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Abstract

Layered communication protocols frequently build a reliable FIFO message facility on top
of an unreliable non-FIFO service such as that provided by a packet-switching network. This
can be done by including a sequence number in each transmission and acknowledgement. To
accommodate the sequence numbers requires in principle an infinite number of different packet
headers. This paper investigates the possibility of building a reliable message facility using only
a fixed finite number of different packet headers. Protocols to do this are known when the
underlying service can lose packets but not reorder them. Here, the more difficult case in which
packets might be delivered out of order is considered. A protocol is given that accomplishes
this task, but it has the undesirable property that the number of packets needed to deliver a
message increases permanently as additional packet-loss and reordering faults occur. A proof
is given that no protocol can avoid such performance degradation. The protocol and proof are
presented using I/O automata.
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1 Introduction

1.1 Reliable Message Transmission Problem

To overcome the great engineering complexity involved in designing communication networks, de-
signers typically organize them as a series of layers. Each layer is viewed as a “black box” that
can be used by the next higher layer. Typical higher layers provide communication services with
“nicer” properties than the lower layers upon which they are implemented. (See [Tan89, BG77] for
more details.)

One of the most important functions of a higher layer is to provide reliable interprocess com-
munication using a less reliable lower layer. For example, at the lower layers of a layered com-
munication system, individual messages might be lost, duplicated, or corrupted, and sequences of
messages might be delivered out of order; higher layers often mask these anomalies, guaranteeing
to their users that the messages are delivered reliably, exactly once, and in the intended order.

In this paper, we consider a special case of this problem, namely, that of implementing a reliable,
order-preserving communication layer between two processes in terms of an underlying unreliable
layer that can lose and reorder (but not duplicate) messages. This problem arises, for example,
at the network layer of a packet-switching network, as the problem of implementing a reliable
transport layer in terms of an underlying sub-network transmission medium that permits message
reordering. It also could arise at the lowest layers, as the problem of implementing a reliable data
link layer in terms of an underlying physical transmission medium that permits message reordering.

We formulate the problem abstractly as follows. First, we give an abstract definition for the
reliable communication layer. We assume that the reliable layer interacts with its environment
(which we generally think of as a higher layer protocol) at two endpoints called stations or sites.
The reliable layer accepts a sequence of data items that we call messages from the environment
at one station and delivers them to the environment at the other station. All messages accepted
at one end of the reliable layer are eventually delivered intact at the other end, and they are
delivered in the order in which they are accepted. Thus, a reliable layer provides reliable two-way
communication between two stations.

In more detail, from the point of view of the environment, the reliable layer supports two
kinds of activities, which we call actions. A send-rl(m) action is performed by the environment
at one station and causes the reliable layer to accept message m; send-rl(m) is an input action to
the reliable layer. A recv-rl(m) action is performed by the reliable layer at the other station and
causes message m to be delivered to the environment; recv-rl(m) is an output action of the reliable
layer. Thus, the reliable layer looks to the environment like a black box with two kinds of actions:
send-rl(m) and recv-rl(m), which take place at opposite stations.

Next, we define an abstract unreliable layer. As does the reliable layer, an unreliable layer
interacts with its environment (usually a higher layer protocol) at two endpoints. It accepts se-
quences of data items from one station and delivers them to the other station. We call the data
items transmitted by the unreliable layer packets, to distinguish them from the “messages” of the
reliable layer. ‘

Unlike the reliable layer, the unreliable layer may deliver packets incorrectly. It may lose (i-e.,
fail to deliver) a packet, and it may deliver packets out of order. (We do not consider an unreliable
layer that corrupts or duplicates packets.) In order to exclude the uninteresting case in which the
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unreliable layer loses all or nearly all packets, we impose a minimal liveness requirement on the
unreliable layer by assuming that any packet that is accepted by the unreliable layer infinitely many
times is also delivered infinitely many times.

In more detail, the unreliable layer supports two actions. A send-ul(p) action is issued by the
unreliable layer’s environment at one station and causes the unreliable layer to accept packet p;
send-ul(p) is an input action to the unreliable layer. A recv-ul(p) action is issued by the unreliable
layer at the other station and causes packet p to be delivered to the environment; recv-ul(p) is an
output action of the unreliable layer. Thus, the external interface of the unreliable layer consists of
actions with very similar names and functions to those of the reliable layer. We use different names
(e.g., send-rl(m) vs. send-ul(p)) in order to distinguish actions of the two layers.

We next define the notion of a channel. A channel is a device (i.e., a machine or program) that
supports the actions of an unreliable layer and whose interactions with its environment have the
properties specified for an unreliable layer; thus, a channel is an implementation of the unreliable
layer. An implementation of the reliable layer consists of a pair of protocols to be executed by
processes at the two stations which communicate via a channel. The protocols allow for the passage
of messages between a process and the environment, and for the passage of packets between a process
and channel as appropriate. The implementation is correct if the combination of the transmitter
and receiver protocols with any channel has the properties of a reliable layer, that is, every message
sent by the environment at one station is eventually received by the environment from the other
station, and the order in which messages are received is the same as the order in which they are sent.
We call the problem of implementing a reliable layer on an unreliable layer the reliable message
transmission problem (RMTP).

In discussing solutions to RMTP, it is convenient to focus on the problem of implementing a
one-way reliable layer, that is, a layer in which all of the send-rl actions occur at one station ¢,
which we call the transmitting station, and all recv-rl actions occur at the other station r, which we
call the receiving station. The processes at the transmitting and receiving stations are denoted by
A? and A", respectively, and are called nodes. An implementation of a full two-way reliable layer
is easily obtained by combining two “copies” of the one-way reliable layer implementation.

1.2 Solutions to RMTP

RMTP is easily solved with a reliable channel—one that preserves packet order and eventually
delivers each packet. If the packet alphabet is sufficiently large, the transmitter simply sends each
message in turn as a separate packet on the channel. The receiver waits passively for each packet
from the channel and delivers it to the environment when it arrives. In any case, if there are at
least two packets, then the transmitter can encode each message in a variety of ways by a sequence
of packets and send the packets one at a time across the channel. The receiver collects the packets
that represent a message, decodes the message, and delivers it to the environment. Therefore,
any solution to RMTP for a two-message alphabet can be used to solve RMTP for an arbitrary
denumerable message alphabet.

Solutions to RMTP for certain kinds of unreliable channels date back to the early work on
communication protocols (cf. [BSW69, Ste76, AUWY82]). Much of the early theoretical work was
concerned with optimizing the number of states or number of packets under various assumptions
about the channel. For example, [AUWY82] consider RMTP using synchronous channels in which
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the loss of a packet can be detected by the recipient at the next time step.

In this paper we consider RMTP in asynchronous systems where the channels are subject to
arbitrary packet loss and reordering faults. We note that if the channel is subject to either one of
these kinds of faults but not both, or if we allow for infinite channel alphabets, then there are easy
solutions to the problem [Ste76, BSW69).

A channel that can both lose and reorder packets can cause serious problems. For example, if
the transmitting station sends the sequence 1011210001 of one-digit packets, the receiving station
might get 0011 or 1100 or 0000111112 or even nothing at all. It is not clear how the receiving
station can derive any useful information from what it receives. In the presence of such channels, it
is not hard to see that no protocol derived from the Unbounded Counter protocol simply by keeping
sequence numbers to some finite modulus will work; the basic difficulty is that the processes can
misinterpret old packets that are delivered out of order.

Indeed, it has often been conjectured informally (by practitioners in the communication network
field) that solving RMTP with such channels and finite packet alphabets is impossible; we originally
set out to prove this conjecture formally. Instead, we discovered a solution, which we present in
Section 5.

Our solution is based on the Alternating Bit protocol [BSW69], augmented by a technique that
prevents the processes from misinterpreting old packets. The main part of our solution involves
implementing another kind of abstract communication layer that we call a FIFO layer, which can
lose and duplicate but not reorder packets, using an unreliable layer that can lose and reorder but
not duplicate. At first glance it is not clear that this represents progress toward a solution, since in
return for the FIFO property that we gain, we introduce the possibility of duplication. However,
the Alternating Bit Protocol can be used to achieve reliable communication using such a FIFO
layer.

