Element Order and Convergence Rate of the
Conjugate Gradient Method for
Data Parallel Stress Analysis

Kapil K. Mathur and S. Lennart Johnsson

YALEU/DCS/TR-733
September 1989

To appear in the Proceedings of Supercomputing 1989

Element Order and Convergence Rate of the
Conjugate Gradient Method for
Data Parallel Stress Analysis

Kapil K. Mathur and S. Lennart Johnsson*
Thinking Machines Corp.
245 First Street,
Cambridge, MA 02142
Mathur@think.com, Johnsson@think.com

Abstract

A data parallel formulation of the finite element method
is described. The data structures and the algorithms
for stiffness matrix generation and the solution of the
equilibrium equations are presented briefly. The gen-
eration of the elemental stiffness matrices requires no
communication, even though each finite element is dis-
tributed over several processors. The conjugate gra-
dient method with a diagonal preconditioner has been
used for the solution of the resulting sparse linear sys-
tem. This formulation has been implemented on the
Connection Machine® model CM-2. The simulations
reported in this article investigate the influence of the
mesh discretization and the interpolation order on the
convergence behavior of the conjugate gradient method.
A linear dependence of the convergence behavior on the
mesh discretization parameter is observed. In addition,
the convergence rate depends on the interpolation or-
der p as O(p'®). The peak floating point rate (single—
precision) for the evaluation of the stiffness matrix is ap-
proximately 2.4 Gflops s™!. The iterative solver peaks

at nearly 850 Mflops s™*.

Keywords: finite element method, data parallel algo-
rithms, preconditioned conjugate gradient method.

*Also affiliated with Department of Computer Science, Yale
University, New Haven CT 06520

1 Introduction

This article summarizes some numerical experiments
with a data parallel implementation of the conjugate
gradient method in the context of sparse linear systems.
The application used in this study is three dimensional
stress analysis of domains discretized by brick elements.
The conjugate gradient method is used for the solution
of the equilibrium equations. The resulting linear sys-
tem is sparse. The structure of the sparse system is
dependent on the discretization of the domain and the
interpolation order of the elements used to construct
the mesh. An iterative solver was chosen for the so-
lution of the resulting sparse system because it offers
a high degree of concurrency with good load balance.
Moreover, the data structure used for the evaluation
of the elemental stiffness matrices can also be used by
the iterative solver. There is no fill-in. For the regu-
lar domain discretizations considered here, the sparse
matrix—vector product required by the iterative solver
involves local interactions only.

The data parallel implementation of the finite ele-
ment method on the Connection Machine CM-2 is de-
scribed briefly. A performance analysis of the imple-
mentation is reported. Next, several different sets of
simulations are presented. The primary intent of these
simulations is to investigate the influence of the dis-
cretization parameter, h, and the interpolation order,
P, on the convergence behavior of the conjugate gradi-
ent method. The approximation error decreases with

the element order and the mesh resolution. However,
since the condition number of the global stiffness ma-
trix (k) increases with the mesh resolution (O(h~2) [1])
and the interpolation order [2] the convergence rate of
the iterative method is also affected (O(v/k)).

2 The Model Architecture

The Connection Machine Model CM-2 is a data par-
allel computing system [5,3]. The primary elements of
the computing system include a front-end computer,
a parallel processing unit of 64K bit serial processors
and a high-performance data parallel I/O system. The
front—end computer provides the development and ex-
ecution environment. The data parallel operations are
executed on the bit serial processors. Each bit serial
processor has its own memory (32 Kbytes per proces-
sor which corresponds to a total memory of 2 Gbytes).
When the number of processors available are less than
the number of data elements required by the parallel
data structures, the computing system operates in a
virtual processor mode. In this mode, the application
program is presented with a larger number of virtual
processors, each with a correspondingly smaller mem-
ory. Each physical processor is made to simulate an
appropriate number of virtual processors. These vir-
tual processors time share the physical processor. The
ratio of the number of virtual processors to the physical
processors is referred to as the virtual processor ratio.

