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1 Introduction

The scattering of waves from potentials is ubiquitous in applied mathematics and physics,

arising inter alia in geophysics, medical imaging, non-destructive industrial testing, op-

tics, etc. Typically in such applications it is highly desirable to be able to simulate the

scattering from a given medium quickly and accurately. This is especially important for

solving the inverse problem; namely, to recover properties of the material from measure-

ments of the scattered field outside the object. Inversion algorithms often require solving

the forward problem (ie. determining the scattered field for a given medium) hundreds

or thousands of times.

In this paper we describe a fast, adapative, simple, and accurate method for comput-

ing the scattering from a radially-symmetric body in two dimensions. The applications

are two-fold. Firstly, radially-symmetric geometries are frequently encountered in appli-

cations. Secondly, the speed and accuracy of the proposed method allow one easily to

validate new algorithms for solving the two-dimensional forward and inverse problems

for the Helmholtz equation (or wave equation). See [6, 2, 9] and the references therein

for a discussion of fast algorithms for general two-dimensional scattering problems.

The remainder of this paper is organized as follows. In Section 2 we describe the

model and introduce the necessary mathematical tools. In Section 3 we describe the

algorithm for two-dimensional scatttering from radially-symmetric potentials. Numerical

illustrations of the algorithm both for fixed frequencies and in the time domain are given

in Section 4. Finally, Section 5 discusses future work.

2 Mathematical Preliminaries

In the frequency domain the displacement in an inhomogeneous fluid satisfies the Helmholtz

equation

∆u(r) + k2(1 +Q(r))u(r) = 0. (1)
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In this paper we restrict our attention to two-dimensional problems for which the po-

tential Q is radially symmetric and compactly supported. The classical approach is to

decompose the total field u into the sum of an incident field ui and a scattered field us.

In typical problems the incident field ui is known and satisfies the Helmholtz equation

with Q ≡ 0. The scattered field us satisfies

∆us(r) + k2(1 + q(r))us(r) = −k2q(r)ui(r), (2)

together with the Sommerfeld radiation condition

lim
r→∞

√
r

[
∂

∂r
us(r)− ikus(r)

]
= 0. (3)

We observe that since the potential Q is radially-symmetric there exists a compactly-

supported function q : [0,∞) such that Q(r) = q(‖r‖) for all r ∈ R2, where ‖ · ‖ denotes

the standard Euclidean norm. With some abuse of notation we will also refer to the

function q as the potential.

2.1 Reduction to the radial problem

In this section we describe the reduction of the radially-symmetric acoustic scattering

problem to a set of decoupled one-dimensional scattering problems. To that end, we let

um : [0,∞) → C denote the Fourier coefficient of the scattered field us with respect to

the angle θ,

um(r) =

∫ 2π

0
e−imθus(r cos θ, r sin θ) dθ. (4)

It is easily shown that um satisfies the following ordinary differential equation

u′′m(r) +
1

r
u′m(r) + k2[1 + q(r)]um(r)− m2

r2
um(r) = −k2q(r)fm(r), (5)
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where

fm(r) =

∫ 2π

0
e−imθui(r cos θ, r sin θ) dθ, (6)

is the Fourier coefficient of the incident field ui.

The following remarks and lemmas summarize results pertaining to the solutions of

(5) (see, for example, [1]).

Remark 2.1. On any interval c < x < d on which the source f and the potential q

are identically zero the solutions to equation (5) are a linear combination of the Bessel

function Jm(kr) and the Hankel function Hm(kr).

Remark 2.2. We observe that if fm is generated by an external (or internal) source then

it will be a scalar multiple of Jm (Hm respectively). In this case there exists a constant

cm depending on ui and m but not on r such that

um(r) = cmu−m(r). (7)

This follows from the fact that Jm(z) = (−1)mJ−m(z) and Hm(z) = (−1)mH−m(z).

