Testing Bradley's Greatest Common Divisor Program on EXPER

Robert L. Hess and Frederick G. Sayward Research Report #165

May 1979

This research was supported in part by the Army Institute for Research in Management Information and Computer Science and the Army Research Office under Grant DAAG 29-78-G-0121 to the Georgia Institute of Technology School of Information and Computer Science, subcontracted to Yale University. Testing Bradley's Greatest Common Divisor Program on EXPER

Robert L. Hess and Frederick G. Sayward

Department of Computer Science Yale University New Haven, Connecticut 06520

May 1979

ABSTRACT

A program testing experiment run on the EXPER program testing system is described. The experiment involved taking a published generalization of Euclid's greatest common divisor algorithm which was known to be incorrect and seeing if trying to pass the mutation test would lead to discovering the errors. All errors were uncovered and in addition a slight improvement to the algorithm was found.

INTRODUCTION

The EXPER system [1] is an experimental program testing system designed by Timothy Budd, Richard DeMillo, Richard Lipton, and Frederick Sayward. In this report we will present experiences gained while analyzing a fast generalization of Euclid's greatest common divisor algorithm on EXPER. The algorithm was introduced and its complexity analyzed in [2,3]. A brief description follows:

Input: a natural number n≥0 and integers A[1],...,A[n].
Output: Igcd,Z[1],Z[2],...Z[n] where Igcd≥0 is the
greatest common divisor of the elements of array A,
and Z is an array of multipliers such that
A[1]*Z[1]+A[2]*Z[2]+...+A[n]*Z[n]=Igcd.

Bradley's algorithm is of particular interest to us because a few years after its publication, during an attempt to formally prove it correct [4], several subtle errors were found to be present. Hence, if we start with the original program presented in [2,3] and run it through EXPER, we should expect to uncover at least the errors detected in [4].

METHOD

We began running EXPER on Bradley's Algorithm as it appeared in [3], called Algorithm 386. See appendix A for the initial program listing. Note that there is more than one correct answer to any input, since it is not guaranteed that the program will output a minimal set of multipliers. However, we decided to ignore this and let mutant correctness be determined by exact equality with the program. No mutant was allowed to run more than ten times longer than the original program.

The following is a history of our constructing test cases on EXPER which caused Bradley's Algorithm to fail and the corrective action we took. The line numbers refer to the corrected version of Bradley's Algorithm which is listed in appendix B.

The random test case 0 3 9 caused I to be undefined in line 52. The correction is the addition of line 48: I=N.

The cleanup loop (lines 62-67) is used when IGCD is found to be one. To test this portion of code we input -1 3. The result was K undefined in line 55; this was corrected by adding the condition statement at lines 50-51: IF(MP2.GT.I) GOTO 51. On re-running with -1 3 the algorithm gave an incorrect answer. This was corrected by adding line 63-64: IF(IP1.GT.N) GOTO 40.

0 0 0 -3 was a special case which tested lines 1-11. The program gave an incorrect answer. This error was fixed by changing line 9 to IGCD=IABS(A(M)) and changing line 10 to Z(M)=A(M)/IGCD.

The test case 0 42 -6 15 exercised the gcd and multiplier loops (lines 20-61) with M equal to 2. This value of M caused K to be undefined in line 55. This was corrected by changing line 53 to K=I-J+MPl.

All of these changes were noted in the Certification of Algorithm 386 [4]. We found no additional errors.

ANALYSIS

Appendix B lists the final EXPER report on the corrected version of Bradley's Algorithm. There are two reasons for the high number of equivalent mutants. First, quite a few mutations are trivial: replacing Y1 by the absolute value of Y1 is equivalent because Y1 is always positive. Second, line 45-46: IF(C1.EQ.1) GOTO 60 is not an essential statement for the program's functinal correctness. It's only purpose is to reduce the number of calculations if the greatest common divisor is found to be 1.

Through this experiment, we found one improvement that can be made to the algorithm. Line 49: IGCD=A(M) can be replaced by IGCD=Cl, which is slightly faster because it does not reference an array.

REFERENCES

[1] Tim Budd, Richard DeMillo, Richard Lipton, and Frederick Sayward, "Mutation Analysis", Yale University Department of Computer Science Research Report 155, April 1979, pp. 28.

[2] Gordon H. Bradley, "Algorithm 386--Greatest Common Divisor of n Integers and Multipliers", <u>Communications of the ACM</u>, Vol. 13, No. 7 (July 1970), pp. 447-448.

[3] Gordon H. Bradley, "Algorithm and Bound for the Greatest Common Divisor of n Integers", <u>Communications of the ACM</u>, Vol. 13, No. 7 (July 1970), pp. 433-436.