The main ideas of the construction of a FIFO layer are as follows. We say that a packet is “in
transit” in an unreliable layer if it has been sent over the unreliable layer but not yet received at
the other end. Since the unreliable layer can lose packets, packets in transit might never arrive, but
since the unreliable layer can also reorder packets, a packet in transit might be delivered very late.
Thus, there is no point in time at which the receiving process can determine that a given packet
in transit will never be delivered in the future.

The basic strategy used by the protocol for dealing with packets in transit is for the receiving
process to maintain a conservative estimate of the number of packets in transit toward it. Then
if more copies of a particular packet are received after a certain point in time than are in transit
at that time, the receiver knows that at least one of those copies must have been sent after that
time. Our protocol uses two different kinds of packets: queries and values. A process only sends a
value in response to a query; thus, the receiver knows that the number of values in transit toward
it is at most the difference between the number of queries made and the number of values already
received.

Although the protocol solves RMTP, there is a problem with its efficiency. Namely, after
certain executions «, a large number of packets are required to convey each future message. We
show, however, that for some function f, if the unreliable layer starts behaving “nicely” after a,
then the number of packets required to convey each future message is bounded by f(a). The
function f is called the bound of the protocol.

An obvious question is whether there exist solutions to RMTP which are bounded by a constant
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function k. Intuitively, such a protocol would be able to recover from any fault history and convey
each future message using at most & packets. In Section 7, we show that no such constant-bounded
protocol exists.

Results related to ours appear in several other papers. A preliminary version of the protocol is
in [AFWZ89]. A preliminary version of the impossibility result appears in [LMF88]. Extensions of
the protocol and impossibility result appear in [MS89, TL90, WZ89].

1.3 I/0 Automata

Our results are presented using the Input/Output automaton formalism introduced in [LT87] and
summarized in [LT89]. The formalism is used for several purposes. First, following the usual style
for I/O automata, the allowed observable behavior of the reliable layer and those of the unreliable
layer are specified in terms of sets of sequences of input and output actions. Second, the transmitter
and receiver protocols of our algorithm in Section 5 are described formally as I/O automata. This
makes unambiguous just how the scheduling of events is handled and how the protocols interact
with the channels and their environment. Third, the space of possible devices from which channels
may be chosen is taken to be the set of I/O automata. Finally, I/O automata are taken to be the
space of possible solutions to RMTP for the purposes of the impossibility proof in Section 7. While
there is no way of proving that I/O automata are sufficiently general to model any “reasonable”
protocol, they have been shown to be adequate for modeling a large number of interesting and
sophisticated protocols (e.g., [FLMW90, Blo87, WLL88, LG89]), and we believe that they are
sufficiently powerful to model anything that could reasonably be considered a protocol (as well as
some things that might not be considered reasonable, e.g., devices with non-computable steps).

The rest of the paper is organized as follows. Section 2 contains a summary of the needed
definitions and facts about I/O automata. Section 3 defines the abstract notion of a communication
layer and gives the properties of the reliable, FIFO, and unreliable layer with which we are concerned
with in this paper. Section 4 defines what it means for a protocol to implement one layer on
another. It then defines the Reliable Message Transmission Problem (RMTP) as the problem
of implementing a reliable layer on an unreliable layer. Finally, it gives general theorems that
allow the modular construction of a protocol that implements one layer on another. Section 5
gives constructions of a one-way reliable layer on a FIFO layer and of a one-way FIFO layer on
an unreliable layer. These solutions are combined using general theorems to give a solution to
RMTP. Section 6 contains our definition of boundedness or “recoverability” of a protocol. Section
7 shows that no constant bounded solution to RMTP with a finite packet alphabet exists. Section
8 discusses possible practical implications of these results.

2 The I/O Automaton Model

We use the Input/Output Automaton model to specify and describe system components. The I/0
automaton model was first defined in [LT87], and we refer the reader to [LT87, LT89] for a complete
development of the model. Here, we present a variant of the model which is adequate for our needs.

We assume a universal set of actions which describe the activities that occur during a compu-
tation. We refer to a particular occurrence of an action as an event. A finite or infinite sequence
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of actions is called a behavior. If a is any sequence and II is any set of actions, then we let a|II
denote the subsequence of a consisting of all events in II.

2.1 Specifications

We provide formal specifications for the allowable behavior of certain system components. Each
specification describes the possible interactions of a component with its environment. In describing
these interactions, it is helpful to classify the actions involving the component as “input” or “out-
put” actions. Input actions originate in the environment and are imposed by the environment on
the component, whereas output actions are generated by the component and imposed by the com-
ponent on the environment. The interactions of the component with its environment are described

by sequences over the component’s actions, termed behaviors. Formally, each specification § is a
triple (in(.5), out(S), beh(S)), where

1. in(S) and out(S) are disjoint sets of actions;

2. beh(S) is a set of behaviors over in(S) U out(.5).

The elements of in(S) and out(.S) are the input and output actions of S, respectively; we denote
their union by acts(S). The set beh(S) is the behavior of S, that is, the set of action sequences
permitted by S.

For any sequence a and specification §, we write a|.S as shorthand for a|acts(S). We say that
S and S’ are independent specifications if acts(S) N acts(S’) = 0.

2.2 I/O Automata

In order to model protocols, we use state machines called I/O automata. Like specifications, they
have input and output actions, and they may also have internal actions. In addition, they have
states and steps (i.e., transitions). Formally, an I/O automaton A (which we often call simply an
automaton) is described by:

1. Three mutually disjoint sets of actions: in(A), out(A), and internal(A). We denote acts(A) =
in(A) U out(A) U internal(A), loc(A) = internal(A) U out(A), and ext(A) = in(A) U out(A),
i.e., acts(A) is the set of A’s actions, loc(A) is the set of A’s local actions, namely, the actions
that A controls, and ezt(A) is the set of A’s external actions.

2. A set states(A) and a set start(A) C states(A) of A’s start states.

3. A transition relation, steps(A) C states(A) x acts(A) x states(A), that is input enabled, i.e.,
for every input action 7 and state s, there exists some state s’ such that (s, ,s’) € steps(A).
(In general, an action 7 is enabled from a state s if for some ¢/, (s,7,s') € steps(A).)

4. A fairness condition, fair(A), described as a partition on A’s local actions with countably
many equivalence classes.

An ezecution a of A is a (possibly infinite) sequence of the form:

™ 2
S —> 8 —> -

where sg is an initial state of A, and for every i > 0, (8i, Tit1,8i4+1) is a transition of A. If o is
finite then it terminates in a state. The execution o is fair if one of the following holds:
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1. o is finite and no local action is enabled from the final state of a.

2. o is infinite, and for every set of local actions L € fair(A), either actions from L are taken
infinitely many times in a (i.e., for infinitely many i’s, 7; € L), or actions from L are disabled
infinitely many times in a (i.e., for infinitely many ’s, no action of L is enabled from ;).

A fair execution should be thought of as giving “fair turns” to each class of fair(A). Informally,
one class of fair(A) typically consists of all the actions that are controlled by a single component
within the system modeled by automaton A, so fairness means giving each component regular
opportunities to take a step under its control, if any is enabled.

The following proposition says that if A is an I/O automaton, then for every finite execution «
of A there is a fair execution of A which has « as a prefix and for which the input actions occurring
after a are exactly those in a prescribed sequence ~.

Proposition 2.1 Let A be an I/O automaton and let v be a sequence of input actions of A.
Suppose a is a finite execution of A. Then there ezxists a fair ezecution o of A such that o' is an
extension of a and o'|ext(A) = (o|ext(A))y.

Proof: (Sketch) The basic idea is to construct the sequence inductively, interleaving transitions
that involve successive input events from y with transitions that involve locally controlled actions.
The successive locally controlled transitions are obtained by dovetailing among the countably many
partition classes. A detailed proof appears in [LS89]. ‘ |

The behavior of an execution o of A (and more generally, of any sequence of actions and states
of A), beh(a), is defined to be the sequence c|ext(A). A fair behavior of an automaton A is any
sequence beh(a), where a is a fair execution of A. The set of all fair behaviors of A is denoted by
fairbeh(A).

