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1, Introduction

In this paper, we present a class of iterative descent methods for
solving large, sparse, nonsymmetric systems of linear equations whose
coefficient matrices have positive—definite symmetric parts. Such problems
commonly arise from the discretization of non—self-adjoint elliptic partial
differential equations. The methods we consider are modelled after the
conjugate gradient method (CG) [1, 8]. They require no estimation of
parameters and their rate of convergence appears to depend on the spectrum of
A rather than ATA. Their convergence can also be accelerated by

preconditioning techniques.

The methods are tested on two sample problems, and their numerical
behavior is compared with that of two other methods, the nonsymmetric
Chebyshev algorithm [10, 11], and the conjugate gradient method applied to the
normal equations [8, 9, 13]. All the methods are tested in conjunction with
two preconditionings, the incomplete LU factorization [12], and the modified

incomplete LU factorization [3, 6].

In Section 2, we describe the methods, outline their computational costs,
and present some bounds on their convergence rated In Section 3, we show how
they can be implemented with preconditioning techniques. In Section 4, we
describe two sample nonsymmetric model problems derived from a non-self-
adjoint elliptic equation. Finally, in Section 5, we present the results of
numerical experiments with the methods. Tables and figures follow the list of

references.

2. The Generalized Conjugate Residual Method, and Variants

In this section, we describe a class of descent methods for solving the

linear system

Ax=f , (2.1)

where A is a nonsymmetric matrix of order N with positive-definite symmetric

part. We consider four variants, all of which have the following form:

Choose Xy .
Compute T, = f - Axo .
Set Py = Tg .
FOR i = 0 STEP 1 UNTIL Convergence DO
. (ti,Api)
(Api'Api)
T T % a0y
T T Ty aghey

Compute p1+1 .

The choice of a minimizes “b—A(xi+lpi)“2 = nti+1“2 as a function of a,
so that the Euclidean norm of the residual decreases at each step. The four
methods are determined by four techniques for choosing P41t

(1) Generalized Conjugate Residual (GCR):

i) 2.2
Py =Tt 2 PPy (2.2)
j=0
where
(Ar, . ,Ap.)
bgi)=———i-ﬂ—f-j— , jgio. (2.3)

(APj.Apj)




(2) Orthomin(k) [18]:

i N
5 (1)

j=max (0, i-k+1) J i

Pit1 ©

.

Tivg
where [b;i)} are defined by (2.3).

(3) GCR(k):
The generalized conjugate residual algorithm restarted every k+l steps. Every

k+1 steps, the current iterate, xj(k+1) is taken as the new starting guess.

(4) Minimum Residual (MR): Piy1 = Tye1 *

The direction vectors (pi] generated by GCR are constructed so that
(Api,Apj) =0 for i # j .

As a result, x, minimizes the functional E(w) = “f—Aw"2 over the affine space
x, + span[po,.....pi_ll. and
“rinz = mi; “qi(A)ron2 . (2.4)
98P
GCR is the analogue of the conjugate residual method (CR) [2, 15] for
symmetric problems. Jf A is symmetric and positive-definite, then (2.2)
reduces to a two—term expression and the resulting algorithﬁ is equivalent to

CR.

Orthomin(k) has been proposed as an alternative to GCR that is less
expensive in terms of both work per iteration and storage. The vector Piy1 is
orthogonal to only the last k (> 0) vectors {pj};=i—k+1‘ Only k direction

vectors need to be stored. The iterate x; minimizes E(w) over the affine

space X, + span{p;_y_g,...,.P5-1}.

GCR(k) is also proposed as a less expensive alternative to GCR. As in
Orthomin(k), at most k direction vectors have to be saved. The cost per
iteration is lower, since in general fewer tham k direction vectors are used

to compute pi+1.

MR corresponds to the special case of k = 0 for both Orthomin(k) and
GCR(k). It has very modest work and storage requirements, and in the

symmetric case resembles the method of steepest descent.

