (81)

2-Vu<z<2u (82)
Then

Im(fu(,¥)) <u-6 , | (83)
for any y such that

ly|>2-,/10-6)- va. (84)
Proof.

Obviously, (84), can be rewritten in the form

ly1>2-/10-8)- V=

cu? 4 u? :
2.\/62.5)._\/(4—\/_;__), (85)
Substituting (82) into (85), we obtain
2 .2
¢y|>2-\ﬂ2-6).‘/(—””\/_zi). (36)

Now, (83) follows from the combination of (82) and Lemma 3.2.
' O

The following lemma describes a simplification of the conditions (72), (73) when /(z? +
y?) > 2-u.
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Lemma 3.4 Suppose that the positive real numbers z, u, § are such that

u
6 < -2-, (87)
and
z2>2- u. (88)
Then
Im(fu(z,y))<u-246 | (89)
for any y such that
Lol 4.5 . (90)
z Vu
Proof. Introducing the notation
x .
; = M, (91)
we observe that, due to (88), u > 2, and, therefore,
1 2
L/Li'”_) < V2. (92)
b |
Now, substituting (91) into (90), we have
Lyl 4.8 S 2 vV2:-vVEu- L+ p?)
z Vi p-udl? B
2.\/5.\/3.'“.\/('“24.“2.”2) _
e udl? -
2-v2- V6 u-\/u? + 2?)
PRl . (93)
Multiplying both sides of (93) by z and using (91) again, we get
2.\/5.\/3.1‘.\/(“2.‘.”2.112). _
I y |> ue u3/2 =
. . . 2 2
2:v2 ‘/zﬁ‘f(“ +27) . (94)
Now, (89) follows from the combination of (94) and Lemma 3.2.
O
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3.2 Geometry of Gaussian beams

In this subsection, we use the elementary lemmas of the preceding one to describe in some
detail the spatial behavior of Gaussian beams. The theorem below follows immediately from
the combination of Lemmas 3.3, 3.4 above and Lemma 2.3.

Theorem 3.5 Suppose that the positive real numbers u, § are such that

§ < ; (95)
Then
| Gulz,y) |< e° (96)

in either of the following two (intersecting) regions:

Lz€2-u,2-u),|y|>2-/(10-6)/u.

2.z€[2 u,0)] |y|> ‘%‘/-?-z.

Observation 3.1 The above theorem has a very transparent physical interpretation. Specifi-
cally, a Gaussian beam (60) begins to look like a beam once z > /u. While z € [\/u,u], the
Gaussian beam virtually does not ezpand. At approzimately z = u, the beam begins to expand

with the angle of ezpansion roughly 4 - \/3/\/5, with e~¢ relative error of our measurements (or
calculations). This behavior is quite obvious in Figure 3.

4 Modified and Modulated Gaussian Beams

4.1 Modified Gaussian beams

According to Lemma 2.14, the Gaussian beam (60) has a localized far-field representation.
Specifically, for any £ > 0,

| Fo(Gu)(6) I< ¢ (97)
for all 6 such that
161> /(2 1og(2)) | (98)

(see (69)). On the other hand, G, has logarithmic singularities at the points (66), (67), and
a branch cut connecting them. In other words, to a specified precision, the support of the
far-field representation of a Gaussian beam is proportional to 1/,/u, with u the size of the
region where the beam (60) is discontinuous. This very large region of discontinuity turns out
to be a major problem when Gaussian beams are used as bricks for the construction of other
solutions of the equation (24). Fortunately, there exist solutions of the equation (24) almost
exactly coinciding with (60) away from the branch cut (62), (63), and singular on a region of
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size roughly /u. We will refer to such solutions as Modified Gaussian Beams (MGBs), and
use use them as building blocks for the construction of solutions of the equation (24). In this
subsection, we construct the MGBs, and prove some of their properties. We start with several
definitions.