[4] Larry C. Ragland and Donald I. Good, "Certification of Algorithm 386", Communications of the ACM, Vol. 16, No. 4, April 1973, p. 257. APPENDIX A

SUBROUTINE GCDN(N,A,Z,IGCD)

С С NUMBER OF INTEGERS Ν A() INPUT ARRAY OF N INTEGERS. INPUT IS DESTROYED. С Z() OUTPUT ARRAY OF N MULTIPLIERS С С IGCD OUTPUT GREATEST COMMON DIVISOR С INPUT A RDONLY N OUTPUT Z,IGCD DIMENSION A(N), Z(N) INTEGER A, Z, C1, C2, Y1, Y2, Q С FIND THE FIRST NON-ZERO INTEGER С 1 DO 1 M=1,N,1 3 2 IF(A(M).NE.O) GOTO 3 4 Z(M)=01 C ALL ZERO INPUTS RESULTS IN ZERO GCD AND Z 5 IGCD=0 6 RETURN C IF LAST NUMBER IS THE ONLY NON-ZERO NUMBER, EXIT IMMEDIATELY 8 7 IF(M.NE.N) GOTO 4 3 9 IGCD=A(M)10 Z(M)=111 RETURN 12 MP1 = M+14 13 MP2=M+2C CHECK THE SIGN OF A(M) 14 ISIGN=0 15 16 $IF(A(M) \cdot GE \cdot 0) GOTO 5$ 17 ISIGN=1 18 A(M) = -A(M)C CALCULATE GCD VIA N-1 APPLICATIONS OF THE GCD ALGORITHM FOR TWO INTEGERS. C SAVE THE MULTIPLIERS. 19 C1=A(M)5 20 DO 30 I=MP1,N,1 21 22 IF(A(I).NE.0) GOTO 7 23 A(I) = 124 Z(I) = 025 GOTO 25 26 7 $Y_{1=1}$ 27 Y2=0 28 C2=IABS(A(I))29 10 0 = C2/C130 $C_{2}=C_{2}-Q*C_{1}$ C TESTING BEFORE COMPUTING Y2 AND BEFORE COMPUTING Y1 BELOW SAVES N-1

C ADDITIONS AND N-1 MULTIPLICATIONS

	IF(C2.EQ.0) GOTO 20	31	32
	Y2=Y2-Q*Y1		33
	Q=C1/C2		34
	C1=C1-Q*C2		35
	IF(C1.EQ.0) GOTO 15	36	37
	Y1=Y1-Q*Y2		38
	GOTO 10		39
15	C1=C2		40
	Y1=Y2		41
20	Z(I)=(C1-Y1*A(M))/A(I)		42
	A(I)=Y1		43
	A(M) = C1		44
C TERM	INATE GCD CALCULATIONS IF GCD EQUALS 1		
25	IF(C1.EQ.1) GOTO 60	45	46
3 0	CONTINUE		47
40	IGCD=A(M)		49
C CALC	CULATE MULTIPLIERS		
	DO 50 J=MP2,I,1		52
	K=I-J+2		53
	KK=K+1		54
	Z(K)=Z(K)*A(KK)		55
50	A(K) = A(K) * A(KK)		56
51	Z(M) = A(MP1)		57
	IF(ISIGN.EQ.0) GOTO 100	58	59
	Z(M) = -Z(M)		60
100	RETURN		61
C GCD	FOUND, SET REMAINDER OF THE MULTIPLIERS EQUAL TO ZERO.		
60	IP1=I+1		62
	DO 65 J=IP1,N,1		65
65	Z(J)=0		66
	GOTO 40		67
	END		

APPENDIX B

In this appendix we list the corrected version of Bradley's algorithm and the final EXPER report which contains the test cases and an accounting of the algorithm's mutants. Asterisks denote corrections.

SUBROUTINE GCDN(N,A,Z,IGCD)