In Table 2-1, we summarize the work and storage costs (excluding storage
for A) of computing x; for each of the methods. The storage for GCR includes
space for the vectors, x,, ., Ari, | JYRRRNS P and Apo,...,Api. Ap1 is
computed recursively as

i-1

Ap, = Ar_ + >

b(i—l)
i i - j
j=max (0, i-k)

Ap.
j ?;
so that the only matrix—vector product required is Ari. The entries for

Orthomin(k) correspond to the requirements after the k'th iteration. The work

for GCR(k) is the average over k+l iteratioms.

GCR gives the exact solution to (2.1) in at most N iterations. The three
variants do not in gemeral display finite termination. In practice, however,
all four methods tend to compute sufficiently accurate solutions in far fewer

than N iterations.

We now present some error bounds for the four methods. Let M := (A+AT)/2
denote the symmetric part of A, and let R := —(A—AT)/2 denote the skew—
symmetric part of A, so that A =M - R. Let J := IrlA T denote the Jordan
canonical form of A. For any square matrix X, let o(X) denote the set of

eigenvalues of X, let A

min(X) denote the eigenvalue of X of smallest absolute



value, let xmax(x) denote the eigenvalue of largest absolute value, and let
p(X) denote the spectral radius of X, lkma!(x)l. If X is nonsingular, let
K(X) denote the condition number of X, defined to be K(X) := IIXIIan”lllz.
Finally, let Pi denote the set of real polynomials q; of degree less than or

equal to i such that qi(O) =1.
The following bounds for GCR and GCR(k) are proved using (2.4):
Theorem 2.1: If {ri) is the sequence of residuals generated by GCR, then

e, < min llg, )l Uegll,

q; & Pi

If A has a complete set of eigenvectors, then
=, < k(D M Hroll,
where

M. := min max Iqi(1)| .
a & P, A & o(A)

Moreover, if A is normal, then

"rinz < Mi “rolz .

Theorem 2.2: If [ri) is the sequence of residuals generated by GCR(k), then

i
hejaplly < T min  Hog ol N,
91 © Pray

If A has a complete set of eigenvectors, then

Ilrj(kﬂ)ll2 < (R(T)) Mkﬂ)j Iepll,

'

and if A is normal, then

i
Iz anylly < O ) lixglly.

Finally, the following result implies that Orthomin(k) converges, and

provides another error bound for GCR, GCR(k), and MR:

Theorem 2.3: If [ri] is the sequence of residuals generated by GCR,

Orthomin(k), GCR(k), or MR, then

2
AL (M) :
min i/2
ll=,l, < [1 _ _""'r”’] e, .
Mpag (A A
X

and

‘min i/2
e ll, < [1- T <m2] el .
min max 4

Proofs of these results can be found in [4].

3. Implementation with Preconditioning

The methods presented in the previous section can be accelerated by
preconditioning techniques. Let Q be some nonsingular matrix. The solution

to (2.1) can be found by solving any of the alternative problems

F5=10 [x] =11 =F (3.1)
is=maatl [l =181 =F (3.2)
K5 =190 N 1o, = 1of1 =F (3.3)

where Q is (formally) factored into the product QQ,. If systems of equations

having Q as coefficient matrix can be solved easily, then the use of Q as




preconditioning may greatly speed the convergence of GCR and its variants. In
this section, we discuss the implementation of preconditioned versions of the

four methods.

At each step, the approximate solutions generated by GCR et. al.
minimize the Euclidean norm of the residual over some subspace. When
preconditioning is used, the quantity minimized depends on the technique of
applying the preconditioning. For example, if GCR is applied to (3.1), then
"Q_l(f—Axi)ﬂz is minimized at each step. The residual of (3.2) is the same as
the residual of the original problem (2.1). In this paper, we restrict our

attention to this version of the preconditioned problem.
GCR can be implemented to solve (2.1) using (3.2) as follows:
Algorithm 3.1: The preconditioned generalized conjugate residual method:

Choose X, .

Compute T, = f - Axo .

Set Py = 1y .