For an arbitrary pair of positive real numbers u, 8, we will denote by R; the rectangle in
the plane defined by the four vertices

(1, =(u+1)),(1, (v +1)),(-1,(u+ 1)), (=1, =(u+ 1)), (99)
by R4 the rectangle defined by its vertices '

(2,—(u+2)), (2, (u+2)), (=2, —(u +2)), (=2, (u+ 2), (100)
by R, the rectangle defined by the vertices

(1, =7), (1,71), (=1,7),(=1,-7), (101)
with

y=2- /2 u-(6+1)), | (102)
and by Rj3 the difference R; \ R;, observing that R consists of two rectangles, with vertices

(L, =7), (L, =(u + 1)), (=1, = (v + 1)), (=1, ~7), - (103)

(1,7), (1, (u+ 1)), (=1, (w+ 1)), (=1,7), (104)

respectively (see Figure 2). We will denote by Ty, I's, I's, I'y the boundaries of the regions R;,
R, R3, Ry, respectively. Whenever a function is to be integrated over one of these boundaries,
the integration will always be assumed to be with respect to the arc length.

We will denote by G, s the function R? \ R, — C defined by the formula

Gus(z) = —2 : /F (Gu(t): %(\;,-(t,:c) + ‘%g—}‘\f”)(t) - G(t,z))dl, (105)

and refer to G s as a Modified Gaussian Beam. For any z¢ € R?, we will denote by G:% the
mapping Ty, (R?\ R;) — C, defined by the formula

G%5(2) = Gus(z + 20). (106)

Obviously, G2,5 = Gy, and Gﬁ‘,’s will also be referred to as a Modified Gaussian Beam.
The following lemma shows that for large u,d, the values G,(z) are almost zero for all
z € I'3. It is an immediate consequence of Lemma 3.2 and the formulae (103), (104).

Lemma 4.1 Suppose that u,8 are two positive real numbers, such that 6§ < u/2. Then for any
z € I's,

-§
| Gu(@) I< = (107)
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The following lemma shows that for large u, 8, the functions Gy ¢, G, very nearly coincide
for values of argument outside I'y.

Lemma 4.2 Suppose that u,§ are two real positive numbers, such that é + 1 < u/2. Then for
any z € R? \ Ry,

| Gus(z) = Gu(z) |< e°. (108)

Proof.
Since G, is a solution of the equation (24), analytic outside R; and satisfying the radiation
condition (26) at oo, Theorem 2.1 yields

Gulz) = _2 . /F 1(G,,(t).-‘g%(t,m)+ UG (t))(t) G(t,2))dl, (109)
for any z € R? \ R;. Obviously (see Figure 2),

oG 6(G (t) _
JRCHOE aN( 2)+ T (1) Gt 2))dl =
a(G (t)

[ greo+ 250 - oo+
Ji (G- 90 e+ B(G (t)(t) G(t,2))dl. (110)
On the other hand, it immediately follows from the combination of (31), (32), and (107) that
3(G (t)
[ (G g o)+

and we obtain (108) by combining (111) with (110) and (105).

(t) G(t,2))dl |< e, (111)

a

The following lemma shows that the far-field representation of the modified Gaussian beam
Gy is almost identical to that of the Gaussian beam G,. Its proof is similar to that of
Lemma 4.2, and is omitted.

Lemma 4.3 Suppose that u,§ are two real positive numbers, such that é + 1 < u/2. Then
| Fo(Glus)(8) — e (2®)=1) | < 79, (112)
for all 6 € [-=, 7).
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4.2 Modulated Gaussian beams
We will define the function M : R? — C by the formula

M3(z,y) =
im i 2r .
T V) | Gule=m-cos(),y=m-sin(n)) -, (113)

and the function M : R? - C by the formula

Mis(z,y) =

™ 2 2r '
: - -m- —m-si . em
Im(m) \ﬁ8-w) A Gus(z —m cos(ﬁ),y m - sin(n)) - ™ "dn (114)

(the definitions (113), (114) are correct and stable due to Lemma 2.6). We will be referring
to M as Modulated Gaussian Beam, and to M5 as Modulated Modified Gaussian Beam
(MMGB). Obviously, M;" is a radiation potential outside the region S,(B,) (see (62), (63),
and Lemma 2.1, and M is a radiation potential outside S,,(R2) (see (101)). The following
lemma supplies the far-field representation for M™.

