Testing Bradley's Greatest Common
Divisor Program on EXPER

Robert L. Hess and Frederick G. Sayward
Research Report #165

May 1979

This research was supported in part by the Army Institute for Research in
Management Information and Computer Science and the Army Research Office
under Grant DAAG 29-78-G-0121 to the Georgia Institute of Technology School
of Information and Computer Science, subcontracted to Yale University.



Testing Bradley’s Greatest Common Divisor Program on EXPER

Robert L. Hess
and
Frederick G. Sayward

Department of Computer Science
Yale University
New Haven, Connecticut 06520

May 1979

ABSTRACT

A program testing experiment run on the EXPER program testing system is
described. The experiment involved taking a published generalization of
Euclid’s greatest common divisor algorithm which was known to be incorrect
and seeing if trying to pass the mutation test would lead to discovering
the errors. All errors were uncovered and in addition a slight improvement
to the algorithm was found.

INTRODUCTION

The EXPER system [1] is an experimental program testing system
designed by Timothy Budd, Richard DeMillo, Richard Lipton, and Frederick
Sayward. In this report we will present experiences gained while analyzing
a fast generalization of Euclid’s greatest common divisor algorithm on
EXPER. The algorithm was introduced and its complexity analyzed in [2,3].

A brief description follows:

Input: a natural number n>0 and integers All],+s.,A[n].

Output: Iged,Z[1],Z2[2],...Z[n] where Igcd>0 is the
greatest common divisor of the elements of array A,
and Z is an array of multipliers such that

All]*z[1]4A[2]*Z[2]+...4A[n]*Z[n]=Igcd.



Page 2

Bradley’s algorithm is of particular interest to us because a few years
after its publication, during an attempt to formally prove it correct [4&],
several subtle errors were found to be present. Hence, if we start with
the original program presented in [2,3] and run it through EXPER, we should

expect to uncover at least the errors detected in [4].

METHOD

We began running EXPER on Bradley’s Algorithm as it appeared in [3],
called Algorithm 386. See appendix A for the initial program listing.
Note that there is more than one correct answer to any input, since it is
not guaranteed that the program will output a minimal set of multipliers.
However, we decided to ignore this and let mutant correctness be determined
by exact equality with the program. No mutant was allowed to run more than

ten times longer than the original program.

The following is a history of our constructing test cases on EXPER
which caused Bradley’s Algorithm to fail and the corrective action we took.
The line numbers refer to the corrected version of Bradley’s Algorithm

which is listed in appendix B.

The random test case 0 3 9 caused I to be undefined in line 52. The

correction is the addition of line 48: 1I=N.

The cleanup loop (lines 62-67) is used when IGCD is found to be one.
To test this portion of code we input =1 3. The result we: K undefined in
line 55; this was corrected by adding the condition statement at lines

50-51: IF(MP2.GT.I) GOTO 51.



Page 3

On re-running with -1 3 the algorithm gave an incorrect answer. This

was corrected by adding line 63-64: IF(IP1.GT.N) GOTO 40.

0 0 0 -3 was a special case which tested lines 1-11. The program gave
an incorrect answer. This error was fixed by changing line 9 to

1GCD=IABS(A(M)) and changing line 10 to Z(M)=A(M)/IGCD.

The test case O 42 -6 15 exercised the gcd and multiplier loops (lines
20-61) with M equal to 2. This value of M caused K to be undefined in line

55. This was corrected by changing line 53 to K=I-J+MPl.

All of these changes were noted in the Certification of Algorithm 386

[4]. We found no additional errors.

ANALYSIS

Appendix B lists the final EXPER report on the corrected version of
Bradley’s Algorithm. There are two reasons for the high number of
equivalent mutants. First, quite a few mutations are trivial: replacing
Yl by the absolute value of Yl is equivalent because Yl is always positive.
Second, line 45-46: IF(Cl.EQ.1) GOTO 60 is not an essential statement for
the program’s functinal correctness. It’s only purpose is to reduce the

number of calculations if the greatest common divisor is found to be l.

Through this experiment, we found one improvement that can be made to
the algorithm. Line 49: IGCD=A(M) can be replaced by IGCD=Cl, which is

slightly faster because it does not reference an array.