FOR i = 0 STEP 1 UNTIL Convergence DO
(ri.Api)

(Api’APi)

i+l T %3t 8P

Tien = Ty - 83hp;

-1
) (AQ L »Ap.)
bgl) = - ___.__3;}._.!_ R j<i
Ap.,
( pJ ApJ)
-1 3 (1)
Pird = Q7T 2 R TRy

The work per iteration for preconditioned GCR is identical to that for
the unpreconditioned version, except that the matrix-vector product is
replaced by a preconditioned matrix-vector product AQ—1t1+1_ In general, this
operation is performed in two steps: a system of equations with coefficient
matrix Q is solved for Q_lri+1. and the result is multiplied by A. For some
preconditionings based on the incomplete factorization of A, more efficient

techniques for performing this operation have been developed [5].

In addition to the extra storage required for Q, preconditioned GCR

requires one more vector of storage than the unpreconditioned version, for

The implementations of Orthomin(k), GCR(k), and MR are analogous to
Algorithm 3.1. For all three methods, the work per iteration differs from the
unpreconditioned versions only in the cost of the matrix-vector product.
Again, extra storage is required for Q and Q—Ir

i

4, Sample Problems

In this section, we describe two sample problems on which we tested the

methods. Consider the elliptic differential equation

S et B =0, 4.1)

on the quarter plane x > 0, y > 0, with boundary conditions

uw(x,0) =0 , uw(0,y) =1 , (4.2)

u(x,y) bounded as lx| + lyl —> «

For large f, the solution u has a boundary layer near y = 0, and is nearly

equal to 1 elsewhere [7].



For the numerical solution of (4.1) and (4.2), we restrict the domain to (4.4) can be expressed as an N x N block tridiagonal system of linear

the unit square (0,1) x (0,1), and impose the additional boundary conditions

equations
u(x,1) =1 uw(l,y) =0 . (4.3) =

, < l T, -W; I
Ax := -V, T, = f 4.6
The effect of the outflow boundary condition is to make the boundary layer in x = 2\\ 2:::::_' Ix ’ ¢ )

-1
| "
the numerical solution nonoscillatory [7]. The exact solution to ] \\\\-V T |
nn

(4.1) - (4.3) is not known. A two-dimensional representation of a numerical

for 1 (i ¢ T, is th tridiagonal matri
solution for B = 100 is shown in Figure 4-1. where for 1 £ i £ m, i 1s e n x n tridiag m x

4 ~(1-pn/2)

For the first test problem, we discretize (4.1) using centered finite —(14Bh/2) 4

differences on a uniform n x n grid, with h = ;%T [17]. The right boundary

e . N
condition is discretized by —-(1+pn/2) 4 -(1-Bh/2)

I,

( = —(1+ph/2) 3+ph/2
u xn+1.yj) = u(xn,yj) .
and Vi and Wi are n x n identity matrices. The right hand side f is

determined by (4.5), and N = nz. A is a nonsymmetric matrix, and it has

Let uij denote the approximation to u(ih,jh). The difference equations for

the discretized problem are then
complex eigenvalues for E% > 1 [14].

- - Bh - -8t
4055 T i,y T g - R S )
For the second test problem, we resolve the boundary layer by introducing
T %0 T 0. 1&jgn » 1LiCn, 4.4 the change of coordinates
Bh - - h - -
R N L WL PR yi) = ygn + (@ - yn't
1£iga [16], with yé = %. letting v(x,n) := u(x,y(n)), equation (4.1) becomes
where - [v, _+ L&y 1+ =0
xx ©y'y'a'n x
Yij T 0 i=0 . (4.5) with boundary conditions
1 i=0o0r j=1 .
v(x,0) =0 , v(0,n) =1 ,
Tf the unknowns v;j are ordered in the matural row-by-row manner, then v(x,1) =1 , ve(l,m) =0 .
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Using a uwniform n x n grid on the unit (x,n) square, with h = ;%T' and
Yj = y'(jh), the difference equations are
1 1 1 1 1
(2 + =«( + Nv,. = 5 o7 —V; i
Y[ Yz Yicyz o HYi Yy B
- h _ _ Bh
a+ ﬁf)vi-—l,j A -v51,;
'1_'""‘1’““"i-+1=°' 1¢j&n , 1<£i<n . 4.7
Vi Yje172 B3
1 1 1 Bh 11 Bh
1+ = ( + )+ v - v . - 1+ )y X
Y, Viasz Y2 2 ™ ¥ iy mei-t 2" Va1,
1 1 :
- ———V_ . =0, 1<j<fn.
yi yj+1/2 n, j+1

The resulting matrix equation is also of block tridiagonal form (4.6),
and nonsymmetry occurs in both sets of diagonals. Because y3 is small for j

near 0, the diagonal coefficients in Tj' Vj, and Wj are large for small j.