Hence

cm =
fm(kb)

f−m(kb)
(−1)m. (8)

Thus in such cases it suffices to solve for um, m ≥ 0 and calculate u−m via (7) and (8).

The following lemma characterizes the solution to equation (5) outside the support

of q.

Lemma 2.1. Suppose that the potential q is supported on the interval [a, b] and that um

is the function defined by (4). Then there exists some constant µ such that um(r) =

µHm(kr) for all r ≥ b. Similarly, there exist constants A,α such that

um(r) = AHm(kr) + αJm(kr),

4



for all 0 ≤ r ≤ a. Moreover, if q ≡ 0 then α = 0, A = µ.

The following lemma provides the Green’s function for the homogeneous equation

(5) obtained by setting the potential q identically to zero.

Lemma 2.2. Let g be a function compactly supported in the interval [a, b]. For all m ≥ 0

the function um defined by the following formula

um(r) = − iπ
2

[∫ r

0
Jm(kt)Hm(kr) g(t) t dt+

∫ ∞
r

Jm(kr)Hm(kt) g(t) t dt

]
(9)

satisfies the following ordinary differential equation

u′′m(r) +
1

r
u′m(r) + k2um(r)− m2

r2
um(r) = g(r). (10)

We conclude the section with the following definition.

Definition 2.1. For any integer m we define the corresponding function Km : (0,∞)×

(0,∞)→ C by

Km(r, t) =


Jm(kt)Hm(kr) t if t ≤ r,

Jm(kr)Hm(kt) t if t ≥ r,
(11)

Except when necessary we will suppress the subscript m.

2.2 Integral equations for modes

In this section we derive integral equations for the Fourier components of the scattered

field um, m = 0,±1,±2, . . . for variable q. The two-point boundary value problem for um

can be converted into a second-kind integral equation for a new unknown ρm by writing

um in the form

um(r) =

∫ ∞
0

K(r, t)ρm(t) dt, (12)
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Upon substitution of this formula into the equation (5) we obtain

ρm(r) + k2q(r)

∫ ∞
0

K(r, t)ρm(t) dt = −k2q(r)fm(r). (13)

After ρm is determined, um can be obtained by integration against the kernel K(r, t)

defined in (11).

Remark 2.3. From (13) it is clear that the support of ρm is contained in the support

of q.

2.3 Scattering matrix formulation

In this section we define the scattering matrices, incoming expansion coefficients, and

outgoing expansion coefficients. Additionally, we provide expressions relating the ex-

pansion coefficients and scattering matrices on two adjacent disjoint intervals to the

expansion coefficients and scattering matrices on their union. A similar formalism for

more general two-point boundary value problems was developed in [7].

Given an interval A = [a, b] and a function ρ ∈ L2[0,∞) we define the left and right

outgoing expansion coefficients α`(A) and αr(A), respectively, by

α`(A) =

∫
A
Jm(kr)ρm(r)rdr (14)

αr(A) = −iπ
2

∫
A
Hm(kr)ρm(r)rdr. (15)

Similarly, we define the left and right incoming expansion coefficients φ`(A) and φr(A),

respectively, by

φ`(A) =

∫ a

0
Jm(kr)ρm(r)rdr, (16)

φr(A) = −iπ
2

∫ ∞
b

Hm(kr)ρm(r)rdr. (17)
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In addition, we let FA : L2[a, b]→ L2[a, b] denote the operator defined by

FA(ρ)(r) = ρ(r) + k2q(r)

∫ b

a
K(r, t)ρ(t) dt. (18)

Next, we define the mapping VA : [a, b]→ R by

VA(r) = −k2F−1A (qf) (r), (19)

and the coefficients χJ(A) and χH(A) by

χJ(A) =

∫
A
Jm(kr)VA(r) r dr (20)

χH(A) = − iπ
2

∫
A
Hm(kr)VA(r) r dr. (21)

Finally, we denote the restriction of Jm(kr) and − iπ
2 Hm(kr) to the interval A by J |A

and H|A, respectively, or simply by J and H, respectively, when there is no ambiguity.