REFERENCES

[1] Tim Budd, Richard DeMillo, Richard Lipton, and Frederick Sayward,
"Mutation Analysis", Yale University Department of Computer Science



Page 4

Research Report 155, April 1979, pp. 28.

[2] Gordon H. Bradley, "Algorithm 386--Greatest Common Divisor of n

Integers and Multipliers", Communications of the ACM, Vol. 13, No. 7 (July
1970), pp. 447-448.

[3] Gordon H. Bradley, "Algorithm and Bound for the Greatest Common Divisor
of n Integers", Communications of the ACM, Vol. 13, No. 7 (July 1970),
pp. 433-436.

[4] Larry C. Ragland and Donald I. Good, "Certification of Algorithm 386",
Communications of the ACM, Vol. 16, No. 4, April 1973, p. 257.




Page 5

APPENDIX A

The following is a listing of Bradley’s original algorithm for calculating

the greatest common divisor of n integers and multipliers as found in [3].

SUBROUTINE GCDN(N,A,Z,IGCD)

C
C N NUMBER OF INTEGERS
C  A() INPUT ARRAY OF N INTEGERS. INPUT IS DESTROYED.
C Z() OUTPUT ARRAY OF N MULTIPLIERS
C  IGCD OUTPUT GREATEST COMMON DIVISOR
C
INPUT A
RDONLY N
OUTPUT Z,IGCD
DIMENSION A(N),Z(N)
INTEGER A,Z,C1,C2,Y1,Y2,Q
C
C FIND THE FIRST NON-ZERO INTEGER
DO 1 M=1,N,1 1
IF(A(M).NE.0) GOTO 3 2 3
1 Z(M)=0 4
C ALL ZERO INPUTS RESULTS IN ZERO GCD AND Z
1GCD=0 5
RETURN 6
C IF LAST NUMBER IS THE ONLY NON-ZERO NUMBER, EXIT IMMEDIATELY
3 IF(M.NE.N) GOTO 4 7 8
1GCD=A(M) 9
Z(M)=1 10
RETURN 11
4 MP1=M+1 12
MP2=M+2 13
C CHECK THE SIGN OF A(M)
ISIGN=0 14
IF(A(M).GE.0) GOTO 5 15 16
ISIGN=1 17
A(M)=-A(M) 18

C CALCULATE GCD VIA N-1 APPLICATIONS OF THE GCD ALGORITHM FOR TWO INTEGERS.
C SAVE THE MULTIPLIERS.

5 Cl=A(M) 19
DO 30 I=MPI1,N,1 20
IF(A(I).NE.0) GOTO 7 21 22
A(I)=1 23
Z(1)=0 24
GOTO 25 25

7 Y1=1 26
¥2=0 27
C2=IABS(A(I)) 28

10  Q=c2/cCl 29
C2=C2-Q*C1 30

C TESTING BEFORE COMPUTING Y2 AND BEFORE COMPUTING Yl BELOW SAVES N-1
C ADDITIONS AND N-1 MULTIPLICATIONS



Page 6

IF(C2.EQ.0) GOTO 20 : 31 32
Y2=Y2-Q*Y1 . 33
Q=C1/C2 34
C1=C1-Q*C2 35
IF(C1.EQ.0) GOTO 15 36 37
Y1=Y1-Q*Y2 38
GOTO 10 39
15 C1=C2 40
Y1=Y2 41
20 Z(I)=(Cl-Y1*A(M))/A(I) 42
A(I)=Y1 43
A(M)=C1 44
C TERMINATE GCD CALCULATIONS IF GCD EQUALS 1
25 IF(C1.EQ. 1) GOTO 60 45 46
30 CONTINUE 47
40 IGCD=A(M) 49
C CALCULATE MULTIPLIERS
DO 50 J=MP2,I,1 52
K=I-J+2 53
KK=K+1 54
Z(K)=Z(K)*A(KK) 55
50  A(K)=A(K)*A(KK) 56
51 Z(M)=A(MP1) 57
IF(ISIGN.EQ. 0) GOTO 100 58 59
Z(M)==Z(M) 60
106 RETURN 61
C GCD FOUND, SET REMAINDER OF THE MULTIPLIERS EQUAL TO ZERO.
60  IP1=I+l 62
DO 65 J=IP1,N,1 65
65  2(J)=0 66
GOTO 40 67

END



Page 7

APPENDIX B

In this appendix we list the corrected version of Bradley’s algorithm
and the final EXPER report which contains the test cases and an accounting

of the algorithm’s mutants. Asterisks denote corrections.

