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Abstract

This paper presents a novel approach to incrementally estimating visual motion
over a sequence of images. We start by realistically reformulating constraints on image
motion to account for the possibility of multiple motions. This is achieved by exploiting
the notions of weak continuity and robust statistics in the formulation of a minimiza-
tion problem. The resulting objective function is non—convex. Traditional stochastic
relaxation techniques for solving the minimization problem prove inappropriate for the
task as they require many iterations to converge whereas motion estimation must be
dynamic. We present a highly parallel incremental stochastic minimization algorithm
which has a number of advantages over previous approaches. Between any pair of
frames in an image sequence, only simple local computations take place. Robustness
and accuracy are then achieved by extending the estimation task over time. The in-
cremental nature of the scheme makes it truly dynamic and permits the detection of
occlusion and disocclusion boundaries.




1 Introduction

This paper presents an approach for the incremental estimation of visual motion over time.
The task of estimating visual motion involves specifying constraints which relate spatiotem-
poral intensity variations to image motion and express our assumptions about the spatiotem-
poral variation of the motion itself. We also need an effective procedure for computing a
flow field consistent with the assumptions. Each of these steps is critical. The assumptions
must accurately model the expected properties of the scene and the image sequence while
the computation must be appropriate for motion processing; that is it must be parallel,
incremental and robust. We first consider reformulating three constraints on image motion
to more accurately model situations containing multiple motions. We then formulate an
incremental scheme for exploiting the constraints.

We will focus on three constraints in particular; of course, this is not an exhaustive set of
constraints, but serves to illustrate techniques for coping with multiple motions. The data
conservation constraint states that the image measurements (e.g., the intensity structure)
corresponding to an environmental surface patch change slowly over time. The spatial coher-
ence constraint is derived from the observation that surfaces have spatial extent and hence
neighboring points on a surface will have similar motion. Finally, the temporal coherence
constraint is based on the observation that the velocity of an image patch changes gradually
over time.

A traditional assumption is that within a small image region only a single motion is
present. This leads to a Gaussian noise model for the data conservation and spatial coherence
assumptions. The assumption however, ignores the case of motion discontinuities [7, 15] and
results in either errors in the motion estimate or over smoothing across discontinuities. This
paper formulates more realistic constraints which account for motion discontinuities resulting
from multiple motions at a given point by exploiting the notions of weak continuity [8, 13]
and robust statistics [3, 14, 19]. The result is increased robustness and accuracy.

The constraints are formulated as energy terms in an objective function. Estimating the




motion is then the task of finding a flow field with minimum energy. With the removal of the
simplifying assumption of Gaussian noise the objective function becomes highly non-convex
and hence the minimization problem is made more difficult.

The definition of the constraints in terms of local neighbors in a grid allows the prob-
lem to be formalized as a Markov Random Field (MRF) with a Gibbs distribution [13, 12].
Stochastic methods, like simulated annealing [13, 23, 29], are one approach for minimizing
such complex functions with many local minima. While they are highly parallel, these ap-
proaches unfortunately converge slowly, typically requiring many hundreds or thousands of
iterations. This makes them ill suited to motion estimation which must be dynamic.

We propose a new incremental stochastic minimization (ISM) algorithm which has many
of the the benefits of simulated annealing without the shortcomings. As opposed to minimiz-
ing the 6bjective function for the motion between two frames, the ISM approach is designed
to minimize an objective function which is changing slowly over time. The assumption of a
slowly changing objective function is made possible by exploiting current motion estimates
to compensate for the effects of the motion on the objective function. In this sense, the
algorithm is truly incremental; estimates are carried over from frame to frame and refined
over time. The cost of computing the motion estimate is spread over an entire sequence of
images.

The amount of computation performed for any pair of frames is minimal; accurate motion
estimates are obtained by exploiting the wealth of information available over a long sequence
of images. The result is an algorithm which starts with initial, rough, motion estimates and
refines them over time. This is a desirable property for many applications. In particular, a
mobile robot should always have a motion estimate available no matter how coarse.

Most work in motion estimation has focused on the formulation of the two frame case
without addressing explicitly how the flow computation could be made incremental. Those
researchers that have exploited longer image sequences [9] have typically focused on pro-

cessing a spatiotemporal image sequence directly to achieve more complex inferences about




surfaces under motion. This differs greatly from the on-line approach presented here.

Previous work has shown that such an incremental stochastic scheme can be used to reli-
ably compute discrete motion estimates, with motion discontinuities, given densely sampled
images [6]. The approach described here extends that incremental scheme to deal with frac-
tional motions by applying techniques from continuous annealing [29], and to large motions
through the use of hierarchical processing [1, 5].

While the approach is ostensibly designed for computing optic flow, it has more general
applicability. The ability to minimize an objective function over time by compensating
for image motion may allow other problems to be formulated and solved in this temporal
minimization framework. For example, by formulating intensity based segmentation as an
optimization problem [8, 11], it may be possible to perform the segmentation over time.