2.3 Composition

Let A and B be I/O automata. We say that A and B are composable if the only mutual actions
are input of one and output of the other, or input of both. If A and B are composable, their
composition, written as A o B, is an automaton C such that:

1. C’s output and internal actions are the union of the output and internal actions respectively
of A and B, and C’s input actions are the union of A’s and B’s input actions that are not
C’s output actions (i.e., in(C) = in(A4) U in(B) — (out(A)U out(B))).

2. C’s state set is the Cartesian product of its component state sets, i.e., states(C') = states(A) x

states(B), and C’s initial state set is the Cartesian product of its components’ initial state
sets.

3. C’s transitions are such that only the components to which the action belongs are affected,
ie., (('SA, sB), Ty (3147 slB)) € steps(C) iff:

(84,m,5)) € steps(A) and sp = sy if € acts(A) — acts(B),
sa = 8y and (sp,,s) € steps(B) if 7 € acts(B) — acts(A), and
(84,m,8)) € steps(A) and (sg, 7, s}) € steps(B) if 7 € acts(A) N acts(B).
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4. The fairness condition of C, fair(C) = fair(A) U fair(B). (In other words, actions are in the
same class in C’s partition exactly if they are in the same class in either A’s or B’s partition.)
Note that this is a partition of loc(C) since A and B do not have any locally controlled actions
in common.

We say that A and B are independent if acts(A) N acts(B) = (. Independent A and B are
always composable, and in(A o B) = in(A)U in(B). (Thus, no input actions are “captured” in the
composition.) :

Let a be an execution of C. Then a defines an execution of A obtained by deleting from «
every occurrence of — s for actions 7 ¢ acts(A), and replacing every remaining state in « with
its A component. We denote the resulting execution by A[a]. Similarly, a defines an execution of
B denoted by B[a]. Note that a is a fair execution of C iff A[a] and B[a] are fair executions of A
and B respectively. The following propositions are proved in [LT87]. The first one establishes that
composition is associative and commutative, modulo renaming of states of the resulting automata.
The second shows how fair executions of A and B can be combined to yield a fair execution of C:

Proposition 2.2 Ao(Bo(C)=(AoB)o(C and Ao B = B o A modulo renaming of states.

Proposition 2.3 Let C = Ao B. Let 3 be a sequence of actions in ext(C), and suppose that a;
and o are fair ezecutions of A and B respectively, such that B|ext(A) = beh(a;) and B|ezt(B) =
beh(az). Then there is a a fair execution a of C such that 8 = beh(a), Ala] = a1 and Bla] = a,.

3 Layered Communication Systems

We define several communication layers which form the specifications both for the reliable layer,
which is to be achieved by the Reliable Message Transmission Problem, and for the underlying
unreliable communication system upon which a solution is built. A third kind of layer, the FIFO
layer, serves as an intermediary in our construction of a solution to RMTP.

3.1 Communication Layers

A communication layer is a particular kind of specification in which the input actions of the layer
represent requests to send data and the output actions represent the receipt of data. Formally, a
communication layer L consists of:

1. A specification (in(L), out(L), beh(L)).
2. A data item domain Dy.

3. A mapping datar: acts(L) — Dy, such that each element d € Dy, is the image under datar,
of exactly one input action and exactly one output action.

4. An orientation function directiony: Dy, — {tr,rt}.
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The mapping datar indicates the data item sent or received by each action. Note that the
condition given for datar, above implies that datar|in(L) is a bijection from in(L) to Dy and
datar|out(L) is a bijection from out(L) to Dy.

If 7 € in(L) is the unique input action such that datar(r) = d, we may write sendr(d) to
denote 7, and we call 7 a send-action. Similarly, if # € out(L) is the unique output action such
that datar(r) = d, we may write recvi(d) to denote 7, and we call © a recv-action. We omit
subscripts when no confusion will occur. This notation is elaborated later when several distinct
layers come under simultaneous discussion.

The orientation function on the data item domain captures our notion of locality. We assume
two sites: t—a fixed transmitting site and r—a fixed receiving site. The data items d such that
directiony(d) = tr are those that travel from ¢ to 7. We will refer to this set as D¥. Similarly the
set D7’ consists of those where directiony,(d) = rt, that is, they travel from r to t. Thus we assume
in our model that each data item moves in one direction only. We define

acts}, = {send(d) : direction(d) = tr} U {recvr(d) : directionp(d) = rt},

and
actsy, = {send(d) : directiony(d) = rt} U {recvi(d) : directiony(d) = tr}.

The actions in acts*(L) and acts"(L) are the actions of the transmitting site and receiving site,
respectively. The partition of acts(L) into acts’(L) and acts"(L) induces corresponding partitions
on subsets of actions, e.g., in*(L) = acts*(L)Nin(L) and in"(L) = acts"(L)Nin(L) form a partition
of in(L), etc.

A layer is diagrammed in Figure 1. The two boxes represent the sites ¢ and . The arrows
represent actions. The wiggly line represents the network connection between the two sites.

in*(L) out®(L) in"(L) out™(L)

site t of L site r of L

Figure 1: A Communication Layer.

A sequence § € beh(L) is called an L-behavior. We define an arbitrary sequence 8 to be
L-consistent provided that B|L, the restriction of 3 to the actions of L, is an L-behavior.

3.2 L-channels

An I/O automaton A is called an L-channel if in(L) C in(A), out(L) C out(A), and fairbeh(A)|L C
beh(L). Thus an L-channel has all the actions required by the specification (and possibly more),
and any fair behavior of an L-channel is L-consistent. However, an L-channel is not required to
exhibit all possible behaviors permitted by L. A is called a universal L-channel if in(A) = in(L),
out(A) = out(L), internal(A) = 0, and fairbeh(A)|L = beh(L).
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3.3 One-way Layers

A layer L is said to be one-way from t to r if in(L) = in'(L) and out(L) = out”(L). Hence, in
a one-way layer from t to r, send actions take place at the transmitting site and recv actions take
place at the receiving site. A one-way layer in the reverse direction, from r to t, is similarly defined.

A layer L can be decomposed into two one-way layers. L' is the restriction of L to the t-
to-r direction, and L™ is the restriction of L to the r-to-t direction. L' is obtained by taking
in(L'") = in*(L), out(L*") = out™(L), beh(L'") = beh(L)|L'", and Drer = D¥. The mapping
datar:- is the restriction of the mapping data to the actions in acts(L'"), and the orientation
function directionp:r is the restriction of directiony, to the domain Dp:r. Thus, directionp:r(d) = tr
for each d € Dp:r as required for a one-way layer. The layer L™ is similarly defined.

3.4 Properties of Communication Layers

Let L be a layer and let o be a sequence of actions over acts(L). Let cause be a total function from
recv events to send events of a. Intuitively, this mapping indicates the send event that “causes”
each recv event. We define the following properties of the pair (a, cause):

(LC1) [No prescience] For each recv event 7 in @, the corresponding event cause(r) occurs prior
to 7 in a.

(LC2) [No corruption] For each recv event 7 in a, datar(cause(r)) = datar(r).
(LC3) [No duplication] The cause mapping is one-to-one.

(LC4) [No reordering] If = and ¢. are recv events and cause(w) precedes cause(¢) in «, then 7
precedes ¢ in a.

(LCS5) [Progress] For each d € Dy, if o contains infinitely many send(d) events, then a contains
infinitely many recv(d) events.

(LC8) [No losses] The cause mapping is onto.

Note that (LC5) depends only on . We shall use these conditions to describe the three different
kinds of layers that we use in this paper: the reliable layer, the unreliable layer, and the FIFO
layer.

3.5 Reliable Layers

The behaviors that are considered appropriate for a reliable layer are those in which every data
item sent is eventually received exactly once. Data items are received in the same order as they are
sent, and no item is received before it is sent. It follows that each data item that is sent infinitely
many times is received infinitely many times.