SUBROUTINE GCDN(N,A,Z,IGCD)

C
C N NUMBER OF INTEGERS
C A() INPUT ARRAY OF N INTEGERS. INPUT IS DESTROYED.
C Z() OUTPUT ARRAY OF N MULTIPLIERS
C 1GCD OUTPUT GREATEST COMMON DIVISOR
C
INPUT A
RDONLY N
OUTPUT Z,IGCD
DIMENSION A(N),Z(N)
INTEGER A,Z,C1,C2,Y1,Y2,Q
C
C FIND THE FIRST NON-ZERO INTEGER
DO 1 M=1,N,1 1
IF(A(M).NE.0) GOTO 3 2 3
1 Z(M)=0 ) 4
C ALL ZERO INPUTS RESULTS IN ZERO GCD AND Z
1GCD=0 5
RETURN 6
C IF LAST NUMBER IS THE ONLY NON-ZERO NUMBER, EXIT IMMEDIATELY
3 IF(M.NE.N) GOTO 4 7 8
IGCD=IABS(A(M)) kkkhhkkkkkhhkhkhkikk 9
Z(M)=A(M)/IGCD khkkhkkkhkkhkkkhkkkkkkkkk 10
RETURN 11
4 MP1=M+1 12
MP2=M+2 13
C CHECK THE SIGN OF A(M)
ISIGN=0 14
IF(A(M).GE.0) GOTO 5 15 16
ISIGN=1 17
A(M)==A(M) 18

C CALCULATE GCD VIA N-1 APPLICATIONS OF THE GCD ALGORITHM FOR TWO INTEGERS.
C SAVE THE MULTIPLIERS.

5 Cl=A(M) 19
DO 30 I=MPI,N,1 20
IF(A(I).NE.0) GOTO 7 21 22
A(1)=1 23
Z(1)=0 24
GOTO 25 25

7 Y1=1 26
Y2=0 27
C2=IABS(A(I)) 28

10  Q=c2/cCl 29

C2=C2-Q*C1 30



C TESTING BEFORE COMPUTING Y2 AND BEFORE COMPUTING Y1 BELOW SAVES N-1

C ADDITIONS AND N-1 MULTIPLICATIONS
IF(C2.EQ. 0) GOTO 20
Y2=Y2-Q*Y1
Q=C1/C2
C1=C1-Q*C2
IF(C1.EQ.0) GOTO 15
Y1=Y1-Q*Y2
GOTO 10

15  Cl=C2
Y1=Y2

20 z(1)=(Cl-Y1*A(M))/A(1)
A(I)=Y1
A(M)=C1

C TERMINATE GCD CALCULATIONS IF GCD EQUALS 1

25 IF(C1.EQ. 1) GOTO 60

30 CONTINUE
1=N

40 1GCD=A(M)

C CALCULATE MULTIPLIERS
IF(MP2.GT.I) GOTO 51
DO 50 J=MP2,I,1
K=I-J+MP1
KK=K+1
Z(K)=Z(K)*A(KK)

50 A(K)=A(K)*A(KK)

51 Z(M)=A(MP1)
IF(ISIGN.EQ. 0) GOTO 100
Z(M)=-Z(M)

100  RETURN

khkkkkhkkkkhhkhkhhkirkk

hkkkhkkhkhkhkkhhkkkkhhkk

hhkkkkkkhhhhkkhhkhhhik

C GCD FOUND, SET REMAINDER OF THE MULTIPLIERS EQUAL TO ZERO.

60 IP1=I+1
IF(IP1.GT.N) GOTO 40
DO 65 J=IPIl,N,1
65 Z(J)=0
GOTO 40
END

khkkkkhkkhkkkhhkkhkrkik

31

36

45

50

58

63

Page 8

32
33
34
35
37
38
39
40
41
42
43
44

46
47
48
49

51
52
53
54
55
56
57
59
60
61

62
64
65
66
67



The following 34 test cases were developed to kill mutants.