The -next section examines approaches for coping with motion discontinuities and tech-
niques for reformulating the constraints to account for multiple motions. The incremental
algorithm for exploiting the constraints is then presented in section 3 along with a discus-
sion of motion discontinuities and how they can be detected. Section 4 then extends the
algorithm to handle large motions. Experimental results with the algorithm on real data are
presented in section 5. We conclude with a discussion of the the significance of the approach

and the avenues of research it opens.

2 Multiple Motions, Robust Statistics and Weak Con-
tinuity

The paradigm within which we operate is the standard one of specifying our assumptions
about the scene and the images in terms of constraints. Each constraint becomes a term in an
overall objective function that is minimized to obtain the motion field. We reformulate the
traditional constraints to account for multiple motions. Here, we focus on multiple motions
occurring at occlusion and disocclusion boundaries [7] and not on the issue of multiple

motions resulting from transparency [4].




The constraints are formalized as energy functions over local neighborhoods, or cligues,

in a grid. For an image of size n X n pixels we define a grid of sites:
S = {51,82,..+,852 | VW0 < i(8y),J(Sw) < n—1},

where (i(s),j(s)) denotes the pixel coordinates of site s. The energy associated with the
constraints is used to compute a Gibbs distribution [13] on possible motions. This then leads
to a Markov Random Field (MRF) model of image motion [6, 21, 22] where a random vector
u(s) = (u(s),v(s)) represents the horizontal and vertical components of the motion at site
s.

For the remainder of the paper we focus on three constraints [6]: data conservation,
spatial coherence, and temporal coherence. The assumptions (and the corresponding prior
models) underlying the constraints are violated in areas containing multiple motions. Var-
ious approaches have been presented for relaxing the the spatial coherence assumption; in
particular, the notion of weak continuity constraints has been popular [8, 13] . Less attention
has been paid, however, to relaxing the data conservation assumption. In fact, we observe
that the two problems are both special cases of the more general statistical problem of outlier
rejection encountered in robust statistics [3, 14, 19].

The general problem is one of finding the best fit of a model to data where we have some
(possibly inaccurate) prior model of the statistics of the errors in the data. The least-squares
fit of the sort employed typically in these constraints implies a Gaussian noise model. In the
case of multiple motions, our prior Gaussian noise model will be incorrect due to outliers.
Our goal- then is to find the best fit to the data while ignoring outlying data which could
corrupt our solution.

It should be noted that the chosen constraints do not represent an exhaustive set of
constraints; they are primarily meant to be illustrative. Additional geometric constraints,
for example a rigid body motion assumption, could be added to the current set. In fact,
while the chosen constraints are all constraints on optic flow, there is no reason to restrict

the paradigm to flow computation. A different choice and formulation of the constraints
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might, for example, allow the direct computation of motion and depth [17].

What is critical then is that any formulation of the constraints take into account the
possibility of multiple motions at a point. The approaches presented in this section, for
coping with multiple motions, are fairly general and may be applicable to other problems as
well. Additionally, it is important to recognize that the incremental minimization paradigm

presented in the remainder of the paper is also applicable to a wider class of problems.

2.1 The Data Conservation Constraint

The data contribution to the motion estimate may be derived from a gradient based ap-
proach (first order [18] or second-order [27]), correlation (sum of squared difference (SSD)
minimization [2, 24]) or some other approach. In any case, the data error term embodies the
assumption that the intensity of a surface element remains constant over time, although its
image location may change. The important point to note is that the error term is quadratic,
which is a direct consequence of an additive Gaussian noise model.

We consider the correlation based approach since it is computationally simple and per-
forms well in empirical tests when applied to band-pass filtered images [10]. Let s and ¢
denote image locations, or sites, in S. We define a neighborhood of s, np(s), for the data

conservation constraint as:

np(s) = {t | (¢(),5(2)) = (i(s) + A4, 5(s) + Aj), —¢ < Ai, Aj <},

which defines a square “window” of size (—2c + 1) X (2¢ + 1). Note that according to this
definition s € np(s).

Given image intensity functions I, and I,;; between two successive frames (n and n+1),
the local contribution (at site s) to the data conservation constraint is defined #S an energy
term Ep over the space of possible displacements (u,v) at site s (note, we will often drop s
when it is clear that the function is evaluate at all sites):

Ep(u,v,8) = Y (Ia(i(t), §(t)) = Tnpa(i(2) + u, j(t) + v))™. (1)

t€np(s)




An SSD surface is defined over the space of possible displacements (u,v) with the height of
the surface corresponding to the data error, Ep(u,v), of that displacement. The minimum
of this surface corresponds to the best motion estimate with respect to the data conservation
assumption.