 \sim

С				
C N				
C A() INPUT ARRAY OF N INTEGERS. INPUT	IS DESTROYED.		
) OUTPUT ARRAY OF N MULTIPLIERS			
	CD OUTPUT GREATEST COMMON DIVISOR			
C 10				
C	INPUT A			
	RDONLY N			
	OUTPUT Z, IGCD			
	DIMENSION A(N),Z(N)			
	INTEGER A,Z,C1,C2,Y1,Y2,Q			
С				
C FIN	D THE FIRST NON-ZERO INTEGER			1
	DO 1 M=1, N, 1		2	3
	IF(A(M).NE.O) GOTO 3		Z	
1	Z(M)=0			4
C ALL	ZERO INPUTS RESULTS IN ZERO GCD AND	Z		_
	IGCD=0			5
	RETURN			6
C IF L	AST NUMBER IS THE ONLY NON-ZERO NUMBE	CR, EXIT IMMEDIATELY		
3	IF(M.NE.N) GOTO 4		7	8
	IGCD=IABS(A(M))	*****		9
	Z(M) = A(M) / IGCD	****		10
	RETURN			11
4	MP1=M+1			12
7	MP2 = M+2			13
C CHEC	K THE SIGN OF A(M)			
C CHEC	ISIGN=0			14
	ISIGN=0 IF(A(M).GE.0) GOTO 5		15	16
	ISIGN=1			17
				18
	A(M) = -A(M)	COD ALCORTTHM FOR TWO	TNTE	
	ULATE GCD VIA N-1 APPLICATIONS OF THE	2 GOD ALGORITHM FOR 1WO	11111	OLIKO •
	THE MULTIPLIERS.			19
5	C1=A(M)			20
	DO 30 I=MP1,N,1		21	20
	IF(A(I).NE.O) GOTO 7		21	
	A(I)=1			23
	Z(I)=0			24
	GOTO 25			25
7	Y1=1			26
	Y2=0			27
	C2=IABS(A(I))			28
10	Q=C2/C1			29
• •	C2=C2-Q*C1			3 0

÷

		ND BEFORE COMPUTING Y1 BELOW SAVES	N-1	
C ADDI	TIONS AND N-1 MULTIPLICAT	LUNS	31	32
	IF(C2.EQ.0) GOTO 20		31	32 33
	$Y_2 = Y_2 - Q_*Y_1$			33 34
	Q=C1/C2			35
	C1=C1-Q*C2		36	37
	IF(C1.EQ.0) GOTO 15		20	38
	Y1 = Y1 - Q * Y2			30 39
15	GOTO 10			4 0
15	C 1=C 2			40 41
20	$Y_1 = Y_2$			41
20	Z(I) = (C1 - Y1 * A(M)) / A(I)			42
	A(I) = YI			43
	A(M)=C1 INATE GCD CALCULATIONS IF	CCD FOULTS 1		44
	IF(C1.EQ.1) GOTO 60	GCD EQUALS I	45	46
25 30	CONTINUE		4)	47
30	I=N	****		48
40	IGCD=A(M)			49
	ULATE MULTIPLIERS			49
C CALC	IF(MP2.GT.I) GOTO 51	*****	50	51
	DO 50 $J=MP2, I, I$		50	52
	K=I-J+MP1	*****		53
	K=I=0+HFI KK=K+1			54
	Z(K)=Z(K)*A(KK)			55
5 0	A(K) = A(K) * A(KK)			56
51	Z(M)=A(MP1)			57
51	IF(ISIGN.EQ.0) GOTO 100		58	59
	Z(M) = -Z(M)		50	60
100	RETURN			61
		HE MULTIPLIERS EQUAL TO ZERO.		
60	IP1=I+1			62
00	IF(IP1.GT.N) GOTO 40	*****	63	64
	D0 65 J=IP1,N,1			65
65	Z(J)=0			66
00	GOTO 40			67
	END			07

END

С	wing	34	test	cas	ses were	develop	ped LO KI	II mutan	15.
	N IGCD				A[1] Z[1]	A[2] Z[2]	••••	•••	A[N] Z[N]
	3 0				0 0	0 0	0 0		
	3 3				0 0	3 1	9 0		
	4 3				-3 -1	-3 0	-3 0	-3 0	
	3 2				2 1	0	0 0		
	2 1				-1 -1	3 0			
	4 3				0 0	0 0	0 0	-3 -1	
	4 1				2 0	2 0	2 0	1	
	2 1				36 1	7 - 5			
	4 2				36 -1	54 1	12 -1	4 -1	
	2 6				36 0	6 1			
	3				1	2	3		

The following 34 test cases were developed to kill mutants.

IN:

OUT:

1 IN: OUT:

2 IN:

3 IN:

4 IN:

5 IN: OUT:

6 IN:

OUT:

OUT:

OUT:

OUT:

7 IN: 4 OUT: 1 2 8 IN: OUT: 1 9 IN: 4 OUT: 2 2 10 IN: OUT: 6 11 IN: 3 1 0 0 OUT: 1 30 **9**0 5000 36 12 IN: 4 2222 -1111 4 0 OUT: 2 0 -3 6 13 IN: 3 0 -1 0 OUT: 3 -5 0 10 14 IN: 3 -1 0 0 OUT: 5 3 -8 4 15 IN: 3 1 -1 0 OUT: 1 4 16 IN: 3 9 3 4 4 6 0 0 -1 0 0 1 OUT: 1 3 5 14 -1 3 0 17 IN: 4 0 0 1 OUT:

,

18 IN: OUT:	2 6	318 -19	336 18					
19 IN: OUT:	2 3	300 -20	207 29					
20 IN: OUT:	3 2	0 0	0 0	2 1				
21 IN: OUT:	3 3	-3 -1	0 0	0 0				
22 IN: OUT:	2 4	0 0	4 1					
23 IN: OUT:	6 2	102 14	30 -49	66 0	42 0	44 1	46 0	
24 IN: OUT:	4 3	0 0	42 0	-6 2	15 1			
25 IN: OUT:	5 3	0 0	3 1	0 0	6 0	0 0		
26 IN: OUT:	9 1	0 0	0 0	0 0	0 0 0 0	4 1	4 0	$\begin{bmatrix} 3 & 3 \\ -1 & 0 \end{bmatrix}$
27 IN: OUT:	3 1	4 -1	0 0	5 1				
28 IN: OUT:	2 1	11 7	19 -4					
29 IN: OUT:	3 1	- 3 0	-1 -1	-1 0				
30 IN: OUT:	6 2	0 0	0 0	0 0	4 0	8 0	2 1	
31 IN: OUT:	6 1	-2 2	4 0	5 1	6 0	7 0	8 0	
32 IN: OUT:	5 1	5 0	1 1	2 0	1 0	5 0		
33 IN:			1 /	7				
OUT:	3 1	8 -6	14 3	1				

RESULTS:

NUMBER OF TEST CASES = 34NUMBER OF MUTANTS = 5121NUMBER OF DEAD MUTANTS = 4956 (96.8%) NUMBER OF LIVE MUTANTS = 2 (0.0%) NUMBER OF EQUIV MUTANTS = 163 (3.2%)

NUMBER OF MUTATABLE STATEMENTS =67GIVING A MUTANTS/STATEMENT RATIO OF76.43

MUTANT TYPE	TOTAL	DEAD	LIVE		EQU	IV
CONSTANT REPLACEMENT	42	39 92	. 9 % 0	0.0%	3	7.1%
SCALAR VARIABLE REPLACEME	1575	1562 99	0.2% 0	0.0%	13	0.8%
SCALAR FOR CONSTANT REP.	336	314 93	3.5 % 0	0.0%	22	6.5%
CONSTANT FOR SCALAR REP.	222	220 9	. 1% 0	0.0%	2	0 • 9 %
SOURCE CONSTANT REPLACEME	13	13 100	.0% 0	0.0%	0	0.0%
ARRAY REF. FOR CONSTANT R	180	176 97	.8% 1	0.6%	3	1.7%
ARRAY REF. FOR SCALAR REP	9 00	899 99	9.9 % 0	0.0%	1	0.1%
COMPARIABLE ARRAY NAME RE	30	30 100	0.0% 0	0.0%	0	0.0%
CONSTANT FOR ARRAY REF RE	51	51 100	0.0% 0	0.0%	0	0.0%
SCALAR FOR ARRAY REF REP.	480	479 99	9.8% 0	0.0%	1	0.2%
ARRAY REF. FOR ARRAY REF.	240	239 99	9.6% 0	0.0%	1	0.4%
UNARY OPERATOR INSERION	463	359 77	7.5% 1	0.2%	103	22•2%
ARITHMETIC OPERATOR REPLA	154	154 100	0.0% 0	0.0%	0	0.0%
RELATIONAL OPERATOR REPLA	50	43 86	5.0% 0	0.0%	7	14.0%
UNARY OPERATOR REMOVAL	2	2 100	0.0% 0	0.0%	0	0.0%
STATEMENT ANALYSIS	29	29 100	0.0%	0.0%	0	0.0%
STATEMENT DELETION	66	65 98	3.5% 0	0.0%	1	1.5%
RETURN STATEMENT REPLACEM	63	63 100	0.0% 0	0.0%	0	0.0%
GOTO STATEMENT REPLACEMEN	195	191 93	7.9% 0	0.0%	4	2.1%
DO STATEMENT END REPLACEM	30	28 93	3.3 % 0	0.0%	2	6.7%

The following mutants remain live since we did not find a test case to kill them and it is not obvious that they are equivalent.

STATEMENT 45 CHANGED FROM 25 IF(C1.EQ.1) GOTO 60 TO 25 IF(C1.EQ.Z(I)) GOTO 60

STATEMENT 42 CHANGED FROM
20 Z(I)=(Cl-Yl*A(M))/A(I)
T0
20 Z(I)=(Cl-Yl*++A(M))/A(I)