Let L be a communication layer. A sequence a of actions over acts(L) is said to be a reliable
layer sequence if there exists a total function cause from recv events to send events of a such that
the pair (e, cause) satisfies conditions (LC1)~(LC6). A layer L is reliable if beh(L) is the set of all
reliable layer sequences over acts(L).
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We often use the notation RL to refer to a reliable layer L. When discussing a reliable layer RL,
we generally refer to data items as messages, and we denote the domain Dy of messages simply by
M. The input action 7 for which datapp(7) = m is denoted by send-rl(m), and the output action
m for which datapr(7) = m is denoted by recv-rl(m).

Note that there are many reliable layers, differing in data item domains, orientation functions,
and action alphabets. Moreover, for a given reliable layer RL, there are many possible RL-channels.
Recall that a reliable layer RL is intended to specify all of the behavior sequences that could
reasonably be described as reliably transferring data from the given domain in the direction given
by the orientation function. An RL-channel is intended to model an actual implementation of a
reliable layer and in general can exhibit only a subset of the behavior sequences allowed by the
reliable layer. The requirement that an RL-channel be an I/O automaton rules out degenerate
implementations which cannot handle all possible inputs.

3.6 Unreliable Layers

The behaviors that are considered appropriate for an unreliable layer are those in which every data
item sent is received at most once, and no item is received before it is sent. Moreover, each data
item that is sent infinitely many times is received infinitely many times.

Let L be a communication layer. A sequence a of actions over acts(L) is said to be an unreliable
layer sequence if there exists a total function cause from recv events to send events of a such that
the pair (a, cause) satisfies conditions (LC1), (LC2), (LC3), and (LC5). A layer L is unreliable if
beh(L) is the set of all unreliable layer sequences over acts(L).

We often use the notation UL to refer to an unreliable layer L. When discussing an unreliable
layer UL, we generally refer to data items as packets, and we denote the domain Dyr, of packets
simply by P. The input (resp. output) action r for which data vL(m) = p is denoted by send-ul(p)
(resp. recv-ul(p)).

Let a be a finite prefix of a UL-consistent sequence. Then the multiset! of data items received
in a is a submultiset? of the multiset of data items sent in . We say that a multiset Q over P is
in transit after a if Q is a submultiset of the multiset of packets sent and not received in a. We
say that @ is in transit from t to r (resp. from r to t) after o if Q is in transit after o UL (resp.
after) | UL™). Note that if Q is in transit from ¢ to r, then @ is a multiset of packets in P*" and
similarly for the reverse orientation.

We state two lemmas about the set of UL-behaviors for an unreliable layer UL with packet
alphabet P. The proofs are obvious from the definitions and are omitted. The first lemma says
that any sequence of packets in transit can be delivered at any time. The second lemma says that
after any finite period of activity, an unreliable layer may act just like an unreliable layer starting
from the initial state.

'A multiset is a collection of elements with multiplicities. Formally, a multiset over a universe U is a function
Q : U — N. For every element u € U, we define mult(u, Q) = Q(u), which denotes the number of occurrences of u
in Q.

2For two multisets Q and Q' over the same universe U, we say that Q' is a submultiset of Q, written Q' C Q, if
mult(u, Q") < mult(u, Q) for every u € U.
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Lemma 3.1 Let 8 be a finite UL-behavior, and let Q be a multiset of packets that is in transit
after 3. Let y = p1,ps, ..., Pk be a finite sequence of packets such that Q is the multiset defined by
v. Then B,recv-ul(p,),...,recv-ul(px) is a finite UL-behavior.

Lemma 3.2 Let 8 be a finite UL-behavior and v any UL-behavior. Then B~ is a UL-behavior.
Moreover, if Q is a multiset of packets that is in transit after B, then Q is in transit after 5.

3.7 FIFO layers

The behaviors that are considered appropriate for a FIFO layer are those in which (possibly multiple
copies of ) data items are received in the same order as they were sent, and no item is received before
it is sent. Moreover, each data item that is sent infinitely many times is received infinitely many
times. That is, a FIFO layer is a communication layer that can lose and duplicate messages, but
not reorder them.

Let L be a communication layer. A sequence o of actions over acts(L) is said to be a FIFQ
layer sequence if there exists a total function cause from recv events to send events of o such that
the pair (o, cause) satisfies conditions (LC1), (LC2), (LC4), and (LC5). We say that L is a FIFO
layer if beh(L) is the set of all FIFO layer sequences over acts(L).

We often use the notation FL to refer to a FIFO layer L. When discussing a FIFO layer FL, we
generally refer to data items as values, and we denote the domain Dyy, of values by V. The input
(output) action 7 for which datarr(r) = p is denoted by send-fl(p) (recv-fi(p)).

4 Implementation of Layers

Our goal is to implement a reliable layer on an unreliable layer. By an implementation, we mean
protocols (expressed as I/O automata) for the transmitting and receiving stations that commu-
nicate, using the unreliable layer, to achieve the properties of a reliable layer. As with real-life
protocols, we find it convenient to modularize the protocols by introducing an intermediate layer.
We therefore need to formally define the notion of a multilayer implementation as well as what it
means to implement one layer on another.

4.1 Definition of Layer Implementation

An implementation of one layer X on another layer Y consists of two I/O automata A and A",
called nodes, which correspond to the two sites ¢ and 7. The two nodes must be independent; the
only influence they can have on each other is through their interactions with the lower-level layer.
Each action of the layers X and Y belongs to exactly one of the two nodes A? and A", as indicated
by the specification of layers X and Y. For example, if send(d) is in in’(X), and therefore recv(d)
is in out”(X), then send(d) is in in(A?) and recv(d) is in out(A"). Also, if send(d) is in in*(Y), and
therefore recv(d) is in out™(Y'), then send(d) is in out(A?) and recv(d) is in in(AT).

More precisely, let X and Y be independent layers and let A* and A" be I/0 automata.® Then
we say that the pair (A%, A™) is compatible with X on Y if the following conditions are satisfied:

®Here and in the remainder of the paper, we assume without explicit mention that the internal action set of any
automaton is disjoint from all other sets of actions under consideration.
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1. acts(A?) N acts(AT) = 0.
2. in(A%) 2 in*(X)U out’(Y) and in(A") D in"(X)U out™(Y).
3. out(A*) 2 out'(X) U in'(Y) and out(A™) D out™(X)U in"(Y).

These definitions are illustrated in Figure 2.

in*(Y) out!(Y) in"(Y) out™(Y)

sitetof Y [a¥aUaVaVaUaValaVaVWaVaWaWal/aWal siterof Y

site t of X

Figure 2: Implementation of Layer X on Layer Y.

The behavior of an implementation depends not only on A* and A” but also on the particular
device that gives rise to the behavior of the lower level layer Y. In general, all we can assume
about that behavior is that it is allowed by the specification of Y and that it is generated by some
I/0 automaton Ay. The latter assumption ensures that the device has certain minimal behavior
properties, for example, that it is always able to accept an input action to Y.* Once the behavior
of the lower-level device is determined, the behavior of the implementation is just the behavior of
the I/O automaton that results from the composition of A!, A", and Ay. That composition is itself
an I/O automaton; hence, the implementation of the higher-level layer exhibits the same minimal
behavior properties that were assumed for the lower-level layer. To ensure that the composition
Ao AT o Ay is defined and that unanticipated capture of actions does not occur, we require that no
actions of Ay except those in acts(Y') be shared with either At or A”. We refer to this assumption
by saying that “Ay is without inappropriate actions”.

More precisely, we say that the pair (A?, A") implements X on Y if

1. (A%, A") is compatible with X on Y;5

2. for every Y-channel Ay without inappropriate actions, then A® o A™ o Ay is an X-channel.

“There could be device models whose behavior cannot be modeled by I/O automata but whose behavior might
nevertheless provide a suitable environment for implementing a higher-level layer. We exclude such devices from
consideration and leave open the question of characterizing “reasonable” devices of greater generality than /O
automata.

®Note that this condition implies that X and Y are independent.
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In other words, (A?, A™) “works” in any suitable environment to give the desired behavior of X,
where a “suitable environment” is an I/O automaton Ay whose behaviors are allowed by Y.

4.2 Multilayer Implementations

It is often convenient to implement one layer on another by means of intermediate layers. The
following theorem justifies this approach.

Theorem 4.1 Let X, Y, and Z be pairwise independent layers. Suppose the pair (Aky, Ay)
implements X onY, and (A} ;, A} ;) implements Y on Z. Then

(Axy © A}z, Ay 0 AV 2)
implements X on Z.