The processors are interconnected by a network.
General patterns of communication between the pro-
cessors is supported by a router. More regular patterns
of communications is supported by special communi-
cation software, which takes advantage of the lattice
emulation capability of the network. For example, ar-
ray data structures configure the processors of the Con-
nection Machine as a lattice with the same number of
dimensions as the array. The peak rate for commu-
nication between adjacent processors in the lattice is
approximately 15 Gbytes s™'. This rate of communi-
cation depends upon the dimensionality of the lattice
and the virtual processor ratio.

3 A Data Parallel Implementa-
tion

The physical domain of the applications discussed here
have been discretized by Lagrange brick elements.
The data parallel implementation of the finite element
method maps an unassembled nodal point of the mesh
on to a processor. Nodal points that are shared be-

A B A B
é
Y
4@
C D c D
4 & B
The Unassembled Nodal

Finite Element Mesh Point Representation

Figure 1: Mapping the physical domain composed of
brick/rectangular elements on to the data parallel ar-
chitecture. In the example shown above, the finite ele-
ment mesh comprises of four bilinear elements labeled
A-D. The nodes are labeled one to nine. The proces-
sors of the data parallel architecture are represented by
dots.

tween elements are replicated on separate processors.
Only the information about the geometry (the global
coordinates) needs to be replicated on the processors
representing the same nodal point. Figure (1) shows
this mapping for a two dimensional finite element mesh
with four bilinear elements labeled A, B, C, and D. The
mesh has nine nodes labeled one through nine. The 3x3
layout of nodes is mapped on to a 4 x 4 lattice of pro-
cessors. Nodal point labeled five is shared by all four
elements and is consequently placed on four separate
processors.

In this mapping scheme, each element has a subset
of processors working towards the generation of the
elemental stiffness matrices and in the evaluation of
the sparse matrix—vector product during the solution
phase. Moreover, if the elemental stiffness matrices are
not explicitly assembled into a global stiffness matrix,
the storage required to store these matrices is shared
evenly by the subset of processors. Each processor
stores the rows of the elemental stiffness matrix cor-
responding to the unassembled nodal point represented
by the processor. This corresponds to a u X nu matrix
per processor, where u is the number of degrees of free-
dom per node and 7 is the number of nodes per element.
This is especially advantageous for three dimensional
discretizations because of limited local storage per pro-
cessor of the model data parallel architecture. When
the elemental stiffness matrices are distributed evenly
over a subset of processors, higher order elements can

be used in the construction of the mesh [7].

The data parallel implementation of the finite ele-
ment method can be divided into two distinct sections
— the evaluation of the elemental stiffness matrices and
the solution of the resulting sparse linear system. For
the mapping described here, the evaluation of the el-
emental stiffness matrices requires no communication
if the numerical quadrature for each matrix element is
performed sequentially. However, several matrix ele-
ments can be computed in parallel. This is in addition
to the concurrency already present between different fi-
nite elements. Further details are available in [7]. The
resulting sparse linear system has been solved by a con-
Jjugate gradient method with diagonal scaling. In the
data parallel implementation of the conjugate gradient
method, the main computational and data communica-
tion effort is in the sparse matrix—vector product of the
form

{r} = {8} - [4}{=}, ®

where the coefficient matrix [A] is not explicitly assem-
bled but is stored as

4= 3 [49]. (2

For the mapping scheme used in the implementation,
this sparse matrix—vector product involves:

1. Accumulation of the unknowns from the proces-
sors representing the unassembled nodes. All pro-
cessors in the subset of processors forming the ele-
ment require the unknowns from every other pro-
cessor in this subset. This type of communication
is often termed as a segmented “all to all” broad-
cast [6] and can be implemented very efficiently by
the use of nearest neighbor communication when
the processors of the data parallel architecture are
configured as a lattice. In addition to the matrix
containing the unassembled rows of the nodal point
represented by the processor, after a segmented all
to all broadcast every processor also stores a vector
of length nu containing the accumulated unknown
vector.

2. A local matrix-vector product [(u X nu) X (nu X
1)] is then performed by every processor. After
this multiplication, every processor contains the
unassembled contribution of the nodal point to the
product vector (u x 1).

3. Finally, the product vector is assembled by per-
forming nearest neighbor communication among
processors representing the same nodal point.