Lemma 4.4 For any real u > 0 and integer m,
Fo(M)(8) = e"mf . gu(cos(6)-1) (115)
for all 6 € [-7, 7).

Proof.
Combining (113) with (61) and (57), we have
Fo(M")(8) =
" i 2 ; ~
. . (m-cos(n),m-sin(n)) Cetmn g —
o V) [ R )(8) - ™ nan

im

i 2m 7 i

Tm(m) '\ﬂs.w)'/o Fm-cos(n),m-sin(m)) (Gu)(8) - €™ "dn =

™ ?
J o (m) '\ﬂs-n)'

' . 27, " . i

Fo(Gu)(o) ‘/0 ezok-((m~cos(1)),m~3m(n)).(cos(0),sm(O))) . et'mw)dn =

im i '
Jm(m) .\/(-8-7r)'

2T . R .
Fo(Gu)(O) A ec-k-m-(cos(n)-cos(0)+am(n)-sm(e)) . e:~m~r;dn =

o . t . ., " t-k-m-cos(n—6) , _i-m-q
iy Vi) RGO [ ™ dy. (116)
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Now, we obtain (115) by combining (116) with (48) and (64).
a

The following lemma is an immediate consequence of the combination of Lemmas 4.4, 4.3.
It supplies the (approximate) far-field representation of s

Lemma 4.5 For any real u > 0, integer m, and 0 < § < u/2,
| Fo(M5)(8) — €™ . e (coo)=1) |« =2, (117)
for all 6 € [, 7).

For an arbitrary integer n > 0, real u > 0, and real 0 < § < u/2, we will define the function
Q" : R? - C via the formula

@)= Y MI), (118)

m=-n

and the function Q7 ;: R? — C via the formula

@)= 3 MI(a). (119)

m=-n

Obviously, Q7 is a radiation potential outside S,(B,) and Q7 5 is a radiation potential outside
Sn(R2).

The following two theorems describe the far-field representations of Q7, u,5> Tespectively.
They follow immediately from Lemmas 4.4, 4.5, respectively, and the obvious fact that

3 imo - Sinlln +9%) 8, (120)
sin(%)

m=-n

Theorem 4.6 For an arbitrary integer n > 0 and real u > 0,

Fo(Q3)(6) = sm(gnte%)) ) guteonte)-) (121)
2

for all 0 € [-7, 7).
Theorem 4.7 For an arbitrary integer n > 0, real v > 0, and real 0 < § < u/2,

sin((n+ 3)-6) '
.sin(%)

' FO(QZ,s)(g) - ev(cos(6)-1) |< e~¢ (122)

for all 6 € [-m,7].

21




The following theorem is an immediate consequence of the combination of Theorem 3.5
with (119), (114), (108). It shows that the support of the function Q7 5 is shaped like a beam,
whose width is closely related to that of the Gaussian beam G,,.

Theorem 4.8 Suppose that n > 0 is an mteger number, and u, 6, are two real numbers such
that 0 < 6 < u/2. Then

| Q% s(z,y) |< e (123)
in either of the following two (intersecting) regions: |
Lz€[2-/u,2-u],|y|>2-/[10-6)-/u+n.

2. z2€ (2 u,0)], |y|>—% -z + n.

The following theorem is obtained from the preceding one by elementary algebraic manip-
ulation.

Theorem 4.9 Suppose that under the conditions of Theorem 4.8, the numbers u, n, are defined
by (11), (13), respectively, and that in addition, w > 2-§. Then

| QLalay) < e~ 12
in either of the following two (intersecting) regions:
1. me[ﬂ"’.;g] |y|>8 T.
2 z€(f,)|yl>8-v2:6-2

Theorem 4.7 provides an analytical expression for the far-field representation Fo(Q} ) of
the potential @7 ; . The following theorem provides a somewhat less detailed descrlptlon of
the Fourier series of Fo(Q% 4)-

Theorem 4.10 Suppose that under the conditions of Theorem 4.7, r > 0 is a real number,
and the numbers u, 6, v, n, m are defined by the formulae (11), (10), (3), (12), (13). Then
for all integer j such that }J |<2-v,

| (Fo(Qz)i - 1l<ce. (125)
Furthermore, for any j such that | j |> m/2,
| (Fo(Qy6))i I<e. (126)