The integral equation for ρm on an interval A = [a, b] can be written in terms of φ`(A),

φr(A), VA and FA, as shown in the following lemma. It also relates these quantities to

the outgoing expansion coefficients of A, α`,r(A).

Lemma 2.3. Suppose that m is a non-negative integer and that ρm satisfies the integral

equation (13). For an interval A = [a, b] with 0 ≤ a < b < ∞ suppose that α`(A),

αr(A), φ`(A), φr(A), χJ(A) and χH(A) are the quantities defined in (14), (15),(16),

(17), (20) and (21), respectively. Further suppose that FA : L2[a, b] → L2[a, b] is the

operator defined by (18) and VA is the function defined by (19). Then

ρm(r) = −φ`(A)F−1A (H)(r)− φr(A)F−1I (J)(r) + VA(r). (22)
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Moreover,

α`(A)

αr(A)

 = −

〈J, F−1A H
〉
A

〈
J, F−1A J

〉
A〈

H,F−1A H
〉
A

〈
H,F−1A J

〉
A


φ`(I)

φr(I)

+

χJ(A)

χH(A)

 ,

(23)

where 〈·, ·〉I denotes the standard L2 inner product restricted to A.

Definition 2.2. The scattering matrix SA of the interval A is the mapping from the

incoming expansion coefficients to the outgoing expansion coefficients in the absence of

a source. Specifically, using (23) one finds that

SA = −

〈J, F−1A H
〉
A

〈
J, F−1A J

〉
A〈

H,F−1A H
〉
A

〈
H,F−1A J

〉
A

 . (24)

The following lemma relates the expansion coefficients on the union of two intervals

to the expansion coefficients on each of the subintervals.

Lemma 2.4. Suppose that A = [a, b] and B = [b, c] for some 0 ≤ a < b < c <∞. Then

α`(A ∪B) = α`(A) + α`(B) (25)

αr(A ∪B) = αr(A) + αr(B) (26)

φ`(A ∪B) = φ`(A) (27)

φr(A ∪B) = φr(B). (28)

Moreover, if

L =



1 0

0 1

1 0

0 1


, and KAB =



1 0 0 (SA)1,1

0 1 0 (SA)2,1

(SB)2,1 0 1 0

(SB)2,2 0 0 1


, (29)
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then

SI∪J = LTK−1AB

SA 0

0 SB

L, and

χJ(A ∪B)

χH(A ∪B)

 = LTK−1AB



χJ(A)

χH(A)

χJ(B)

χH(B)


.

(30)

Finally, if χJ(A), χH(A),χJ(B), χH(B), φ`,r(A∪B), SA, SB and SA∪B are known then

α`,r(A), φ`,r(A), α`,r(B), and φ`,r(B) can be determined via the following formulas



α`(A)

αr(A)

α`(B)

αr(B)


= K−1AB

SA 0

0 SB

L

φ`(A ∪B)

φr(A ∪B)

+



χJ(A)

χH(A)

χJ(B)

χH(B)


(31)

φ`(A) = φ`(A ∪B) (32)

φr(A) = φr(A ∪B)− αr(B) (33)

φ`(B) = φ`(A ∪B)− α`(A) (34)

φr(B) = φr(A ∪B). (35)

Proof. From the definitions of φ`,r it is clear that

φ`(A) = φ`(A ∪B), (36)

φ`(B) = φ`(A ∪B)− α`(A), (37)

φr(A) = φr(A ∪B)− αr(B), (38)

φr(B) = φr(A ∪B) (39)
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Moreover, applying equation (23) to the intervals A and B yields



α`(A)

αr(A)

α`(B)

αr(B)


=

SA 0

0 SB




φ`(A)

φr(A)

φ`(B)

φr(B)


+



χJ(A)

χH(A)

χJ(B)

χH(B)


. (40)

Using identities (36)-(39) we obtain



1 0 0 (SA)1,1

0 1 0 (SA)2,1

(SB)2,1 0 1 0

(SB)2,2 0 0 1





α`(A)

αr(A)

α`(B)

αr(B)


=

SA 0

0 SB




1 0

0 1

1 0

0 1


φ`(A ∪B)

φr(A ∪B)

+



χJ(A)

χH(A)

χJ(B)

χH(B)


.

