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Abstract

In this paper we shall investigate a type of nonlinear parabolic
equation, coupled equations and their positive solutions. The properties of
maximum and the mnonlinear instabilities will be discussed briefly; for

obtaining its numerical solution a special scheme will be presented.
1. Introduction

In the present paper we shall investigate a type of nonlinear parabolic
equation and coupled equations to which the similar one may come from physics,
chemistry and ecology. Specifically, the coupled egnations are from solid
electronics and have been simplified to describe the dynamic distributions of

two kinds of charge carriers so called ocarrier equations. The unknown
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functions in these problems represent the densities of certain particles or
bodies. The positivity of those functions in their mathematical model will
play essential role. Ignorance of this property often cause serious
instability eépecially in nonlinear problems, which we call nonlinear
instability. A mathematical model describing a natural phenomena which is
reproducible must be properly defined and continuously dependent on a number
of given conditions. We are concerned with the case in which there is a steady
state solution and a transitional solution wherein the former is the limit of

the latter as time increase to infimity.

In order to solve such a problem we suggest using a special scheme
,positive scheme , which will be used in computation of the positive solution.

This assures us to avoid the nonlinear instability .

Many authors have studied this type of problem. Some of them refered to
Lyapunov stability, some of them refered to the direct integration methods.
But we prefer the positivity of the solutionm, and emphasis is placed on the

construction of the computational scheme.
1. A Nonlinear Parabolic Equation

Let us begin with a single nonlinear parabolic equation as follows:

au_ 920

at “ax2

a,b)o,‘l(x<1.t>0.

b(U-K(x))U (4)

where U(x,0)=p(x), U(+l, t) are given positive functions and K(x) is given as



an arbitrary continuous function. A set of functions which consists of all
o+
positive continuous functions we call C ; and we call such a solution a

positive solution.

THEOREM 1. If U(x,t) is a positive solution of (A) then the following

inequality holds:

0 < U(x,t) £ Kn= Max {MaxK(x), Max U} ()
x t=0
or x=+1

* *
Proof. On the contrary there must be x & (-1,1) and t >0 such that

L I * $
aU(x at) s 0 a’U(x 9t) <
ot &7 9x3 =

U(x",t)= Max, U(x,t) > K, 0,

tlt

and (U(x‘.:)—x(x‘))U(x*.z) > 0. It conflicts with the equation (A).
THEOREM z.lThe positive solution of (A) is unigue.

The proof of theorem 2 is omitted. Considering the steady state solution
of (A) it is obvious that this solution is fre§ of variable t and is the limit
of the solution U(x,t) during t—>e, The steady state solution of (A)
satisfies the mnonlinear elliptic equation and boundary conditions which we
call problem (A‘). First we divide the function K(x) into two positive

functions K&(x) and K (x) such that K(x)=K+(x)-K—(x) i.e.

+,_ v . E(x) +p(x) ... if K> 0;
=) =t p(x) .c.e... otherwise;
K-(x) _—_{ P(x) evoeocscoe if K ) o;

-K(x)+p(x) ... otherwise,

where p(x) is an arbitrary non—negative function.



Next we suggest an iterative process which is very important in finding a

solution of (A). Consider the following iterative process:

LD N e
=1,2,.... (Am)

~where TO(+1,t)=U(+1,t) , 0™(x,0)=p(x), but U° is any function satisfying (I)>

Each step of the process is forwarded by solving a linear parabolic equation.

THEOREM 3. All iterative solutions of (Am) satisfy the following

inequality

0 < T™(z,t) In= Max[MaxK+(x). Max Ul
x t=0

or x=+1
Proof. For m=0 theorem is true . We suppose inequality valid for all
integers less than m . Then we check the inequaliry for integer m. On the
contrary there must be (x »t ) in the region such that fumction Um(x ,t) as a

maximum. Both of them conflict with equality of (Am)‘

Now we discuss the convergence of the sequence {t™) in the functional
space L3, Set e =Un-—U'r1, then & 's satisfy the following equation with

homogeneous initial and boundary conditions:

m ., m _
:: —a%;%— - b(Un_lem+Um—lem-1—K+em-1+K e

Multiply both sides by e" and integrate on whole interval (-1,1), using

the following notations:

+1
|v(x)|=[I |v(x)|2dx]1/23
-1

+1
(u,v)= I u v dx.
-1



Then we have
9y mp2 9 mi2 1m2
(1/2)5;|e | =—a|axe 1“<pl/7 U" "'l

b1/ B2+ (® -1 1)e™ L, o™ ¢

¢ -ale®l+bCle™ 1™ 2],

By using the well known inequality lel ¢ |5§e| we have

m|2 mlz m—-lle

sglemlzngale +bC(le" [“+le

¢-n1le®|2+n2[e™ 12

where n*=2a-bC, n2=bC, i.e.
3%(l°m|2°n1t) < n,!em-IIZint’
thus we have
Je®| 262"t < ﬁzjt Je™112e0% g ¢
0

t s ,
< (n’)zjoj |em—2lzenls ds'ds £ o.e
0

t

¢ 1@)™ 2 1| (-0™ 216t 126" %as <
0

< [(a2t)™ 1/ (2-1) 1] Max |01|29nxt)

Therefore the following theorem can be drived.