5. Numerical Experiments

In this section, we present the results of numerical experiments. We
; ehn=Ll Ll o1
solved the discrete problems (4.4) and (4.7) with h = 35 25+ end gz. The
linear systems are of order N = 961, 2209, and 3969. Three values of B were

used, B = 10, 100, and 1000. All computations were done in double precision

on a DECSYSTEM-20.

We tested the algorithms MR, Orthomin(1), Orthomin(5), GCR(1), and
GCR(5). We also used the nonsymmetric Chebyshev algorithm [10, 11], and the

conjugate gradient method applied to the normal equations (CGN) to solve the

12

same set of problems. The cost per iteration of the Chebyshev algorithm is 2N
multiplications plus one matrix—vector product. The overhead required by the
Chebyshev algorithm for estimating eigenvalues is not included in the
operation counts., The cost per iteration of CGN is 5N multiplications plus

two matrix—vector products.

All of the methods were tested in conjunction with two preconditionings:
the incomplete LU factorization (ILU) [12], and the modified incomplete LU
factorization (MILU) [3, 6]. The preconditioned problems were formulated as
in (3.2); this means that the variational quantity minimized by all the
GCR-variants, as well by CGN, is the Euclidean norm of the residual of the

original linear problem, “rinz.

The ILU factorization is an approximate LU factorization of A into

Q. = LIUI that satisfies

1

[}

1. if Aij = 0, then [LI]ij

2. if Aij # 0, then [QI]ij = Aij .

0 and [UI]ij =0 ;

That is, the approximate factors are as sparse as the lower— and upper—
triangular parts of A, respectively, and the product QI agrees with A in the

nonzero entries of A.

The MILU factorization is an approximate LU factorization into QM = LMUM
that satisfies
1. if Aij = 0, then [LM]ij = 0 and [UM]ij =0 ;

2. if Aij # 0, and i # j, then [QM]ij = Aij
MILU differs from ILU in that the diagomnal of QM is modified so that for

1<igN,

(Aij - [QM]ij) =0 .
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The factors of QM are also as sparse as the lower— and upper—triangular parts

of A.

The preconditioned matrix-vector products were implemented to take
advantage of the two—cyclic nature of the problems [5]1. The cost of a
preconditioned matrix—vector product is 9N multiplications. The stopping
criterion for all the tests was

) <1078
EN

Tables 5-1, 5-2, and 5-3 show the number of multiplications needed by
each of the methods to satisfy the stopping criterion for Problem 1 (4.4).
Figures 5-1, 5-2, and 5-3 graph the residual norm "rill2 against the number of
multiplications used by MR, Orthomin(1), GCR(1), CGN, and the Chebyshev method
for Problem 1, with h = %E and ILU preconditioning. Figures 5-4, 5-5, and 5-6
graph “ri“Z against the number of multiplications for Problem 1 with h=%§ and

MILU preconditioning.

Tables 5-4, 5-5, and 5-6 show the number of multiplications needed by
each of the methods to satisfy the stopping criterion for Problem 2 (4.7).
Figures 5-7 through 5-12 graph residual norm against multiplications for

Problem 2, with h = %E'
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Table 2-1 Work per iteration (mv denotes a matrix-vector product)
and storage requirements of GCR and variants.

| GCR | Orthomin(k) | GCR(k) | MR |
| Work/ | (31+4)N | (3x+4)N | ((3/2)x+4)N | 4N |
|Tteration] + 1 mv | + 1mv | o+ 1 mv | +1mv |
| Storage | (2i+3)N | (2k+3)N | (2k+3)N | 3N |
+— +— + + o +

Figure 4-1 Numerical solutioa to (4.1) ~ (4.3) for § = 100.