This measure assumes that all the points in the neighborhood 7p(s) are translated by
the uniform velocity (u,v) and the resulting image is corrupted by additive Gaussian noise.
(In practice, even if the velocities vary gradually around (u,v), this measure serves as a good
approximation.)

The standard quadratic error measure has the property that as data errors increase, the
contribution of the error term increases without bound. As a result, when multiple motions
are present within the neighborhood of a site, the correlation computed for one of the motions
is corrui)ted by the data errors corresponding to the other motion.

When multiple motions are present, each motion corresponds to a different surface. We
assume that the surfaces have different intensity structures. Then when performing the
correlation consistent with one of the motions, there are two distinct statistical populations
of errors. For errors measured from the consistent surface we make the standard assumption
of Gaussian noise. The errors resulting from the uncorrelated surface can also be modeled by
Gaussian noise, but since we assume that the intensity structure of the surfaces is different,
the errors will have a larger variance.

What is needed is a new error measure which takes into account these two statistical
populations. Heuristically, we would like such an error measure to behave like the SSD
measure when the data errors are small (and hence are more likely to have come from the
consistent surface). We also want the influence of large errors (which correspond to the
uncorrelated motion) to be reduced; that is we want to treat them as outliers which can be
rejected.

One way of characterizing the behavior of an error measure, ¢(z), is by its influence

function, (z) = £¢(z), [3, 14]. Qualitatively, the influence function of an error measure
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Figure 1: a) Standard quadratic error measure, b) Influence function for the quadratic error
measure.
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Figure 2: a) A robust error measure, ¢p, b) Influence function ¢p for ¢p.

captures the effect of an observation on the solution. For the standard quadratic error
measure (figure 1a) the influence of errors increases linearly and without bound (figure 1).

What is desired is a new error measure with the following properties. For small errors,
consistent with the motion under consideration, the influence should increase approximately
linearly. As errors grow, they are less likely to be from the motion under consideration and
hence their influence should be reduced.

An error function with these properties (figure 2a) is:
' -1
1+ (z/Ap)*

where Ap is a constant scale factor. Examining the influence function of ¢p (figure 2b) we

¢p(z) =

see it has the desired properties. In particular, the influence of outliers tends to zero. This

function ¢p is related to the redescending estimators used in robust statistics [3, 14, 19].
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The data conservation constraint is now redefined as:

Ep(w,v,8)= 3 ¢p(Ia(i(t), 5 (1)) = Lasr(i(t) +u, () +v)). (2)

teng(s)

The local “data error” is the sum of the values of the ¢p for each of the points within the
window. Once again, minimizing this function yields the motion estimate most consistent

with the data.

Sub-pixel Accuracy

The data error term Ep(u,v) as defined is discrete. Sub-pixel motion estimates can be
obtained by interpolating the error surface. In the case of the quadratic error measure it is
possible to interpolate the surface by fitting a quadratic about the minimum (uo,vo) [1, 25].

When the Gaussian noise assumption is violated such interpolation is incorrect. However,
with the new robust estimator, a simple quadratic interpolation is inappropriate. Interpo-
lating the new error surface is achieved by using bi-cubic splines.

Without loss of generality, assume that the motion is less than a pixel. Then to perform
a bi—cubic interpolation requires a 5 x 5 pixel search centered about zero displacement. First
a spline is fit to each row in the error surface, which requires that the first and second
derivatives of the surface, along the row, be computed. These values can be stored. Then
computing the value of the surface at any sub-pixel displacement involves first computing
the interpolated value for each row, then fitting a spline to the new sub-pixel column.

Of coarse, more accurate sub-pixel estimates could be achieved in the presence of multiple
motions if a surface segmentation is available. In this case, the points corresponding to each
surface could be correlated separately. If no segmentation is available, the robust error

measure provides an improvement over the traditional quadratic measure.

2.2 The Spatial Coherence Constraint

Our modification of the standard spatial coherence, or “smoothness,” constraint is similar

to the use of weak continuity constraints in Markov Random Field approaches to image
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restoration [8, 13]. This idea has been explored by a number of researchers in the context of
surface reconstruction (usually from stereo) and motion field computation including [8, 20,
26, 28]. In particular, we follow the formulation used by Geman and Reynolds in [12].

The neighborhood for the spatial coherence constraint is defined to be the nearest neigh-

bors of a site s at location (¢,7) in the grid:

7]5(3) = {t | (l(t)7.7(t)) € {(Z + I’j), (i,] + l)a(i - 1aj)’(iaj - 1)}}

We formulate the constraint as consisting of a sum of error terms Es(u, s) defined locally at

site s as:

Es(u,s)= 3~ (u(s) —u(t))’, (3)

t€ns(s)

where u(s) = (u(s),v(s)) is the motion vector at site s. This is the standard quadratic
smoothness term [2].