Proof.
Denoting by s,t the functions [-7, 7] — C defined by the formulae

sin((n + 2) 6)

szn( )

s(9) = , (127)
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t(g) = eu.(cos(e)—l)’ (128)

we observe that the Fourier series of s, ¢ are given by the formulae (120), (49). Due to (127), (128),
we can rewrite (122) in the form

| Fo(Qu5)(8) — 1(6) - s(6) |< e, (129)
from which it immediately follows (due to the convolution theorem) that
I(R(Q20)); — (+ )1l <ce. (130)

Now, the conclusion of the theorem follows immediately from the combination of Lemma 2.8
with (130), (120), (49).
m]

4.3 Proof of Theorem 1.1

In this subsection, we use the analytical machinery developed in the preceding ones to prove
Theorem 1.1 of Section 1. Given real numbers p, r, ¢ satisfying the condltlons (1), (2), we will
define the mapping 32, : [-7,7] — C by the formula

B2.(6) = Q2 5(p - cos(8), p - sin(6)), (131)

with & defined by (10), v defined by (3), u defined by (8), and n defined by (13). The following
four lemmas show that the function 37, satisfies the conditions of Theorem 1.1, and is very
close to the function b7 ,, defined in Section 1.

The following lemma is obtained from Theorem 4.8 by elementary algebraic manipulation.

Lemma 4.11 Suppose that under the conditions of Theorem 4.10, the function 7, : [-7,7] —
C is defined by (131). Suppose further that either

r2 8-r
€ [16 . T,Z—-—E], and I 0 I> —p— (132)
or
r2 8:v2:6 6-r
pE [Z’_’gaoo], and I 6 l> | r + p ’ (133)
or both. Then
| B7(6) |<e. | (134)

The following lemma is an immediate consequence of the preceding one.
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Lemma 4.12 Suppose that under the conditions of Theorem 4.10, the function b2, is defined
by (131). Then

[ b7(0) |< e. (135)
for all € [, 7], such that

8-1/2-log(L
x/'rog(e)+8

161> (136)

The following lemma is an immediate consequence of the combination of (59) and Theo-
rem 4.10.

Lemma 4.13 Suppose that under the conditions of Theorem 4.10, the function Bf . is defined
by (131). Then for all j € [-2-v,2-V),

| (Be); — Hi(p) < e (137)

Finally, Lemma 4.14 below is easily obtained from the combination of Lemma 2.13 with (131), (122).

|
|

Lemma 4.14 Suppose that under the conditions of of Theorem 4.10, the functions Bles b2,
are defined by (131), (15), respectively. Then for all § € [—7, 7],

| B2(6) = b7.(6) |< e. ' (138)

Corollary 4.15 Obviously, Theorem 1.1 is an immediate consequence of Lemmas 4.12, 4.13,

4.14.

5 Numerical Considerations and Experiments

5.1 A numerically more attractive procedure

Theorem 1.1 of Section 1 provides a construction of the function b2 . satisfying the conditions 1.
- 3. of Section 1. However, the function b2, supplied by Theorem 1.1 is in no sense optimal, and
in fact has been chosen so as to simplify the proof of Theorem 1.1, not to lead to numerically
most efficient schemes. The following construction turns out to provxde a function b2, that is
considerably more attractive numerically than that provided by Theorem 1.1.

Given real numbers r, p, € such that 0 < r < p/4, and £ > 0, we will define the integer number
v as the smallest real number such that

Ji(r) < e. (139)
for all j > v. We will define the integers m,n by the formulae
m=6-v, ' (140)
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N o

n=_--v, ' (141)

and a real number u by the formula
e - Iy(u)=e. (142)

Finally, we will define the function f,, : [-7,7] — C, by the formula (14), and the function
b2, :[-m,7] = C by the formula (15).