(41)

Defining

L =



1 0

0 1

1 0

0 1


, and KAB =



1 0 0 (SA)1,1

0 1 0 (SA)2,1

(SB)2,1 0 1 0

(SB)2,2 0 0 1


, (42)

and substituting them into (41), we obtain

α`(A ∪B)

αr(A ∪B)

 = LTK−1AB

SA 0

0 SB

L

φ`(A ∪B)

φr(A ∪B)

+ LTK−1AB



χJ(A)

χH(A)

χJ(B)

χH(B)


.

(43)
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Comparing with (23) it follows that

SA∪B = LTK−1AB

SA 0

0 SB

L, and

χJ(A ∪B)

χH(A ∪B)

 = LTK−1AB



χJ(A)

χH(A)

χJ(B)

χH(B)


.

(44)

�

3 The algorithm

In this section we describe an algorithm for solving the Helmholtz scattering problem

from a radially-symmetric potential in two dimensions

∆u+ k2(1 + q(|r|)u = −k2q(‖r‖)ui(r) (45)

where ui is the incident field, q is supported on the interval [a, b], and the scattered field

u satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

[
∂

∂r
u(r)− iku(r)

]
= 0. (46)

In the following it is assumed that the incident field satisfies the homogeneous Helmholtz

equation

∆ui + k2ui = 0, a ≤ |r| ≤ b. (47)

3.1 Description of the algorithm

For simplicity we describe the algorithm assuming that a = 0 and q is smooth, though

the approach can be easily extended to the case where a 6= 0 and q is piecewise smooth.
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As input the algorithm takes an outer radius b, an accuracy ε, a frequency k ∈ C, and

functions which return the values of the incoming field ui and the potential q. We note

that q is required to be radially-symmetric but ui is not. As output it returns the

scattered field us to within a specified accuracy ε.

Algorithm 1.

Input: b, k, ε, q(r) and ui(x, y).

Output: A function us(x, y) valid for all (x, y) ∈ R2.

Step 1. Computing the Fourier coefficients of ui : Sample ui at 4000 equispaced points

on the circle of radius R. Denote these values by ũj , j = 1, . . . , 4000. Compute

the FFT of ũj and compute the smallest integer M such that |ũj | < ε/10 for all

j ∈ [M, 4000−M ]. If no such M exists double the number of sampling points.

For each m = 0, . . . ,M, calculate ρm using the following procedure:

Step 2. Set i = 0, R0 = b, Rmin = infr>0 |Jm(rk)| < ε/10.

While Ri > Rmin

(a) Set r = max{Ri − π/k,Rmin}.

(b) Set J∗ = max[r,Ri] |Jm(kr)|, H∗ = max[r,Ri] |Hm(kr)|, q∗ = max[r,Ri] |q(r)|.

Compute the first 48 coefficients in the Chebyshev expansions of q(r), Hm(kr),

Jm(kr) on the interval Ri−r. Denote them by qij , J
i
j and H i

j respectively, where

j = 1, . . . , 48. Calculate

E := (Ri − r) max
j=13,...,48

{
qij
q∗
,
J ij
J∗
,
H i
j

H∗

}
.

If E > ε/10 then set r = 1
2(Ri + r) and repeat.