Time (milli-second)

120 4« - CM-Time
o — Front End Time °
100 — b
80 —
60 < o
o o .
40
[]
Virtual
20 s _+ Processor
Il '2 L Is Ratio

Figure 2: The front—end and the CM time for the eval-
uation of the elemental stiffness matrices as a function
of the virtual processor ratio. All reported times are in
milli-seconds for single precision floating point opera-
tions.

For the example two dimensional mesh shown in Fig-
ure (1) and in simulations involving stress analysis, the
three sections described above are:

1. For all elements (A-D) accumulation of the eight
displacement components associated with each el-
ement.

2. Multiplication of the two rows of the unassembled
stiffness with the accumulated displacement vec-
tor.

3. Assembly over all processors representing repli-
cated nodal points (nodes labeled 2, 4, 5, 6, and
8).

Performance: To evaluate the performance of the
data parallel implementation, several simulations in-
volving three dimensional stress fields were performed.
Single precision floating point arithmetic was used
in this timing analysis. The finite element meshes
were constructed using three dimensional Lagrange el-
ements. For these simulations, » = 3 and n = (p+ 1)3
where p is the interpolation order of the Lagrange ele-
ments. Figure (2) shows the CM time and the front-
end time for the generation of the elemental stiffness
matrices for trilinear brick elements as a function of
the virtual processor ratio. A peak performance cor-
responding to 2.4 Gflops s~ is obtained at a virtual
processor ratio of eight with a CM utilization of over

Time (s)

Time (milli-second)

60 — . 1200 4 o+ - CM-Time k4

o — Front End Time
50 - 1000 —

o o °
40 — 800 —
30 — 600 — M

[]
20 400 -
[]
Virtual
10 M Interpolation 200 L ° Processor
'2 !,, L Order (p) l] lz L s Ratio

Figure 3: The influence of interpolation order, p, on the
time (CM) required to generate the elemental stiffness
matrices for three—dimensional Lagrange elements. All
reported times are in seconds and correspond to single
precision floating point operations.

96%. After a virtual processor ratio of four, the dif-
ference between the front—end time and the CM time
is approximately a constant. Most of this difference
is the time used to evaluate the shape functions at the
quadrature points in the local coordinate system. These
functions are the same for all processors and are there-
fore evaluated on the front—end computer. The timings
reported here were obtained using a Symbolics front—
end. The CM utilization is expected to improve with a
faster front—end computer. Figure (3) shows the influ-
ence of the interpolation order of the finite element on
the CM time required to generate the elemental stiff-
ness matrices. The plot clearly shows the O(n?) parallel
floating point arithmetic complexity for the evaluation
of the elemental stiffness matrices.

The performance of the conjugate gradient solver
with a diagonal preconditioner is shown in Figure (4) as
a function of the virtual processor ratio. The peak per-
formance measured is approximately 850 Mflops s™* at
a virtual processor ratio of eight, where the CM uti-
lization is approximately 95%. As before, as the vir-
tual processor ratio increases, the front—end overhead
reduces and consequently the CM utilization improves
significantly. For most of the segments of the implemen-
tation of the iterative solver, the processor utilization is
optimal. With the data representation of an unassem-
bled nodal point per processor, the only segments of
the implementation where some processors are inactive

Figure 4: The time per conjugate gradient iteration
(with diagonal scaling) as a function of the virtual pro-
cessor ratio. All reported times are in milli-second and
correspond to single precision floating point operations.
The finite element meshes used in this analysis com-
prised of trilinear brick elements.

are during the assembly' and during the evaluation of
the inner products?.

4 Numerical Experiments

This section describes the numerical experiments per-
formed to investigate the convergence behavior of the
conjugate gradient method with a diagonal precondi-
tioner. The first set of experiments simulated the three
dimensional deformation field that results from the ac-
tion of bending loads on a thin plate. The geometry
of the physical domain corresponds to a square plate
ten units long, one unit thick and ten units wide. One
face in the length-width plane, i.e., one of the 10 x 10
faces, was fixed. Traction boundary conditions corre-
sponding to a uniform unit load were applied to the
opposite face. The domain was discretized by finite ele-
ment meshes made up of trilinear bricks. These meshes
had sixteen elements in the length dimension, one el-
ement in the thickness dimension and N elements in
the width dimension, where N was varied from one to
128. Table (1) and Figure (5) shows the number of it-
erations required for the magnitude of the normalized

Lonly processors representing replicated nodal points take part
in the assembly.