Proof: Let Az be a Z-channel without inappropriate actions. Since (A% ;, A} ;) implements Y
on Z, then Ay = Al ; 0 A}, 5 0 Az is a Y-channel. Since (A%y, A%y ) implements X on Y, then
Ax = A%y o A%y o Ay is an X-channel. By Proposition 2.2,

Ax = (AkyoAkxy)o(AbzoA}zoAz)
= (Aky oA} z)o(Aky o AYz)o Az
Hence, (A%y o A} 7, A%y o A} ;) implements X on Z. |

4.3 Using One-Way Implementations

General layers are “two-way” in that data items can be sent in both directions between the two
sites of the layers; indeed, two-way layers are needed to support most protocols. However, it is
generally easier to implement a one-way layer and to use two “copies” of that implementation to
implement a two-way layer.

We first need the notion of the “merge” of two layers. Formally, given independent layers Y;
and Y5, their merge is a single layer Y = Y; UY;, defined by in(Y) = in(¥1) U in(Y2), out(Y) =
out(Y1) U out(Y2), and beh(Y) = {a : a|Y; € beh(Y1) and a|Y; € beh(Y>)}. Also, Dy = Dy, U Dy,,
datay = datay, U datay,, directiony = directiony, U directiony,. Thus, acts'(Y) = acts’(Y;) U
acts(Yz) and acts™(Y) = acts”(Y;) U acts™(Yz).

The following theorem describes a parallel composition of two independent layer implementa-
tions.

Theorem 4.2 Let X3, X,, Y1, and Y, be pairwise independent layers. Suppose (A}, A7) imple-
ments Xy on Yy and (A}, A}) implements X5 on Y;. Then the pair (A} o A%, A} o A}) implements
XiUuX;onY UY;.

Proof: (Sketch) Immediate from the properties of composition of I/0 automata. ]

Our main interest in Theorem 4.2 is to allow alayer X to be implemented by first decomposing X
into its two one-way components X' and X", implementing each separately on independent layers
Y1 and Y3, respectively, and then combining the two implementations to yield an implementation
of X on Y; UY;. The following corollary justifies this method.
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Corollary 4.3 Let X, Y1, and Y, be pairwise independent layers. Suppose (A%, A7) implements
X' on'Yy and (A}, A3) implements X™ on'Y;. Then the pair (A} o Ab, A} o AL) implements X on
YUY,

Proof: Obvious from Theorem 4.2 and the fact that X = X" U X", |

4.4 A Characterization of Layer Implementation

The definition of implementing a layer X on a layer Y is somewhat difficult to work with, because
the notion of “implements” involves universal quantification over all possible Y-channels. In case
beh(Y') is exactly the set of fair behaviors of some I/O automaton, then we can restate this definition
directly in terms of Y rather than in terms of universal quantification over I/0 automata.

Theorem 4.4 Let A%, A™ be I/O automata, and let X and Y be layers such that (A%, A7) is com-
patible with X on'Y. Suppose that there exists a universal Y -channel. Then (A?, A™) implements
X onY iff every fair execution of A® o AT that is Y -consistent is also X -consistent.

Proof: Suppose that A%, A", X, and Y satisfy the conditions of the theorem. Let A = At o A”.

For the forward direction, let U be a universal Y-channel, and assume that (A?, A™) implements
X onY. Let a be a fair execution of A that is Y-consistent and let 8 = beh(a). Since 8 is Y-
consistent, it follows that |V € beh(Y'). Since U is universal, there is a fair execution oy of U such
that beh(@;) = B|Y. Then Proposition 2.3 gives a fair execution o’ of Ao U such that B = beh(a’),
Ald'] = a, and U[a'] = a;. By assumption, since U is a Y-channel without inappropriate actions,
then Ao U is an X-channel, so @ is X-consistent. But since beh(a) = beh(a’), it follows that
a|X = o'|X, so that a is also X-consistent.

Conversely, suppose that every fair execution of A that is Y -consistent is also X-consistent. Let
Ay be any Y-channel without inappropriate actions. Let a be a fair execution of A o Ay, and let
o' = Ala]. Then ¢ is a fair execution of A. Since a|Ay is a fair behavior of Ay, it is Y-consistent.
Thus (afAy)|Y is a Y-behavior. However, since acts(Y) C ext(Ay), (a|Ay)|Y = o|Y; thus a|Y
is a Y-behavior. Since ¢/|Y = a|Y, it follows that o' is Y-consistent. Then the hypothesis of the
theorem implies that o’ is X-consistent. Since alX = o'|X, a is also X-consistent, as needed. M

The following lemma shows that there are universal channels for the reliable, unreliable, and
FIFO layer specifications; hence Theorem 4.4 applies to these layers.

Lemma 4.5 Let Y be a reliable, unreliable, or FIFO layer. Then there ezists a universal Y -
channel.

Proof: Such an I/O automaton is not difficult to construct—for instance, it can choose nonde-
terministically, at the start of execution, exactly which submitted data items will be received, and
in what order. Details are left to the reader. (Cf. [LMF88].) |

4.5 The Reliable Message Transmission Problem

We finally define the reliable message transmission problem (RMTP) for a reliable layer RL and an
unreliable layer UL to be the problem of finding a pair of I/0 automata (A%, A") that implements
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RL on UL. Note that by our definitions, this problem will have a solution only if acts(RL) and
acts(UL) are disjoint.

The following is an immediate consequence of Theorem 4.4 and Lemma 4.5. It says that the
notion of implementability can be replaced by a condition on the fair executions of A? o A" in
defining RMTP. '

Lemma 4.6 Let (A, A™) be a pair of I/O automata, let RL be a reliable layer, let UL be an
unreliable layer, and assume that (A*, A"™) is compatible with RL on UL. Then (A, A") implements
RMTP for RL on UL iff every fair execution of A*o A™ that is UL-consistent is also RL-consistent.

4.6 Properties of RMTP Solutions

Let (A%, A7) be an arbitrary solution to RMTP for RL and UL. We establish some properties of
A= Alo A".

Consider a system composed of A and an arbitrary UL-channel. The following lemma asserts
that it is possible for the system to run from any point onward, with no further inputs, in such a way
that no packets sent before that point are delivered after it. Note that the notion of “ UL-consistent”
enables the lemma to be stated without explicit reference to the underlying channel.

Lemma 4.7 Let a be a finite execution of A that is UL-consistent. Then there erists a fair
ezecution a3 of A such that

1. B contains no send-rl events, and

2. B is UL-consistent.

Proof: The proof is similar to that of Proposition 2.1. The main difference is that here, while
dovetailing among the fairness classes of A, we ensure that whenever a send-ul(p) event is added
to the execution, it is immediately followed by a corresponding recv-ul(p) event. This is allowed by
A since recv-ul(p) € in(A), and UL-consistency is obviously maintained. The dovetail ensures that
the execution af constructed is a fair execution of A. Since every send-ul event is followed by its
corresponding recv-ul event, it follows that the suffix 8 is UL-consistent. |

Let a be a finite execution of A that is both RL- and UL-consistent, and let Q be a multiset of
packets that is in transit from ¢ to r after a. Consider any extension of @ in which the multiset of
packets received after o is a submultiset of Q. The following lemma shows that such an extension
has no recv-rl events after a. Intuitively, this is true since otherwise the packets in @ could be
delivered prior to any subsequent send-rl event so as to allow another recv-rl event to occur, which
would violate RL-consistency.

Lemma 4.8 Let o be a finite execution of A that is both RL- and UL-consistent, and let Q be a
multiset of packets that is in transit from t to r after a. Consider a finite UL-consistent ezecution
af of A such that for some m € M, 8 contains an recv-ri(m) event. Then the multiset of P'"
packets received in ( is not a submultiset of Q.

Proof: Let o, @, B, and m satisfy the conditions of the lemma. Assume, by way of contradiction,
that the multiset of P'" packets received in A3 is a submultiset of Q. Consider the sequence a7,
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where 7 is constructed by deleting from 3 all steps involving actions in acts(A?), and changing the
A? components of the remaining states to be the A* component of the last state in a.