Once again, the spatial coherence assumption and its standard (quadratic) formulation
are invalid in areas containing multiple motions. To deal with this we use the weak continuity
constraint. The spatial coherence constraint can be reformulated as:

Es(u,s)= ) a(l)(u(s) —u(t))*+B(),
t€ns(s)
where [ is a continuous line process variable, 0 < [ < 1, (0) = 0 and is increasing, and
B(0) = 0 and is decreasing. The value of ! can be thought of as indicating the likelihood of a
discontinuity and B(I) can be thought of as a penalty for introducing a discontinuity. When
[ is close to 0 the likelihood of a discontinuity is high when it is close to 1 the likelihood is
low. This is a generalization of the Blake and Zisserman formulation [8].

The line processe variables can be removed from the smoothness constraint by first min-

imizing over them [8, 12] resulting in an equivalent minimization problem:

Es(u,s)= }_ ¢s(u(s) —u(t)), (4)

t€ns(s)




Figure 3: Geman and Reynolds ¢ function.

which is just a function ¢ of the difference in the neighbors’ flow. For the appropriate choice

of o and S (see [12]) we have
-1
1+ |z|/As’

which is shown graphically in figure 3. This error measure, like ¢p, saturates as errors

¢s(z)

increase thus performing outlier rejection. This property of becoming non-committal as the

differences increase amounts to a weakening of the spatial coherence assumption.

2.3 The Temporal Coherence Constraint

The temporal coherence constraint is intended to capture the notion that the motion of
a particular surface element changes gradually over time. Our current formulation of the
constraint embodies the assumption that the image plane acceleration of a patch is constant
(over time). This can be regarded as a first approximation to a more accurate model, namely
constant 3-D acceleration.

The constant acceleration assumption can be expressed as:

Au; = const

I
£

I
£
L

where u* denotes the actual image velocity of a given surface patch, Au* denotes the true
acceleration, and ¢ denotes time. In practice, however, these true estimates are unknown, so

this assumption should be applied to estimated quantities.
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Let u? and Au” denote the predicted velocity and acceleration and u® and Au® the
estimated values. We predict the new velocity at time ¢ of a given patch as the estimated

motion at the previous time instant plus the predicted acceleration:
W = ul_, + Aul. (5)

Since the estimated accelerations may be noisy, we predict the new acceleration to be a

temporal average of previous estimates. This can be obtained by,

Au! = oAuj_, + (1 - a)Aul, (6)

Aug_, Aug_, + (u;_; —u;_,), (7)

where 0 < a <1 controls the rate at which new information replaces previous information.
The recﬁrsive form of this equation implies that this estimate is a weighted sum of previous
estimates.

Given a prediction of the new velocity of a patch u} = (u}, ), the temporal constraint
is formulated as,

Er(u,v,1) = ¢r(u — uf) + ¢r(v — v7), (8)
where ¢r is the same function used in the smoothness error term, with a possibly different
Ar.

Implementing the constraint requires maintaining a correspondence between sites and
moving patches of the environment. The obvious solution is to use the estimated motion
field itself to determine the correspondence of points over time. This amounts to tracking
points over a sequence of images. The details of a tracking scheme are described later in the

paper.
3 Recovering the Flow Field

The constraints of the previous section, together with the weak continuity assumption, em-

body our assumptions about the world. The three constraints can now be combined to form
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an objective function:
H(u’ v, t) = :BDED(U’ ’U) + .BSES(U" v) + ,BTET(ua v, t)’ (9)

where the 3, are constant weights which control the relative importance of the constraints.
Based on our assumptions, the best interpretation of the motion, (u,v), is the minimum of
this function.

The more realistic formulation of the objective function used here means that H has many
local minima making the task of finding the (u,v) which minimize the function more difficult.
As mentioned earlier, the definition of the constraints in terms of local neighborhoods on a
grid allows the problem to be formalized in terms of Markov Random Fields.

Each site in the MRF can be thought of as representing a small environmental surface
patch. Associated with each site s is a continuous random vector (us,v,) which represents
the current image displacement of the corresponding surface patch. The discrete state space
A4(t) defines the possible values that the random vector can take on at a given time t. The
space A, will be defined formally below; for now we simply note that each sight s has its own
individual state space; this will prove important for minimizing the continuous problem.

For each site, we construct a probability density function II defined over the range of
possible displacements A using a Gibbs distribution as follows:

M(u,v,t) = Z e~ Hwwt)/T®)  where: Z = Z e~ H(uv,t)/T(t) (10)
(u,v)€EA(2)
where t is the current time instance. The quantity T'(¢) can be thought of as a temperature
which serves to sharpen (or flatten) the distribution.