Table 5-1: Work required to reduce relative residual by factor 1.E-6.

Problem 1, Beta = 10

ILU MILU
1/h 32 48 64 32 48 64
MR 1432409 7006113 >15000000 373921 1290477 3041573
Orthomin(1) 958893 3931397 10991957 275253 810701 1712141
Orthomin(5) 1057269 3236541 8369493 389069 1204533 2609973
GCR(1) 786989 3658793 11454393 279681 864793 1900381
GCR(5) 734829 27747117 6451161 3292717 974477 2077701
CGN 1775376 8325204 >18000000 1014721 3752909 9840311
Chebyshev 476687 1390683 4835439 370915 977976 1849050
Table 5-2: Work required to reduce relative residual by factor 1.E-6.
Problem 1, Beta = 100
ILU MILU
1/h 32 48 64 32 48 64
MR 238533 807065 1914733 275457 977681 2478153
Orthomin(1) 290445 1091213 2911573 336021 1196405 3227213
Orthomin(5) 469253 2312901 5600493 442525 1573989 4492893
GCR(1) 291989 991793 2420901 291989 963357 2243425
GCR(5) 446385 1929545 5641261 401581 1514549 3907113
CGN 666993 2597274 7576986 558328 1793354 4317798
Chebyshev 206677 646156 1597302 300142 1098061 2195298
Table 5-3: Work required to reduce relative residual by factor 1.E-6.
Problem 1, Beta = 1000
ILU MILU
1/h 32 48 64 32 48 64
MR 164685 465833 1043993 115453 408961 1043993
Orthomin(1) 184101 530189 1207117 138525 460061 1207117
Orthomin(5) 255429 650349 1613133 175245 588773 1613133
GCR(1) 169681 420293 985597 126989 420293 1048725
GCR(5) 212169 579365 1366653 149289 550929 1366653
CGN 340998 888944 2054473 319265 939189 2235539
Chebyshev 175522 430003 991368 113212 381969 904806

Figure 5-2
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Table 5-4: Work required to reduce relative residual by factor 1.E-6.

Problem 2, Beta = 10

ILU MILU
1/n 32 48 64 32 48 64
MR 1112401 5726493 >15000000 300073 949245 2170833
Orthomin(1) 746205 3089861 8719349 2296717 635381 1333373
Orthomin(5) 977085 3174965 8369493 362341 1019805 2166933
GCR(1) 676989 3376357 10705177 236989 645857 1442989
GCR(5) 752905 2441181 5155321 284473 820965 1666797
CGN 1471114 7169569 18169347 775658 2647519 6581123
Chebyshev 518227 2106775 5008563 391685 929942 1805769
Table 5-5: Work required to reduce relative residual by factor 1.E-6.
Problem 2, Beta = 100
ILU MILU
1/h 32 48 64 32 48 64
MR 300073 977681 2119613 287765 949245 2273273
Orthomin(1) 336021 1196405 3164085 381597 1301597 3164085
Orthomin(5) 683077 2436053 5822013 549437 1881869 4935933
GCR(1) 307181 1090357 2763945 334681 1090357 2472121
GCR(5) 539649 2006301 4582437 473113 1659509 4096497
CGN 601794 2295804 6762189 536595 1743109 4046199
Chebyshev 258602 766241 4316067 464380 1290197 2714670
Table 5-6: Work required to reduce relative residual by factor 1.E-6.
Problem 2, Beta = 1000
ILU MILU
1/h 32 48 64 32 48 64
MR 373921 1176733 2939133 336997 1318913 4424513
Orthomin(1) 396789 1406789 3542853 411981 1722365 6131101
Orthomin(5) 576165 2251325 5489733 549437 2682357 7483413
GCR(1) 346989 1118793 2649597 346989 1344357 3678729
GCR(5) 500613 1929545 4021461 473113 2171145 5740113
CGN 601794 1893844 4498864 688726 2094824 4951529
Chebyshev 403992 1410282 3060918 424762 1482333 3450447
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