We show now that a7y is a finite UL-consistent execution of A and that there exists a fair UL-
consistent extension of ay which is not RL-consistent, contradicting our assumption that A solves
RMTP.

Since f is finite, so is ¥. Moreover, from our construction it follows that A*[ay] = At[a], which
is an execution of A’. It also follows that A"[ay] = A"[(@B)], which is an an execution of A".
Consequently, ay is an execution of A' o A”. The sequence of P! packets received in v is exactly
the sequence of P*" packets received in 3. By assumption, the multiset of Pt packets received in 8
is a submultiset of Q. It therefore follows from Lemma 3.1 that ay is UL"-consistent. Finally, the
only events in 7| UL™ are send-ul events (since the corresponding recv-ul events of 3 were deleted).
Since UL allows a finite number of packets to be lost, oy is UL™-consistent. Consequently, avyis a
finite UL-consistent execution of A.

Let 7' be such that ayv’ is a fair execution of A, 4’ contains no send-rl events, and 4’ is UL-
consistent. The existence of 7’ is guaranteed by Lemma 4.7. By Lemma 3.2, ay+’ is UL-consistent.
Since A solves RMTP, ayy' is RL-consistent. Thus, there is a function cause that satisfies (LC1)-
(LC6). By property (LC1) and the fact that 4 contains no send-rl events, cause must map each
recv-rl event in 7 to some send-rl event in . But this is impossible by the pigeon hole principle, for
cause is one-to-one by property (LC3), and e, being RL-consistent, contains the same number of
send-rl and recv-rl events. This contradicts our assumption that A solves RMTP.

5 A Protocol With Finite Packet Alphabet

We construct a solution to RMTP, i.e., a pair of I/O automata that implements an arbitrary reliable
layer RL with finite message alphabet on an unreliable layer UL with finite packet alphabet. The
packet alphabet and actions of UL depend on the message alphabet and actions of RL in a way to
be described. As in [AG88], we find it convenient to present our solution in a modular fashion.

Our solution is obtained from two basic constructions, one that implements an arbitrary one-way
reliable layer on a suitable two-way FIFO layer, and one that implements an arbitrary one-way
FIFO layer on a suitable two-way unreliable layer. These constructions are used twice each in
forming the solution to RMTP.

Let RL be a given reliable layer. We decompose RL into its two one-way components, RL'"
and RL™. We use the first construction twice, once to implement RL' on FIFO layer FL; and
once to implement RL™ on FIFO layer FL,. We may assume without loss of generality that FIL,
and FL, are independent and that the automata implementing RL on FL; are independent of the
automata implementing RL™ on FL,.6 Then Corollary 4.3 gives an implementation (A%, ARp) of
RLon FL = FL, U FL,. :

Next, decompose FL into one-way layers FL'" and FL". Use the second construction to imple-
ment them on unreliable layers UL, and UL,, respectively. As before, we may assume without loss
of generality that UL; and UL, are independent and that the automata, implementing FL' on UL,

®This follows from the fact that RL'" and RL™ are independent.
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are independent of the automata implementing F'L™ on UL;. Corollary 4.3 gives an implementation
(A%, A%r) of FLon UL = ULy U UL,.

Thus, we have constructed implementations of RL on FL and of FL on UL. Moreover, we can
assume without loss of generality that A%, is composable with A%, and that A% is composable
with A%;. By Theorem 4.1, the pair (A% o A%y, AR, o A%;) is an implementation of RL on UL,
as desired.

5.1 Implementation of a Reliable Layer

Our first construction implements a one-way reliable layer on a FIFO layer. This is accomplished by
a version of of the Alternating Bit Protocol [BSW69], expressed as a pair (B!, B") of I/O automata
that implements a one-way RL on FL.

In this protocol, the transmitter keeps sending each message to the receiver until it gets an
acknowledgement from the receiver for that message. It then begins sending the next message.
Meanwhile, the receiver keeps acknowledging the previous message until the current message is
received, at which point it begins acknowledging it. A single bit header suffices for distinguishing
consecutive messages, and likewise a single bit acknowledgement suffices to distinguish acknowl-
edgements for consecutive messages.

The transmitter has two local variables, gueue, which holds a queue of messages, initially empty,
and a Boolean flag, initially equal to 1. The queue is used to buffer the messages to be sent by
the reliable layer, and the flag is used to record the Boolean value being used as the header for
the current message (i.e., the message that is first on queue). Likewise, the receiver has two local
variables, queue, which holds a queue of messages, initially empty, and a Boolean flag, initially
equal to 0. The queue is used to buffer the messages received from the transmitter until they are
output to the environment via recv-rl events, and the flag is used to record the Boolean value that
has been attached to the latest message received from the transmitter (if the queue is nonempty,
then this is the last message on queue).

If the transmitter queue is nonempty, the transmitter is constantly enabled to send copies of
the first message on its queue, tagged with a header consisting of the transmitter’s flag; likewise,
the receiver is constantly enabled to send acknowledgements, in the form of the receiver’s flag. If
the receiver receives a message with a header unequal to the receiver’s flag, the receiver accepts
the new message and changes its flag; otherwise, the receiver ignores the message. Analogously,
if the transmitter receives an acknowledgement equal to its own flag, the transmitter accepts the
acknowledgement as an acknowledgement to its current message, goes on the next message and
changes its flag.

The code B* and BT is given in Figure 3. The fairness condition has three classes: one for all
the send-fl(m, b) actions, one for all the send-fl(b) actions, and one for all the recv-rl actions.

Standard arguments about the Alternating Bit Protocol (see, for example, [HZ87]) can be used
to show the following correctness theorem.

Theorem 5.1 Let RL be a one-way reliable layer with message set M. Let Vi = {(m,b) : b €
{0,1} and m € M} and V; = {0,1}. Let FL be a FIFO layer with value set V = V; U V,, where
{send-fi(m,b) : (m,b) € Vi} U {recv-fl(b) : v € Va} C acts’(FL) and {recv-fi(m,b) : (m,b) €
V1} U {send-fl(b) : v € V2} C acts"(FL). Then every fair ezecution of Bt o B" that is FL-consistent
is also RL-consistent.
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Transmitter B! Receiver B”
Variables: Variables:
queue, a finite queue of elements of M, queue, a finite queue of elements of M,
initially empty initially empty
flag, a Boolean, initially 1 flag, a Boolean, initially 0
send-rl(m), m € M: recv-rl(m), m € M:
effect: precondition:
add m to queue m is first on queue
effect:
send-fl(m,b) m € M, b a Boolean: remove first element from queue
precondition:
m is first on queue send-fl(b), b a Boolean:
b = flag precondition:
b = flag
recv-fl(b), b a Boolean:
effect: recv-fl(m,b), m € M, b a Boolean:
if b = flag then effect:
remove first element from queue if b # flag then
flag :=1— flag add m to queue
flag :=1 - flag

Figure 3: Protocol B: An implementation of the reliable layer using FIFO links.

It follows immediately from Theorems 4.4 and 5.2 that the pair (Bt, B") implements RL on FL.

5.2 Implementation of a FIFO layer

We implement a one-way FIFO layer FL on an unreliable layer UL with appropriate packet alphabet.
The implementation consists of a pair of I/O automata (F*, F") that are compatible with FL on
UL.

The transmitter F* maintains a local variable, latest which is set to v whenever send-fl(v) occurs;
the receiver continuously tries to obtain new values of latest from the transmitter. After any prefix
of an execution, we define as new any value that has been in latest at any time since the last recv-fl
event. The algorithm ensures that the value that is contained in any recv-fl event new relative to
the execution prefix ending just prior to the recv-fl event. The receiver, F", continues to perform
recv-fl events.

Consider an execution a of F* o FT that is UL-consistent. Because the unreliable layer can
lose, reorder, and delay packets, the receiver needs a way to recognize new values. Suppose that a
contains at least one recv-fl event. Let o be the prefix of o that ends with the last recv-fl event,
and let old(a) be the maximum size of any multiset of values that is in transit from ¢ to r after
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a'. If for some value v, the number of recv-ul(v) actions in o after @’ is more then than old(a),
then, since the unreliable layer cannot duplicate packets), at least one send-ul(v) action must have
occurred after o’. Therefore, v must be a new value.