Standard simulated annealing techniques (in this case a Gibbs Sampler [13, 23]) can
be used to find the minimum (u,v) by sampling from A according to the distribution II
with logarithmicly decreasing temperatures. As the temperature is lowered, the probability
distribution of II becomes concentrated about the minimum while the stochastic nature of
the process prevents it from getting trapped in local minima. The result is that at high

temperatures the sampling process freely chooses among the possible displacements, but
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as the temperature is lowered, the minimum is chosen with increasing probability. Given
~ an infinite amount of time and a logarithmic cooling schedule this process is guaranteed
to converge to the correct solution. In practice, a sufficiently slow linear cooling schedule
appears to provide acceptable convergence.

Notice that Es is the only constraint which is dependent on its neighbors’ motion esti-
mates. While updating a site s, the estimates of its neighbors ¢ € ns(s) must be held fixed.
By partitioning the sites using a checkerboard pattern, half the sites can be update at once
while the other half remains unchanged. The current algorithm, which is implemented on the
Connection Machine with a physical processor for each site, fully exploits this parallelism.

There are two main problems with this simulated annealing approach. First, the Monte
Carlo techniques used to sample II assume a discrete state space. If we want more than a
discrete‘approximation to the image flow, then we need to be able to solve the continuous
minimization problem for arbitrary fractional displacements.

The second problem is the computationally intensive nature of the simulated annealing
algorithm. For reasonable results, hundreds or thousands of iterations of the annealing
algorithm may be necessary to compute the flow between two images. This has a decidedly
non-dynamic flavor. Ideally a motion algorithm should involve fast simple computations
between a pair of frames, and exploit the fact that tremendous amounts of data are available
over time.

The first problem can be solved by using a continuous variant of simulated annealing
[23, 29]. The solution to the second problem is more radical. By tracking small patches
of a scene over an image sequence, we will modify the basic annealing concept to work on
changing data over time. The strict convergence results of simulated annealing will be lost,
but the result is an incremental algorithm which produces good empirical results and meets

many of the requirements of a truly dynamic motion algorithm.
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3.1 Continuous Annealing and Sub-Pixel Displacements

To use simulated annealing with a Gibbs distribution we need to have a finite state space at
any given time. The idea that allows us to solve continuous problems is that the state space
can vary over time depending on the local properties of the function being minimized. At a
given time ¢, we have an estimate of the motion u;, and consider making small changes Au;
to the estimate. Vanderbilt and Louie[29] define a method which is adaptive in nature in
that the state space (defined by the step size, Au,) automatically adapts to the local shape
of the function being minimized.

The basic idea is to use the covariance matrix of a random walk to characterize the shape
of the function. We set the state space so that it best explores the function by making the
covariance matrix of the state space proportional to the covariance matrix of the random
walk. Intuitively, if the variance along a particular search direction is large, then we want
to increase the step size in that direction to get a coarse view of the function. When the
true minimum has been chosen at a coarse level, the variance will shrink. To explore the
minimum more finely, the area covered by the state space should shrink resulting in smaller
step sizes.

At a given site and at a given time, the state space A is always a discrete 3 x 3 neigh-
borhood of the current estimate, but the area covered by the neighborhood varies based on
the current step size Au; = [Auy, Av,]. Given a current estimate u; = [u¢, v;], at time ¢ the

state space A is defined as:
A={u+AulAu=Q L 1=[,L", b he{-(3/2)},0,(3/2))}, (11)

where Q is a 2 X 2 matrix which controls the step size. Elements of the state space are all
examined with equal probability, so the choice of trial steps is governed by a uniform prob-
ability distribution g(1) which over {—(3/2)%,0,(3/2)%} has zero mean and unit variance.

Since the mean of A is u, the covariance matrix s, of the state space is simply:

sij = ) AwAujg(l). (12)
AUEA
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Vanderbilt and Louie [29] note that this can be expressed as:
s=Q- Q. (13)

Hence we can generate a state space with any desired covariance matrix s by solving for Q
using Cholesky decomposition and then using Q to generate the state space in equation 11.
As mentioned, the covariance matrix of the actual steps that would be taken in a random
walk can be used as a measure of the local shape of the function. We want the covariance
matrix of the state space to to be proportional this covariance matrix of a random walk.
The actual step taken at a time ¢ is determined by the probability distribution II(u; + Au,)
defined over the space of displacements. Using II we can compute the mean y at time ¢ (note
we drop t when it is constant across all terms):
pi =Y M(u)u;. (14)
UeA

The covariance matrix S of I given the current step size is:

Sij = uZEA(ui = p)(u; — ;)1 (u). (15)

We make the covariance matrix of the state space at time ¢ + 1 proportional to S®:
s(t+1) — XS(t)a (16)

where ¥ is a scaling factor. Now solving s(*t1) = Q - Q7 for Q gives the Q for determining
the state space at the next time instant.

We now need to choose the scale factor for y. Assume a step size Au and imagine the
case in which IT is uniform so s(® = S®. No information is being gained with the current
step size so we should increase it. If y > 1 then the step size will be increased by a factor
of \/X on the next iteration. Over time, as the the algorithm settles into the true minimum,
the variance will decrease. The result will be decreasing step sizes which allow the minimum

to be explored more precisely.
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To prevent the state space from growing or shrinking too rapidly, we control the rate at

which new information from S overwrites the previous information:
st = axS® 4 (1 — a)s®,
where a can be viewed as a damping factor.