(c) For scattering from an external field set the ith source vector to be f ij =

Jm(krj) where rj , j = 1, . . . , 48 are the 48-point Chebyshev quadrature nodes

translated and scaled to the interval [r,Ri].
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(d) Set Ii = [r,Ri] and discretize the operator FI defined in equations (18) using

the quadrature nodes r1, . . . , r48.

(e) Calculate VIi , SIi , α`(Ii), αr(Ii), χJ(Ii) and χH(Ii) defined in (14),(15),(20),

and (21) respectively.

(f) Set i = i+ 1 and Ri = r.

Let N denote the total number of intervals required.

Step 3. Merging the intervals: starting from the outermost interval [R1, R0] merge each in-

terval using the results of Lemma 2.4. In particular, for each i = 1, . . . , N compute

and store the scattering matrices S[Ri,R0], the expansion coefficients α`([Ri, R0]),

αr([Ri, R0]) and the source coefficients χJ([Ri, R0]), χH([Ri, R0]).

Step 4. Given χJ([RN , R0]), and χH([RN , R0]) starting from the innermost level compute

the incoming expansion coefficients φ`([Ri, Ri−1]), φr([Ri, Ri−1]) using the results

of Lemma 2.4. Finally, on each interval [Ri, Ri−1] obtain ρm via equation (22).

Step 5. On each interval I = [Ri+1, Ri], obtain the solution um via equation

um(r) =
fm(kb)

Jm(kb)
[FIρm(r)− iπ

2
φ`(I)Hm(kr) + φr(I)Jm(kr)]. (48)

Step 6. For m < 0 obtain the solution um via the equations (7) and (8).

Remark 3.1. The complexity of the above algorithm is O(M logM + N̄M) where N̄

denotes the average number of discretization points per mode and grows like b/k for large

k. For large M a significant amount of time is spent solely in computing values of the

Bessel and Hankel functions Jm(kr) and Hm(kr), respectively. This computational cost

can be dramatically reduced by using asymptotic formulae for Jm(kr) and Hm(kr) (see,

for example, [1]) as well as non-oscillatory phase functions [4].
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4 Numerical results

The algorithm described in Algorithm 1 which solves the two-dimensional scattering

problem from radially-symmetric potentials was implemented in GFortran and experi-

ments were run on a 2.7 GHz Apple laptop with 8 Gb RAM. Specifically, we consider

scattering from a disk of radius 2π with the following potentials:

1. A Gaussian bump with potential q(r) = e−r
2

(see Figure 2a)

2. A random discontinuous media: 20 points are uniformly sampled from the interval

[0, 2π]. At each such point the potential switches from 0 to 1 or vice versa (see

Figure 3a)

3. An Eaton lens ([5]) with potential q satisfying the equation

1 + q(r) =
2π√

1 + q(r)r
+

√√√√( 2π√
1 + q(r)r

)2

− 1,

(see Figure 4a)

4. A Luneburg lens ([8]) with potential q(r) = 1− r2

4π2 , (see Figure 5a).

The incoming field is chosen to be one of the following two functions

1. An incoming plane wave:

f(r) = exp(ikx/2 + i
√

3ky/2),

where r = (x, y).

2. A Gaussian beam:

f(r) = H0

(
k
√

(x+ 16− 8i)2 + y2
)
e−7.859k,

where r = (x, y).
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Potential q Source Frequency k Number of modes Solve time (s)

Gaussian plane wave 100 711 36.07
Random plane wave 30 245 7.551
Eaton Gaussian beam 30 233 6.684

Table 1: Numerical results for the interior (I) and exterior (E) Dirichlet problems.
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Figure 1: Number of radial points versus mode number

In all experiments the accuracy ε was set to 10−13. The number of modes needed and the

total time per solve are summarized in Table 1. Plots of the magnitude of the field |u|

are given in Figure 2b, Figure 3b, and Figure 4b. In order to demonstrate the accuracy

of the solution we compute the error function E : R2 → [0,∞) defined by

E(x) =

∣∣∣∣ 1

k2
∆u(r) + (1 +Q(r))u(r)

∣∣∣∣ , (49)

log plots of which are shown in Figure 2c, Figure 3c, and Figure 4c. Finally, Figure

1 shows the typical behavior of the number of spatial discretization nodes used as a

function of the mode number m.