The receiver cannot compute old(«a) exactly; it instead maintains an upper bound on this value.
The protocol is designed so that the transmitter only sends packets in response to queries by the
receiver. Thus, the difference between the number of send-ul(query) events and the number of
recv-ul(v) events at any time is an upper bound on the number of packets in transit from ¢ to r at
that time. The receiver keeps track of this difference in its local variable intransit, which is copied
into another local variable old whenever a recv-fl occurs. Thus, old is always an upper bound on
the number of values that were in transit from ¢ to r at the time of the most recent recv-fl event.

In somewhat more detail, the protocol proceeds as follows. The receiver continuously sends
queries to the transmitter. For each query received, the transmitter sends the value of latest. The
receiver records the number of copies of each value v received in a local variable count[v]. At any
point in the execution, if count[v] > old then recv-fI"(v) is enabled; as argued above, v is guaranteed
to be a new value in this case. Whenever a recv-fl occurs, old is set to the current value of intransit
and the counters are reset to zero, thus ensuring that the next recv-fl event also contains a new
value (with respect to the current recv-fl event).

The code for protocol FIFO is given in Figure 4. The fairness partition contains three classes:
one for the send-ul(v) actions, one for the send-ul(query) actions, and one for all the recv-fl actions.

The arguments above now allow us to claim the following correctness result for this implemen-
tation.

Theorem 5.2 Let FL be a one-way FIFO layer with value set V. Let UL be an unreliable layer
with packet alphabet P = V U {query}, where {send-ul(v) | v € V} U {recv-ul(query)} C acts’(UL)
and {recv-ul(v) | v € V}U{send-ul(query)} C acts"(UL). Let a be a fair ezecution of protocol FIFO
that is UL-consistent. Then o is FL-consistent.

It follows immediately from Theorems 4.4 and 5.2 that protocol FIFO implements FL on UL.

5.3 A Solution to RMTP

As discussed in the introduction to this section, we can combine the above constructions to yield
a pair of I/O automata (A%, A") that implements RL over a layer UL, thereby solving RMTP. The
solution actually consists of two copies of protocol (B*, B™), one in each direction, and two copies
of protocol (F*, FT), one in each direction.

Let M* and M™ be the message alphabets in each direction of RL. The first copy of (B, B")
implements RL' over FIFO layer FL;, and the second copy (in which the roles of ¢ and r are
reversed) implements RL™ over FIFO layer FL,. FL; has value set V; = V{" U V], where V" =
M x {0,1} and Vi* = {0,1}. The second copy has value set V, = VJt U V}", where V! =
M™ x {0,1} and V§" = {0’,1'}. (Primes have been used to make the sets disjoint.) The merged
FIFO layer, FL = FL; U FL, thus has value set V = V" UV™, where V" = (M*" x {0,1})u{0’,1'}
and V™t = (M x {0,1})U {0,1}.

Each direction of FL is implemented by a copy of (F?, F7). The first copy requires an unreliable
layer UL, with packet alphabet P, = P{" U P[%, where P{" = V' and PJ' = {query}. The
second copy (again, with the roles of ¢t and r reversed) requires an unreliable layer UL, with




5 A PROTOCOL WITH FINITE PACKET ALPHABET

Transmitter F*

Variables:
latest, an element of V' U {nil},
initially nil
pending, a nonnegative integer,

initially 0
send-fl(v):
effect:
latest := v

recv-ul( query):
effect:
pending := pending + 1

send-ul(v):
precondition:
pending > 0
v = latest # nil
effect:
pending := pending — 1

Receiver F7

Variables:
intransit, a nonnegative integer,
initially 0
old, a nonnegative integer, initially 0
for each v € V, count[v],
a nonnegative integer, initially 0

recv-fl(v):
precondition:
count[v] > old
effect:
count[w] := 0 for all w
old := intransit

send-ul(query):
effect:
intransit ;= intransit + 1

recv-ul(v):
effect:
intransit := intransit — 1
count[v] := count[v] + 1

21

Figure 4: Protocol F: An implementation of FL over UL.

packet alphabet P, = P;* U P§", where Pj* = V™ and P{" = {query’}. The merged unreliable
layer, UL = ULy U UL,, has packet alphabet P = P! U Pt where Pi* = Viry {query'} =
(M' x {0,1}) U {0, 1, query’} and P = V" U {query} = (M™ x {0,1}) U {0, 1, query}. Thus,
P = (M x{0,1})uU {0, 1, query,0’,1’, query'}, so | P| = 2| M| + 6.

In conclusion, we have the following result.

Theorem 5.3 Let RL be a reliable layer with message set M. Let UL be an unreliable layer
with packet alphabet P = P' U P, where P = (M x {0,1}) u {0, 1, query’'} and Pt =
(M7 x{0,1})U{0, 1, query}, and where {send-ul(p) : p € Pr}U {recv-ul(p') : p’ € P} C actst(UL)
and {send-ul(p’) : p' € P} U {recv-ul(p) : p € P} C acts"(UL). Then there is a protocol that
implements RL over UL.

It is possible to reduce the size of P by using a variant of the Alternating Bit protocol. The 2| M|
term in the size of the packet alphabet arises in the Alternating Bit protocol because the protocol
attaches an extra bit to each message in order to distinguish the current and previous messages. A
more efficient encoding accomplishes the same end with only a single additional message for each
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of the two directions. This yields a solution using only |M| + 8 packet types.

6 Boundedness

In Section 5, we presented a solution to RMTP. The solution suffers from a serious performance
problem: the more packets there are in transit, the more packets are needed in order to convey a
message. Every lost packet appears forever to be in transit. Hence, as more and more packets are
lost, the protocol runs slower and slower.

A natural questions is, “Can one do better?” To answer it, we formally define a complexity
measure that allows us to capture the intuitive notion of the rate at which messages are processed
by the protocol, i.e., the number of packets that the transmitter must send in order for the receiver
to output the next message to the environment. Since the unreliable layer is permitted to lose and
reorder packets, there is no worst-case upper bound on the rate. We instead measure performance
according to the best case, i.e., the minimum number of packets that will suffice, assuming the
unreliable layer performs in the best way possible.

6.1 f-Boundedness

Fix a pair of automata (A%, A™) that implements layer X on layer Y, and let A = A* o0 A". We
measure the performance of A in terms of its “f-boundedness”, where f is a function mapping
finite executions of A and positive integers to positive integers.

f-boundedness is an attempt to measure the ability of a protocol to recover from faults. An
f-bounded protocol has the property that, after any finite faulty execution a, if the layer Y “co-
operates” in the future, then the number of packets sent in order to convey the it! subsequent
X-message is at most f(e,1).

Formally, we say that A is f-bounded if for every finite X- and Y-consistent execution o of A

and every sequence u of sendx events, there exists some extension a3 of @ such that the following
all hold:

1. af is a fair execution of A.

2. [ is Y-consistent.
3. B|{sendx(d):d € Dx} = p,

4. Let B be divided into segments 8 = ;... Bjuyy such that each B; ends with a recvy event.
Then, for every i < |u|, there are at most f(e, %) sendy events in S;.

In the above definition, & represents the initial execution during which layer ¥ may be arbitrarily
faulty. B represents a “good” execution that might occur after layer Y has recovered from its
“faulty” behavior. We require that a good 3 exist for each possible sequence W, since recovery
should work for all possible future inputs. The Y-consistency of 8 prevents the protocol’s recovery
from being dependent on the receipt of an old Y-packet.

If Ais f bounded for f(a,?) = k, we say that A is k-bounded; if A is k-bounded for some
constant k, then we say that A is constant-bounded.
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6.2 Analysis of the RMTP Solution

In Section 5.3, we presented a solution to RMTP. We now show that the solution is f-bounded,
where f depends only on a.

Since the solution is composed of copies of B and copies of F, we analyze B and F separately.
Recall that B implements a one-way reliable layer on a FIFO layer, and F implements a one-way
FIFO layer on an unreliable layer.