3.2 Incremental Minimization

The obvious disadvantage of using simulated annealing is that its computational expense
is prohibitive. However, since we expect the changes in the images and in the scene to
be gradual and predictable, the iterative minimization process can be extended over an
image sequence. This will also allow the motion detection algorithm to exploit the wealth
of information available over time to achieve greater sensitivity and robustness. Such a
process, however, must ensure that the various properties estimated for an image patch are
propagated along with the patch. This amounts to warping the grid of sites according to
the motion estimate. This section describes our incremental minimization approach which
includes the tracking of image patches and the propagation of their properties.

When a new image is acquired, the current motion estimate at a given site (representing a
particular surface patch) is used as the starting point for the continuous annealing algorithm
and to compute the predicted motion used in the temporal coherence constraint. The current
temperature at that site is used as the initial temperature, which is then lowered according
to the annealing schedule.

After a fixed (usually small) number of iterations of the annealing process, each site has
a new motion estimate and temperature. The various properties of the associated surface
are then propagated to the new site where the patch has moved. The propagation algorithm

described below also detects occlusion and disocclusion boundaries.
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Warping

For now, assume that all motions are less than a pixel (this assumption will be relaxed in
the following section). Each site s first determines which of its neighbors moving towards it.
This is done by examining its own motion and the motion of its eight immediate neighbors
to identify those sites whose new location is estimated to be within a pixel of the site s.
Let this set of neighbors be denoted as n(s). New estimates of image properties at each
site are obtained by a weighted interpolation of the properties stored at the sites belonging
to this refined neighborhood. Examples of properties belonging to a site are its motion,
temperature, and state space. Additional properties like image intensity or higher level
information about surface membership may also be present.

The contribution of each neighboring site ¢ € n(s) is weighted by two factors: the prox-
imity of the new location of that site to the location of s, and the probability of the motion
estimate at t. Heuristically, the distance factor serves as a kind of linear interpolation of the
properties, while the second factor serves as a type of confidence measure. The contribu-
tions to s of all its neighbors are accumulated in this way, and the result is then normalized
according to the distance and the confidence of the neighbors.

The following expression more precisely describes the interpolation process. Let p be a

property of interest. Then the new estimate of p(s) is:

o(s) :v% S p(t)d(s, t)p(2), (17)
ten(s)

w(s) = Y p(t)d(s,t) (18)

ten(s)
where w is a normalizing term, p(t) is the probability of the estimated motion vector (u(t))
at ¢, and d(s,t) is the distance between the projection of site ¢ (according to its estimate

motion) and the location of site s.
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Occlusion and Disocclusion

The propagation algorithm outlined above can be made sensitive to the presence of occlusion
and disocclusion around each site. To explain how this is done, observe that the normalizing
factor w roughly measures the total flow into a site. In the absence of motion discontinuities
this should be approximately unity. However, if occlusions are present within the neighbor-
hood of a site, we may expect multiple sites to move towards it, thereby increasing the total
in-flow. Similarly, if there is a disocclusion, we may expect the total flow to be less than
unity.

The current version of our algorithm includes a simple implementation of the idea de-
scribed above for occlusion/disocclusion detection. The net flow, which is measured by the
quantity w is estimated and compared against two thresholds, one above and one below
unity, in order to categorize a site as occlusion, disocclusion, or normal. This is obviously
too simple to handle complex situations and may fail even in simple situations. For example,
if there is significant divergence (or convergence) present within the neighborhood of a site,
net flow will differ from unity, even if there are no motion discontinuities. Even when the
motion around the site is a simple translation, the lack of high confidence motion estimates
can lead to small estimates of the net flow.

In the current algorithm no special processing is done at occlusion sites, other than to
simply indicate them as such. A more sophisticated approach would involve modifying the
propagation scheme to take contributions from processors which correspond to the occluding
surface. If this information were available from higher level processes as a property of the
site, it could easily be incorporated.

On the other hand, a disoccluded site indicates a new patch of the environment which was
previously hidden from view. For this new patch, there is no prior motion estimate, hence
the annealing process should be initially uncommitted about the motion. This is achieved
by initializing the site to have a high temperature. Note that even if false disocclusions

are detected due to low confidence motion estimates (as explained above), increasing the
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temperatures may still be useful to extend the search space at that site.

It should be clear that unlike standard annealing, our algorithm uses different temper-
ature for the different sites and dynamically modifies the temperature according to the
information available at a site. As a patch is tracked, its temperature will decrease over
time. Hence, the temperatures of patches that have been tracked over many frames and
whose motion is precisely known tend to be lower than those of more recently disoccluded

(i.e., new) patches.