2only one of the replicated nodes takes part in the evaluation
of the inner product.

N _|l7lla>1.0 | [I7]la=10"" | [I7]la =10""
1 2 23 27
2 14 55 62
4 61 101 111
8 84 120 135
16 104 140 155
32 170 233 258
64 313 436 484
128 617 857 961

Table 1: The number of conjugate gradient iterations
required for the magnitude of the normalized global
residual to reach a value of 1 x 105 and 1 x 10~8. Also
shown in the table are the number of iterations required
for the magnitude of the normalized global residual to
become less than one. The mesh discretization for this
set of simulations was 16 x 1 x N, where 1 < N < 128.

Number of Iterations
10004

8004
6004
4004

2004

o ®
.

3 Discretization
t i t } t = P ter, h
20 4b 6b 8b 1bo 1ho o oerem

Figure 5: The convergence rate of the iterative solver
as a function of the mesh discretization parameter, h.
Convergence criterion : ||7||2 < 1.0 x 1078,

global residual to reach a value of 1 x 10~% and 1 x 10~8
respectively. Clearly, with diagonal scaling, the num-
ber of iterations required for convergence grow almost
linearly with N. This behavior agrees with analytical
results [1,4]. Figure (6) shows the evolution of the nor-
malized global residual during the iteration process for
N = 128. The energy norm of the residual vector de-
fined as

e =2TAz, z€R" 3)

is shown in the Figure (7).

The normalized global residual remains greater than
one for a significant fraction of the iteration process.
For the particular example of N = 128, more than 600
iterations are required for the normalized global resid-
ual to achieve a value of less than one. This segment
of the iteration process can further be divided into two
parts. In the initial phase of the iteration process, the

log,o(7)

er;&t.f*T ; ++ Iteration Number
200 400 eﬁg 800 1000
-2

44 s

T

Figure 6: The evolution of the magnitude of the normal-
ized global residual (log,) during the iteration process.
The finite element mesh for this simulation was com-
posed of trilinear brick elements. The mesh discretiza-
tion in the length, thickness and width directions was
16 x 1 x 128 respectively.

rate of decrease in the energy norm is small. This is
observed as an increase in the magnitude of the normal-
ized global residual. In the second part of the segment
of the iteration process where the magnitude of the nor-
malized global residual remains greater than one, the
rate of change of the energy norm of the residual vector
increases rapidly. Finally, after the normalized global
residual becomes less than one, the rate of change in
the energy norm of the residual vector is marginal even
though the magnitude of the normalized global residual
is decreasing steadily. The number of conjugate gradi-
ent iterations required for the magnitude of the nor-
malized global residual to achieve a value of less than
one for the above set of simulations are summarized in
Table (1). Again, an almost linear dependence on N is
observed. This linear dependence, along with the slug-
gish rate of decrease of the energy norm of the residual
vector during the initial iteration phase shows the lim-
itations of the diagonal preconditioner.

The influence of the interpolation order on the con-
vergence behavior of the conjugate gradient method for
the same physical domain and the same boundary con-
ditions was also investigated by varying N, the num-
ber of elements in the width dimension and p, the in-
terpolation order in the width direction such that the
product N X p was a constant. This ensured that the
total number of degrees of freedom of the discretized
domains and consequently the sizes of the resulting lin-
ear system were fixed. Table (2) shows the evolution of
the magnitude of the normalized global residual for the
various values of N and p. Figure (8) shows the num-

p [[[7ll2>1.0 [[[Flz=10" [[[fla=10""
1 294 392 2

2 341 453 493

3 407 545 592

4 498 668 728

5 546 876 957

6 745 1196 1313

Table 2: The magnitude of the normalized global resid-
ual as a function of the iteration process. The finite ele-
ment meshes used in the above simulations comprised of
brick elements with 1 x 1 x p interpolation. The meshes
discretizations were 16 x 1 x N, such that N x p = 60.