Observation 5.1 Obviously, the above procedure defines a function very similar to that pro-
vided by Theorem 1.1, as is obvious from Lemmas 2.5, 2.8. However, the analogue of The-
orem 1.1 for the construction of this subsection is somewhat subtle; the proof fragments into
a large number of cases, depending on the relative sizes of v, p, and €. On the other hand,
once the function b7, is obtained, it is quite trivial to verify numerically that it satisfies the
conditions 1., 2. of Subsection 1.1, which are the two conditions necessary for b7, to be a
translation operator (to a fized precision €). Furthermore, our numerical ezperiments indicate
that in most cases, the above construction works better than that provided by Theorem 1.1, in
the sense that the coefficients p,q in the formulae (6), (7) are much smaller.

Observation 5.2 Clearly, evaluating the function f,, at m equispaced points on the interval
[-7,7] is an order m procedure (see (14)); given f. ., the function b?, : [-7,7] — C (defined
in (15)) can be evaluated at m equispaced nodes via the FFT, provided that m is a product
of powers of small prime numbers. Thus, in our computations, we altered slightly the defi-
nition (140). Specifically, we defined m as the smallest positive integer that is a product of
powers of 2, 3, and 5, and is greater than 6 -v. With this modification, the function b2, can be
constructed for a cost of the order m - log(m), which is sufficiently fast for most applications.

5.2 Numerical illustrations
In this subsection, we illustrate the behavior of the functions 87, with several figures, as follows.

In Figure 3, we illustrate the behavior of the function G, with u = 1000, by plotting the loci
of points z in the plane where | Gy(z) |= ¢, with ¢ = 1.0E - 3, 1.0E - 7, 1.0E — 12. The
beam-like structure of G, is quite transparent from this plot.

In Figure 4, we illustrate the behavior of the modulated Gaussian beam Q7 ; by comparing
it to the behavior of a Gaussian beam G, s with the same parameters u,é. Specifically, we
plot the loci of points where | Q7 5 |= ezp(—6), | Gus |= ezp(—6). In the regime we chose
for this illustration, both functions behave very much like expanding beams, with the same
angle of expansion. The distance between the graphs is roughly equal to n, as it should be
(see (113), (114), (118), (119) ). -

In Figure 5, we illustrate the behavior of the functions 3/, as p grows, for four values of ¢
(¢e=10E-3, 1.0E -6, 1.0E -9, 1.0E — 12). Specifically, we plot the size (in radians) ©
of the region around 0 where | 82, |> ¢, viewed as a function of p. It is quite easy to see that
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the region shrinks as p grows, apparently converging to some constant, depending on ¢. This
behavior is in agreement with Lemma 4.12.

In Figure 6, we illustrate the behavior of the functions Bt as a tool for the reduction of the
computational cost of the Fast Multipole Method. We plot the ratio of the number of nodes
required to discretize the function 82, at the Nyquist frequency to the number of nodes required
to discretize the function v, of [6], to the same accuracy and under identical conditions. The
ratio is plotted for ¢ = 1.0E -3, 1.0E -6, 1.0E -9, 1.0E — 12, r = 100, and p/r € [4,40]. It
is easy to see that under these conditions, the improvement is quite dramatic for low-accuracy
calculations. When the desired precision is high, the improvement is much less impressive.

Figure 7 is similar to Figure 6, except that here, r = 500. Obviously, in this case, the reduc-
tion in the computational cost is much greater than for r = 100; this is in agreement with
Theorem 1.1.

Figure 8 shows the plots of the absolute values of the function Bt :[-m, 7] — C with r = 100,
¢ = 1.0E - 6, and p = 400, 1000, 10000. Here, it is obvious that 8%, is structured like a bell,
with the width of the bell decreasing as p increases. By the time p ~ r2, the bell shrinks to a
point.

Finally, Figure 9 contains a plot of the real part of the function 82, : [-7,7] — C. The
function is so oscillatory that this plot is not very informative. However, it is clear from Figures
8, 9 that while the absolute value of 87, looks very much like a bell, the function B itself is
quite oscillatory, except near 6 = 0.

6 Generalizations and Applications

Obviously, the purpose of this paper is purely technical - to construct numerical tools to be used
in the design of Fast Multipole Methods for the Helmholtz equation. Furthermore, in a vast
majority of applications, the problems are three-dimensional, so that the principal (though
by no means the sole) purpose of a two-dimensional scheme is to serve as a model before
three-dimensional algorithms are attempted.