Convergence

Unlike simulated annealing, we have no theoretical convergence results for this new incre-
mental minimization scheme in which we attempt to minimize a function which is changing
over time but doing so in predictable ways. Empirical results indicate that the approach does
in fact converge to the correct sub-pixel motion estimates. Obviously, the degree to which
the constraints accurately reflect the physics of the world will affect both the convergence
and the accuracy of the algorithm. The current model and the constraints used are first
order approximations to the correct physical models, since the various continuity constraints
are imposed on the image domain and ignore the three-dimensional structure of the scene.
We expect, however, the framework presented here can be extended to incorporate more

precise models of the scene and its geometry.

4 Spatio-Temporal Pyramid

The previous section described how small motions can be estimated over time. This section
concerns itself with computing large motions. The most obvious way to estimate large
motions is to expand the state space to bé larger than 3 x 3 and increase the maximum
allowed step size, but this results in a loss of efficiency and communication between distant
sites. Additionally, correlating small patches of the world over large distances is unreliable.

To achieve efficient and robust computation of large motions we adopt a multi-resolution
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strategy.

The multi-resolution scheme developed here combines elements of the coarse-to-fine [2, 10,
21] and spatio-temporal filter [16] approaches. We reject a strict coarse-to-fine approach for
two reasons. The first is its sequential nature. We favor the spatio-temporal filter approach
which can be viewed as layers of detectors, tuned to certain spatio-temporal frequencies, with
all the detectors operating in parallel. The second problem with the coarse-to-fine strategy is
that the computation is no longer local. Non-zero displacements at the low spatial frequencies
will result large displacements in the high spatial frequencies. Refining the estimates at the
high spatial frequencies will involve communication with distant processors. This violates
our goal of simple local computation.

We start by constructing a pyramid of spatially filtered and subsampled images so that
at the lﬁghest level in the pyramid the largest motion is less than a pixel. Each level of the
pyramid can be thought of as a Markov Random Field which is responsible for estimating
motions of one pixel or less. Since the maximum detectable displacement within each level is
one pixel or less, the continuous annealing process described in the previous section can be
applied at each level. The annealing process is applied to each level in parallel so that each
level estimates its motion simultaneously and independently based on the previous motion
field, spatial coherence, and the data error.

To derive a global motion estimate, the motion estimates from each level are combined
so that the large motions, detected at the low spatial frequencies, dominate. This increases
robustness in the presence of noise and may have some biological justification based on ex-
periments in motion capture. This is essentially a coarse-to-fine strategy without refinement,
in which large motions are determined solely at the lower spatial frequencies. Since they are
not refined at higher frequencies, large motions are known with less absolute precision than

smaller motions. The relative precision however, will be the same across levels.
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Figure 4: Convergence Experiments. Variance as a function of the number of frames in a
25 image sequence. The results are plotted for tests involving varying numbers of iterations
of the annealing algorithm per frame (from 2 to 7).

5 Experimental Results

The incremental algorithm has been tested on real and synthetic image sequences. Experi-
ments with controlled synthetic data illustrate the performance of the algorithm. The real
image sequences, demonstrate the algorithm’s ability to achieve qualitatively good motion
estimates in the presence of noise. Without ground truth, no quantitative analysis of the

real motion sequences is possible.

5.1 Synthetic Motion Experiments

While no theoretical proof of convergence exists, in practice the ISM algorithm converges to
the correct solution even in the presence of noise. To illustrate the convergence properties of
the algorithm a synthetic image sequence was generated. The sequence consists of a 64 x 64
pixel uniform random signal over the range [0,255] which is undergoing a uniform translation
of one half pixel to the right and down per frame.

The initial experiments consider a noiseless signal and examine the convergence of the

algorithm over time. Error is computed as the variance of the motion estimate in a region
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Figure 5: Noise Experiments. Variance as a function of noise (from 0% to 50%) is plotted
plotted for a 10 frame sequence with 5 iterations per frame.

of the image which is visible for the entire sequence. Error in recently disoccluded regions
will be initially higher. Figure 4 plots variance of the motion estimate as a function of the
number of images examined in the sequence. The variance is plotted for trials using 2, 3,
4, 5 and 7 iterations per frame. Even with only three iterations per frame the algorithm
converges to the correct solution within approximately 25 frames.

The next experiment addresses the effect of noise on the convergence of the algorithm.
Uniform random noise over the range [—v/2,~/2] was added to each image in the sequence,
where 7 is a percentage of the total intensity range. Figure 5 shows the effect of zero to
50 percent noise on the variance of the motion estimate. The experiment is performed with
only a 10 frame image sequence with five iterations per frame. The results indicate the the
algorithm is tolerant to fairly large amounts of noise (up to about 30%). Above that, longer

sequences or more iterations per frame would be required to reach acceptable levels of error.