At any point in B’s execution, in order to receive the next message, the receiver needs only
to receive a single send-fl value (of the appropriate parity) from the transmitter. If the two sites’
flag values are currently equal, then the transmitter will be able to send this value after it has
received one new acknowledgement from the receiver. On the other hand, if the flag values are
currently unequal, then the new value can be sent immediately. Thus, if the underlying FIFO layer
cooperates in delivering values as soon as they are sent, and if the scheduler cooperates in giving
transmitter and receiver turns as needed, then only 2 packets are needed to deliver a new message.
Hence, B is 2-bounded.

At any point in F’s execution, in order to receive each subsequent value, the receiver needs
to receive intransit copies of the current packet. These copies can be sent if intransit queries are
received. Consequently, F" is bounded by f where f(e,3) is twice the value of intransit at the end
of a. F is bounded by a non-constant function which depends only on c.

It is easy to see that once several copies of B and F are composed, the resulting protocol
is bounded by a non-constant function which depends only on a. In fact, it is f-bounded for a
function f such that f(a,?) is linear in |a|. We would much prefer a constant-bounded solution.
We show in Section 7 that no such solution exists.

7 An Impossibility Proof

We now show that there is no constant-bounded solution to RMTP that uses a finite packet
alphabet. We first define a strict partial order <Y on multisets over a universe U , Wwhere k is
a positive integer. When U is finite, <{ has no infinite increasing chains. We then show that every
k-bounded solution to RMTP has an infinite sequence of UL- and RL-consistent executions such
that the multiset of packets in transit at the end of each is increasing in the ordering <f. This
implies that P is infinite.

Let k be a positive integer and U a set. For every multiset Q over U, let Q* be the mul-
tiset defined by mult(Q*,u) = min(k, mult(Q, u)) for every u € U. For multisets Q; and Q,
over U, define @, <kU Q2 if QF C Q% and Q% # Q%. That is, Q, <Y Q, if for every u € U,
min(k, mult(u, Q1)) < min(k, mult(u,Q,)), and there exists a u for which equality does not hold.
Note that Q@ <{ @’ and Q' C Q" imply Q <¥ Q". Note also that if U is finite, then every increasing
chain of <{ has at most k|U| + 1 elements. We omit explicit mention of U when it is clear from
context.

Let (A%, A™) be a solution to RMTP for which M # 0. For every UL-consistent execution a
of A, let Q, denote the maximum multiset of P'" packets that is in transit at the end of a.

Lemma 7.1 Let (A%, A") be a k-bounded solution to RMTP for which M #0,andlet A= Ato A".
Then, for every UL- and RL-consistent finite ezecution o of A, there exists a UL- and RL-consistent
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finite ezecution o/ of A, such that Qy <k Q.

Proof: Let a be a UL- and RL-consistent finite execution of A. Let m € M?. From the definition
of k-boundedness, it follows that there exists some extension a8 of a such that the following all
hold:

1. af is a fair execution of A.

2. B is UL-consistent.

3. Bl{send-rl(m') : m' € M'"} = send-rl(m),

4. There are at most k send-ul events in (3, where 8 = ;7 and f$; ends with a recv-rl event.

Let R denote the multiset of P!" packets received in §;. From 2 and 4 it follows that mult(p, R) <
k for every p € P. From Lemma 4.8 it follows that R is not a submultiset of Q. Hence, for some
p € P, mult(p, R) > mult(p,Q,). From 2 it follows that §; is UL-consistent. Since B1 contains
a recv-ul(p) event, there is some send-ul(p) event in B;. Let B be the shortest prefix of 3; such
that af] is a finite execution (i.e., ends with a state) and the last event of By is send-ul(p). Since
UL-consistent sequences are closed under prefix and, by Lemma 3.2, concatenation, af] is UL-
consistent. From 2, it follows that packets in transit in & are not received in 8, so Q.U{p} C Qaﬁ{ 7
Since Qo <k Qo U {p} C Q,p, it follows that Q, <x Qapy-

If B1|RL is empty, then o’ = af] is RL-consistent and we are done. Else, B1|RL = send-rl(m).
From Lemma 4.7 it follows that there exists a fair execution af}{B; of A such that (B, contains
no send-rl events and S, is UL-consistent. Since a3, is fair, it is RL-consistent. Because a is
RL-consistent and B{|RL = send-rl(m), we deduce B,|RL = recv-rl(m). Let 8} be some prefix of 3,
that includes the recv-rl(m) event and such that o’ = a8} is a finite execution of A. o is a finite
UL- and RL-consistent execution of A, and Q4 <x Q. |

Lemma 7.2 Let A be a k-bounded solution to RMTP such that M?" # 0. Then there exists an
infinite sequence ag, o, ... of finite UL- and RL-consistent executions of A, such that for every
120, Qo; <k Qaiys-

Proof: The claim follows immediately from Lemma 7.1 by induction, when we define ag to be
the empty execution, which is trivially RL- and UL-consistent. |
We can therefore conclude:

Theorem 7.3 Let A be a k-bounded solution to RMTP such that M'" # @ (resp. M™ # Q). Then
P' (resp. P™) is infinite.

Proof: From Lemma 7.2, it follows that A defines an infinite increasing chain of multisets of
packets according to <F*". This implies that P is infinite. |

Corollary 7.4 There is no constant-bounded solution to RMTP that uses finite packet alphabets.

"Q U {p} is the multiset Q' such that mult(p, Q") = mult(p, Q) + 1 and mult(u,Q’) = mult(u, Q) for all u # p.
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Notes

Theorem 7.3 can be extended in various technical ways by weakening some of the assumptions of
the theorem that are not needed in the proof.

1. The sequences a; constructed in the proof of Lemma 7.2 have alternating sends and receives,
i.e., every sequence a; = a},...,a?, where every o!|RL is of the form send-rl(m)recv-rl(m).
Thus, f-boundedness need only hold for alternating a’s.

2. In the proof of Lemma 7.1, we only look at extensions of one message, as opposed to the
general p. Thus, we can weaken the definition of f-boundedness by requiring the conditions
to hold only for p of length 1.

3. The proof only considers packets going in one direction, namely, a direction for which the
set of messages is non-empty. We can therefore weaken the definition of f-boundness by
restricting attention to that one direction.

8 Conclusion

In this paper we have considered the problem of reliable communication over unreliable channels.
We have presented both an algorithm and an impossibility result. On the one hand we have
demonstrated that, seemingly contrary to popular belief, there exists a correct protocol that uses
only finite packet alphabets. On the other hand, we have demonstrated that any such protocol
must exhibit serious degradation of performance, as more and more messages are lost and delayed.
This raises the question of whether practical finite-alphabet protocols can exist for channels that
can lose and reorder packets. The answer to this questions probably lies in the interpretation of
the term “practical”.

If “practical” means maintaining a bandwidth similar to the underlying channels, then the
performance of our protocol is horrendous. Moreover, this is not simply a shortcoming of our
protocol, but, as our impossibility result shows, it is an inherent limitation. The impossibility
result says that any finite-alphabet protocol must require a large number of packets to send each
message; this imposes a large penalty on the bandwidth of the channel. Later theoretical work has
strengthened the claim that communicating with bounded headers over a channel that can reorder
packets must incur a severe bandwidth penalty. The interested reader is referred to [MS89, TL90,
WZ89] where a variety of impossibility results related to ours are shown.

On the other hand, the development of newer, extremely high bandwidth, communication chan-
nels raises the serious possibility that a communication protocol could be considered reasonably
efficient even though it reduces the bandwidth of the underlying channel. Even then, our impossi-
bility result shows that no fized reduction in bandwidth can be maintained; rather, the reduction
must worsen over time.

As usual, it is necessary to be cautious in making practical inferences from the theoretical
results, for the theoretical results are based on a set of assumptions that might be weakened in
practice. For example, we have assumed that the protocols must be asynchronous; however, simple
and efficient protocols can be constructed that use information about real time, in the form of
local processor clocks and bounds on the lifetime of packets (e.g., [SD78]). Also, we have assumed
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that the protocols must always work correctly; however, efficient randomized protocols can be
constructed that allow a small fixed probability of error (e.g., [HGM89]). A challenging problem is
to find models that are realistic, yet are simple enough to admit theoretical analysis.
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