IN:
OUT:

1 1IN:
OUT:

2 IN:
OUT:

3 IN:
OUT:
OUT;
OUT;
OUT;

OUT:

OUT:

9 1IN:
OUT:

10 IN:
OUT:

11 IN:
OUT:

12 IN:
OUT:

13 IN:
OCT:

14 IN:
OUT:

15 IN:
OUT:

16 IN:
OUT:

17 IN:
OUT:

N
IGCD

3
0

—

Al2] .
Z[2] .

o O

e o

[S]

12

5000

A[N]
Z[N]

o &~

o

Page 9



18 IN:
OUT:

19 IN:
OUT:

20 IN:
OUT:

21 IN:
OUT:

22 IN:
OLT:

23 IN:
OUT:

24 IN:
OUT:

25 IN:
OUT:

26 IN:
OUT:

27 IN:
OUT:

28 IN:
OUT:

29 IN:
OuT:

30 IN:
OUT:

31 IN:
OUT:

32 IN:
OUT:

33 IN:
OUT:

34 IN:
ouT:

N

N

N~

318
-19

300
=20

o o

336
18

207
29

(@]

30
=49

o O

S

o o

~ [@Xe.]

w

O o

Page 10

(@R
!
—

oo



RESULTS:

NUMBER OF TEST CASES

NUMBER OF MUTANTS =

NUMBER OF DEAD MUTANTS
NUMBER OF LIVE MUTANTS
NUMBER OF EQUIV MUTANTS

NUMBER OF MUTATABLE STATEMENTS

34

5121

4956 ( 96.8%)
0. 0%)

163 (3.

6

GIVING A MUTANTS/STATEMENT RATIO OF

MUTANT TYPE

CONSTANT REPLACEMENT
SCALAR VARIABLE REPLACEME
SCALAR FOR CONSTANT REP.
CONSTANT FOR SCALAR REP.
SOURCE CONSTANT REPLACEME
ARRAY REF. FOR CONSTANT R
ARRAY REF. FOR SCALAR REP
COMPARIABLE ARRAY NAME RE
CONSTANT FOR ARRAY REF RE
SCALAR FOR ARRAY REF REP.
ARRAY REF. FOR ARRAY REF.
UNARY OPERATOR INSERION
ARITHMETIC OPERATOR REPLA
RELATIONAL OPERATOR REPLA
UNARY OPERATOR REMOVAL
STATEMENT ANALYSIS
STATEMENT DELETION

RETURN STATEMENT REPLACEM
GOTO STATEMENT REPLACEMEN
DO STATEMENT END REPLACEM

TOTAL

42
1575
336
222
13
180
900
30
51
480
240
463
154
50
2
29
66
63
195
30

DEAD

39
1562
314
220
13
176
899
30
51
479
239
359
154
43
2
29
65
63
191
28

2%)

7

76.43

92. 9%
99. 2%
93.5%
99. 1%
100. 0%
97.8%
99. 9%
100. 0%
100. 0%
99. 8%
99. 67
77.5%
100. 0%
86. 0%
100. 0%
100. 0%
98. 5%
100. 0%
97.9%
93. 3%

LIVE

0CO0OO0OD0DODOOO+HOOODOOHOOOOO

e

.

.
OOOOONOO OO
NN I N N P NN

OOO0.00000

o
.

o
9

o

0. 0%
0. 0%

Page 11

EQUIV

w

N

NP O OONOWHEF OO WO MNMDW

7. 1%
0. 8%
6. 5%
0. 9%
0. 0%
1. 7%
0. 1%
0. 0%
0. 0%
0. 2%
0. 4%
22. 2%
0. 0%
14. 0%
0. 0%
0. 0%
1. 5%
0. 0%
2.1%
6.7%



Page 12

The following mutants remain live since we did not find a test case to

kill them and it is not obvious that they are equivalent.

STATEMENT 45 CHANGED FROM
25 IF(Cl.EQ. 1) GOTO 60

TO
25 IF(C1.EQ.Z(1)) GOTO 60

STATEMENT 42 CHANGED FROM

20 Z(1)=(Cl=-Y1*A(M))/A(I)
TO

20 Z(1)=(Cl=Y1*++A(M))/A(I)