5.2 Motion Discontinuities

The following experiment involves an image sequence consisting of eight 64 x 64 square

images; the last image in the sequence is shown in figure 6a. The images contain a soda can
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in the foreground; the motion of which is is slightly less than one pixel to the left between
each frame. The can is moving in front of a textured background which is also undergoing
a slight motion to the left; there is no vertical motion.

Since all the motion is less than a pixel, this sequence tests the sub-pixel accuracy of
the algorithm independently of the multi-resolution strategy. The flow field, computed to
sub-pixel accuracy, is shown in figure 65. The actual horizontal and vertical components of
the flow field are shown in figures 6c and 6d respectively. The images can be interpretated
roughly as follows: gray areas correspond zero motion, dark areas to leftward or upward
motion and bright areas to rightward or downward motion. Notice that over-smoothing does
not take place and flow discontinuities are maintained. Also notice that the errors in the
vertical motion estimate correspond to areas of low image contrast. A longer image sequence
or more iterations per frame would likely reduce the errors.

Occlusion and disocclusion boundary estimates are shown if figure 6e. The brighter
the area, the more likely it is to be an occlusion boundary. Similarly, dark areas indicate
disocclusion. It is important to remember, that while these results show only the final frames

in the image sequence, both flow and discontinuity estimates are available at all times.

5.3 Nap-Of-the-Earth Experiment

The final experiment tests the full algorithm, including the multi-resolution strategy. The
test sequence consists of 100 images of size 128 x 128 pixels. The images were acquired
from a camera mounted on a helicopter in Nap-Of-the-Earth (NOE) flight. The sequence is
challenging in many respects. First the range of motion in the images is wide; from 0 to
approximately 4 pixels. To cope with motions of up to 4 pixels, a three level pyramid was
used. Second, there are areas in the images of low contrast where good data estimates are
not available. Finally, the motion is complex and changing; there is pitch, yaw and rotation
in addition to translation. The actual motion is corrupted by jitter introduced by the camera

mounting and turbulence.
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Figure 6: Pepsi can image sequence (results after eight frames): @) Intensity image; b)
Flow field; ¢) Horizontal Displacement; d) Vertical Displacement; e) Occlusion/Disocclusion
Boundaries.

Unfortunately, it is impossible to convey the dynamic behavior of the algorithm over the
100 image sequence in a static format for presentation here. Figure 7 shows six snapshots of
the processing after 15, 30, 45, 60, 75 and 90 frames. The data conservation constraint used a
9% 9 window with band-pass filtered images. Seven iterations of the annealing algorithm were
used per .frame with a linear cooling schedule. The various parameters mentioned previously
were set as follows: Ap = 15.0, As =0.25, Ar = 0.5, Bp = 2.0, B8s = 2.5, fr =1.0.

Even after only 15 frames, noise in the motion estimate is small. In figures 7a,b a
rotation to the right, in addition to the translation, can be seen. Figures 7¢,d span a largely
translational sequence. Throughout this portion of the sequence however, the aircraft is

undergoing significant pitching fore and aft. Despite some additional noise due to the pitching
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motion, the temporal coherence constraint helps maintain a reasonable motion estimate. In
the final portion of the image sequence (7e,f) the helicopter is banking while rotating to the
left.

6 Conclusion

This paper has presented a novel approach to incrementally computing motion estimates
over a sequence of images. The starting point for the approach is the realistic formulation
of constraints on image motion. This means taking into account the possibility of multiple
motions using the notions of weak continuity and robust statistics. The resulting mini-
mization problem is difficult to solve and traditional stochastic techniques are inappropriate
for motion processing. To ameliorate these problems an incremental annealing algorithm is
developéd.

The approach has a number of advantages over previous approaches. The incremental
and adaptive nature of the scheme makes it appropriate for dynamic motion processing. In
particular, the local nature of the computations makes it possible to exploit the high degree
of parallelism inherent in the problem using a simple array structured architecture. Addi-
tionally, the warping process allows the detection of occlusion and disocclusion boundaries.

Our current research is extending this scheme in a number of directions. First we are
exploring new formulations of the temporal minimization problem. In particular we are
examining new ways of formulating the temporal coherence constraint which would allow
the warping process to be formalized in terms of the objective function. In conjunction with
this, we are exploring new ways of performing adaptive stochastic minimization which are
more appropriate for cases of non-uniform motion for which a strict cooling schedule is not
appropriate.

Additionally, we are considering other possible constraints, for example rigid body mo-
tion, which could be brought to bear on the problem. In the context of formulating con-

straints, there is a great avenue of exploration in the use of robust statistics for dealing with
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multiple motions.

Finally, it should be noted that the usefulness of the model extends beyond motion
estimation. A model used to compute motion incrementally may also be exploited to in-
crementally compute traditionally non-motion related image properties. The framework
for tracking surface patches over time may permit the extension of traditional two frame

algorithms to a sequence of frames.
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