The construction of this paper is trivially generalized to arbitrary real Helmholtz coefficients
by rescaling. The construction extends to complex Helmholtz coefficients easily, as long as the
real part of the Helmholtz coefficient is positive; in this case, the proofs have to be modified
slightly. The construction becomes numerically unstable for Helmholtz coefficients with large
negative imaginary parts.

Our numerical experiments show that the construction of the preceding section can be
sharpened somewhat, especially for relatively small r and p. In other words, there exist versions
of the function 3f, that have the same frequency content as those constructed in the preceding
section, and that are small on a greater part of the interval [—x, 7). However, in our experiments
we used optimization techniques to construct such functions, at a significant cost in CPU time
(the cost of our procedure is of the order O(m3), with a fairly large constant). At the present
time, the possibility of more efficient schemes of this type is under investigation. :
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Extension of the results of this paper to three dimensions is quite straightforward, and a
paper reporting it is in preparation. The author is currently in the process of incorporating
the construction of Section 5 of this paper into a Fast Multipole scheme for the solution of
two-dimensional scattering problems. These results, and their extension to three dimensions,
will be reported at a later date.

7 Acknowledgments

The author would like to thank Professor R.R. Coifman for many useful discussions, and for
his continuing interest and support. He is indebted to Dr. Matviyenko and Dr. Wandzura for
their help. Special thanks are due Professor W.C. Chew, Dr. R.L. Wagner, and Dr. J.M. Song
for providing a most stimulating competition. 4

References

(1) M. Abramovitz and I. Stegun, Handbook of Mathematical Functions, Applied Math. Series
(National Bureau of Standards), Washington, DC, 1964.

[2] R. L. Wagner, W. C. Chew, A Ray-Propagation Fast Multipole Algorithm, Microwave and
Optical Technology Letters, Vol. 7, No. 10, July 1994.

[3] J.M. Song, W. C. Chew, Fast Multipole Solution using Parametric Geometry, Microwave
and Optical Technology Letters, Vol. 7, No. 16, November 1994.

[4] R. Coifman, V. Rokhlin, S. Wandzura, Faster Single-Stage Multipole Method for the Wave
Equation, 10-th Annual Review of Progress in Applied Computational Electromagnetics,

Vol. 1, pp. 19-24, Monterey, CA, March, 1994, Applied Computational Electromagnetics
Society.

[5] N.S. Koshliakov, M.M. Smirnov, and E.B. Gliner, Differential Equations of Mathematical
 Physics, North-Holland, Amsterdam, 1964.

(6] V. Rokhlin, Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions,
Journal of Computational Physics, 86(2) : 414 (1990).

[7) V. Rokhlin, Diagonal Forms of Translation Operators for the Helmholtz Equation in Three
Dimensions, Applied and Computational Harmonic Analysis, v. 1, 1993, pp. 82-93.

[8] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Universify Press,
Cambridge, 1980.

27




0.30E+04 L
A
0.00E+00 L B
- T
| ] Il |
0.00E+00 0.30E+404 0.60E+04 0.90E+04

Figure 1: Regions A, B, with u = 10000, § = 40




Yz
Y
u+2
Ry Ry =R;UR3
u+1 ]
v N
0 R2 R3
~(u+1)
—(u+2)
-2 -1 0 1 2 X

Figure 2: Rectangles Ry, R,, R3, R4; drawn not to scale




0.80E+403

0.00E+400

| Gu(z) |= 1.0E - 12

N
==

_ | Gu(z) |= 1.0E - 3 | Gu(z) |= 1.0E = 7
§/
0.00E+00 0.80E+03 0.16E+04
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Figure 7: Improvement in the number of nodes in the discretizations of
functions 37, as a function of p/r; with r = 500, and
&6=10E-3, 1.0E-6, 1.0E-9, 1.0E - 12
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Figure 8: Absolute values of the function §7,, with r = 100,
€ =1.0F - 6, and p = 400, 1000, 10000




Figure 9: Real part of the function ,B,’,"e, with 7 = 100, ¢ = 1.0F - 6,

and p = 400