4.1 Time domain problems

In this section we present numerical illustrations of the application of Algorithm 1 to

two-dimensional time-dependent scattering problems. For time-dependent scattering
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(a) Radial section of the Gaussian bump (b) Magnitude of the total field |u|

(c) Error in the solution (log10):
log10(|∆u+ k2(1 + q(‖r‖))u|/k2)

Figure 2: Numerical results for the scattering of a plane wave from a Gaussian potential
with a standard deviation of 1 at frequency k = 100.
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(a) Radial section of the random discontin-
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Figure 3: Numerical results for the scattering of a plane wave from a discontinuous
potential with diameter 4π at a frequency of k = 30.
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Figure 4: Numerical results for the scattering of a Gaussian beam from an Eaton lens
with a diameter of 4π at a frequency of k = 30.
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problems the displacement u : R2 × [0,∞)→ C satisfies the initial value problem

∆u(r, t)− (1 +Q(r))
∂2

∂t2
u(r, t) = f(r, t) (50)

u(r, 0) = 0 (51)

∂

∂t
u(r, 0) = 0. (52)

In the following we assume that the potential Q : R2 → [q0, q1] is a radially-symmetric

function compactly supported on a ball of radius b. Moreover, we assume that the source

f has the following two properties:

1. f(r, t) = 0 for all ‖r‖ ≤ b, t ∈ [0,∞),

2. for all r ∈ R2, f(r, t) is a C∞ function of t, compactly supported in some interval

[0, T ].

If ũ(r, k) denotes the Fourier transform of u with respect to time evaluated at fre-

quency k,

ũ(r, k) =
1

(2π)2

∫ ∞
−∞

e−ikt u(r, t) dt, (53)

then ũ satisfies the Helmholtz equation (see, for example, [3])

∆ũ(r, k) + k2(1 +Q(r))ũ(r, k) = f̃(r, k) (54)

where f̃ is the Fourier transform of the source f. Moreover, given ũ one can compute u

via the inverse Fourier transform

u(r, t) =

∫ ∞
−∞

eikt ũ(r, k) dk. (55)

We observe that since f is smooth in time its Fourier transform decays rapidly with k.

In particular, for some constant K depending on f the interval of integration (−∞,∞)

in (55) can be replaced by a finite interval [−K,K] with essentially no loss in accuracy.
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As an example to illustrate this approach we consider the problem of scattering from

a Luneburg lens (see Figure 5a) with an incoming source f given by

f(r, t) =
√

8 δ(x− 10)δ(y − 10)e−4(t−10)
2

where r = (x, y). The solution was calculated by solving the problem at 516 frequencies

in the interval [−16, 16]. The intervals [2, 16] and [−16,−2] were discretized using a

200-point Gauss-Legendre quadrature while the interval [−2, 2] was discretized using a

custom generalized Gaussian quadrature.

5 Conclusion and future work

In this paper we described a fast, adapative, simple, and accurate method for comput-

ing the scattering from a radially-symmetric body in two dimensions. The algorithm is

based on taking Fourier series in the angular variable and solving the resulting equations

mode by mode using a fast adaptive solver based on scattering matrices. Numerical ex-

periments were performed which demonstrate the performance of the algorithm. We ob-

serve that a similar approach can be employed for three-dimensional radially-symmetric

scattering problems as well as for waveguides with constant cross-sectional parameters.

Finally, a natural extension to this algorithm would be to collections of compactly-

supported radially-symmetric scatterers, which arise in problems in optics and the study

of wave propagation in disordered media.
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Figure 5: Numerical results for the scattering of a wave from a Luneburg lens.
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