Energy Norm

A
0.0H
...‘_&:‘.
0.06+ "":'

0.05- '§;

0.04 35.
0.031 ’!x,
0.0 -;!.&
0.0

1,

2b0 4bo ebo 8bo 1000

Iteration Number

Figure 7: The evolution of the energy norm of the resid-
ual vector during the iteration process. The finite ele-
ment mesh for this simulation was composed of trilinear
brick elements. The mesh discretization in the length,
thickness and width directions was 16 x 1 x 128 respec-
tively.

ber of conjugate gradient iterations required for con-
vergence as a function of the interpolation order in the
width direction. For the same size of the linear system,
the number of conjugate gradient iterations required for
convergence increase with the interpolation order. The
dependence of the number of iterations on the interpo-
lation order is more than linear. A least square analysis
of Figure (9) suggests that

Neg ~ 0 (p'9). (4)

This is consistent with theoretical results and previous
numerical experiments [8], where the convergence be-
havior of the conjugate gradient method with diagonal
scaling was investigated for three dimensional Lagrange
elements for the case where the loading was primarily
of “pulling” type.

Number of Iterations

1200 —
L]
1000
L]
800
[

600 .

L
400 Interpolation

| [|] Ord

2 3 4 5 6 rder, p

Figure 8: The number of iterations required for

convergence as a function of the interpolation or-
der in the width direction. Convergence criterion :
[|F]l2 € 1.0 x 1078 The finite element meshes used
in the above simulations comprised of brick elements
with 1x 1 x p interpolation. The meshes discretizations
were 16 X 1 x N, such that N x p = 60.

5 Summary

A data parallel implementation of the finite element
method is described using the Connection Machine sys-
tem, CM-2 as the model architecture. The mapping
between the processors of the data parallel architecture
and the logical units of data on which all the processors
operate concurrently takes advantage of nearest neigh-
bor communication when the processors are configured
as a lattice. This mapping ensures uniform processor
utilization and an efficient utilization of the storage.
The mapping described here works very well for meshes
comprising of brick elements. A more complex mapping
is necessary for meshes composed of different types of
elements and for domains with arbitrary geometries.

The convergence rate of the conjugate gradient
method with diagonal scaling in the numerical experi-
ments is inversely proportional to the mesh discretiza-
tion, h. The influence of the interpolation order on the
convergence rate also verifies analytical results.

References

[1] Owe Axelsson and V.A. Barker. Finite Element
Solutions of Boundary Value Problems. Academic
Press, 1984.

(2]

(3]

(4

[7]

(8]

Ivo Babuska and H. C. Elman. Some Aspects
of Parallel Implementation of the Finite Element
Method on Message Passing Architectures. Tech-
nical Report UMIACS-TR-88-35; CS-TR-2030,
University of Maryland, May 1988.

Thinking Machines Corp. Connection Machine
Model CM-2 Technical Summary. Technical Re-
port HA87-4, Thinking Machines Corp., 1987.

Anne Greenbaum, Congming Li, and Han Zheng
Chao. Parallelizing Preconditioned Conjugate Gra-
dient Algorithms. Technical Report , Courant In-
stitute of Mathematical Sciences, New York Uni-
versity, November 1988.

W. Daniel Hillis. The Connection Machine. MIT
Press, Cambridge, MA, 1985.

S. Lennart Johnsson and Ching-Tien Ho. Spanning
graphs for optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Com-
puters, 38(9):1249-1268, September 1989.

S. Lennart Johnsson and Kapil K. Mathur. Data
structures and algorithms for the finite element
method on a data parallel supercomputer. Interna-
tional Journal of Numerical Methods in Engineer-
ing, ():, 1989. Technical Report CS—89/1, Thinking
Machines Corp., December, 1988.

Kapil K. Mathur and S. Lennart Johnsson. The
finite element method on a data parallel computing
system. Int. J. of High-Speed Computing, 1(1):29-
44, May 1989. Thinking Machines Corp., Technical
Report CS-89/2.