Theorem 4. Iterative sequence {U®} is convergent in any finite regiom in

the sense of the L2—norm,

Further results about the gemeralized solution of (A) are beyond our main

purpose., We are interested in this iterative process (Am) and its motivated



scheme of computation.
2. Nonlinear Instability and A Computational Scheme

When the solutions of (A) are confined in C+, then the positive solution
of (A‘) could be obtained as a limit of (A) during t—>=., We call stable
stesdy state solution. But once we disregard this restriction, the unstable
phenomena will often occur. For example , if K=C=const when Uo < 0; a=0, then

as the explicit solution shows:
U=C/[1-([(0_~0)/T_Je "1 1o as t—>[1/(bC)ILal(T-C)/T 1.

The instability becomes obvious. According to variety of the constants C
and Uo the possibilities are listed in the table 1 below and show the stable

(unstable) region in figure 1.

lc<o lc>o | | {c
| ; | | | unstable stable
|stable | stavle | U > 0 |
| | | | ] >
l1imited lunstablelc< U < ol U
| | | | stable
lunstable lunstablel U < C,0l imited |

Table 1. Figure 1.

The very unfavorably unstable sitvatiom will develop'if one puts the initial
value in the unstable region. So we must be careful to construct the
approximate scheme so that once any jnitial function is selected in the stable
region then all the intermidate results will never be out of the stable

region. Thus the computation can be possibly carried on until a solution has



been found.

Now we come to a computational scheme for problem (A). First of all we
divide in terval (-1,1) into 2N subintervals by nodes:

g SN SPCDE STTE IPACIPRC N (x € eeexy 1<yl

i"i i~

use the notationmns:

Let h.=x.-x 1,i=-N+1,....-1,0,1,....N be lengths of these subintervals and

u';=U(xi,tm). tm=mAt, 1=0,1,2,0003

1 2h,
820™ [ g3, -2t — 2hi41 v} 0.

x i i+l
hihi+1 hi+hi+1 h. +hi+1

where At is the length of the subinterval in t—axis.

We set the difference equation as follows:

1 2 1 +m-l - |
(ﬂ"i'—-u‘;" )/At =aaxu‘i‘-—buf' u;‘-»bin:' bxiu'i‘ (Ah)

where Um,Uf ,0°

N U; are given positive, i=0,+1,..,+(N-1), »=1,2,...

Let Ch+ be a set of positive functions defined on these nodes. We call a

solution of (Ah), which belong to Ch+, the positive solution,

Theorem 5. The coefficient matrix of the unknown functions U? in (Ah) has

a unique inverse with non-negative elements.

It is easy to see, if we remove all the terms of U: to the left sides of

the equations and U:-llAt to the right sides, then the coefficients of U? form

a special matrix with dominate diagonal elements negative, so there is a



nonnegative inverse.

Theorem 6. Under the conditions of theorem 3 the equation (Ah) has the

solution U: in Ch+ and the following inequality holds:

+
0 ¢ U { Max{ Max K,, Ma ™).
i i i o¥_§=$N i

The proof is much the same as for sectiom 1.

Theorem 7. If the solution of (A) has all continuous derivatives for =x

and t required, then the differemce solution U: approximates differential

solutions in any finite section of the region in the semnse of L! norm,

In fact, suppose we take e? as the difference between the solution of (A)

and the solution of (Ah). Then e:

m m1 2 m
(ei—ei )/At sBxei+
+ m-1 - m 1m m—1
+bKiei bKiei bUi ei bﬂ?ei +R§

R:~approximate error. Multiply the two sides of the equation by e? h

suits the following difference equations:

i’ where

ii=(hi+hi+1)/2 and sunbup from i=N+1 to N-1, We introduce the notations about

mesh functions in the same way as the continuous functions

1
lem|2=3;+h.(e?)2,
N1t

m, 12 1 m m 2
|(°i)xlh=_ b,[(e,,,-¢;) /0,17,
then we obtain

m2 m;2 - 1/2 my,_
le |h+aAt|ex|h+bAt|(K) e l;—

i%i

1 1 +
X‘hiem l {1+bAt(xi—U':‘.l‘}]+
N1



1
m—
+At S;.:i ihi £

m m1 m mp
< asbcat)fenl le™ 1 +atle™] IRV ;
i.e. Iemli < (1+bCAt)Iem—1|§+At|Rm|h2. and simply we have
m;2 m 2 1 j 1o 2
le™l3 < (1+bcAt) leolhwy (1+vcat) IR I)Z,
. £0
thus theorem 7 is obvious.
Other schemes may be available, but scheme (Ah) is special from the
iterative process (Am) in sectiom 1. Under a slightly strict condition we
‘obtain the stability of the difference equations (Ah) with regard to initial

values.

Theorem 8, If a > b(Max K*). then the difference equations are stable

with regard to initial values.

This means if U? and Vzare two solutions of (Ah) with diff different
initial values , then the difference between them does not increase. The

proof is the same as for theorem 7 when omitting R?.

3. A Coupled Nonlinear Parabolic System

Now we turn to the coupled nonlinear system:

9 = o 22y - -

5;0 = alax,U bl(U-V K(x))U

P 33 (B)
EEV -»azg;;v - bz(V-U+K(x))V :
al,azzbl.b2 > 0; -1<{ x < 1; t>0;

where U,V(+1,t) and U,V(x,0) e C+ are given. To find the positive solution in



C+ we still use the fnnctions'K+ and K in section 1. and denmote the inmner

maximum value as follows:

U U(x s )— Max{Max U,Max V}
max—in x x

* *
-1<(x <1, t >0

~the same to V
max—in’

Theorem 9. Only in region K(x) > 0 U(x,t) could reach Umax—in and for

which the following imequality holds:

0 uﬁax-xn—V(x t) {Kp = M:xK (x); (II)
only in region K(x) < 0 V(x,t) could reach V: max—in and for which the following
inequality holds:

0< vhax —in -U(x,t) { Km = M:xK (x), | (1II)

where the functions in each inequality are evaluvated at the same point.

Using the same idea as in section 1 we suggest an iterative proéess:
2
o0 = as20™ b KU b (VRN T
a
atvm

Ly K Vo= b, (V-0 V™
where Um,Vm m50.1,2,... have the same initial-boundary values as U,V and u°.v°

WYY

are a pair of arbitrary functions satisfying (II) in C+.

Theorem 10. Each pair of the functioms in sequence {U",V"} generated by

iterative process (Bm) remain in C+ and the following inequalities hold:

0< i -V £ Kp;

max-in (IIm)

oV -1 <

=~ 'max-in

We leave the proofs of these two theorems to the readers. Even more results
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about convergence and generalized solutions cohld be obtained. But we are
going to describe the problem of instability and a computational scheme in the

next section.

I, U-v-K=0 "V |, 0-v—k=0 V | U-V-K=0
| | o | U
| |— >
(+) U |
= | > | |
| | L] |
| | >
| | |
I | |
(a) (v) (c)
Figure 2.

4., Nonlinear Instability And Computational Scheme

First we investigate the imstability of system (B). Assume a, = 0, Bi=1,

i
i=1,2, K(x)= const divide the first equation by the other , then we obtain an
integration of U*V =const where the constant is decided by the initial value
of U and V. All the possibilities about stability are shown in figure
2,(a),(b), (¢). The arrows represent the behavior of the solutiomns U,V during
t——>=, Only those points which have two arrows om both sides pointing to them
represent the stable steady state solutioms. For ou¥ purposes only the

positive solutions are available , i.e. U,V > 0, otherwise mnonlinear

instability may arise as seriously as in section 2.

Our mext task is to give the computational scheme of equatioms (B). Using
the same division of time—~space coordinates and the same notations as in

section 2, we suggest the difference equations as follows:
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(nt m-l)/At=a 83 ni blx.u

m—l m m + m-1
1 i (u -v, )+b1Kini H

n w1 (Bh)
(vi-v )/At=a283v -b K vi

K m—l
o

m m o ces .
where uiN, viN; Uis Vo i=0,+1,+2,.. are given, positive and satisfying (IIh).

m—l m m

We call a solution of (Bh) which belomg to cnt positive solution.

VWe denote
m o m m
U ax—ins i‘= Max( M;x u., M:x v.)
w =vm*‘= Max( Max o© , Max v, )
max—in i i i i i

L 2
=N < i » 1 < 4N,

as inner maximums of the solutions.
Theorem 11, Problem (Bh) has a unique positive solution in ',

Proof. Remove all the terms containing u? orvv? to the left sides of the
equations and u?_l. vg-l to the right sides. Then all the terms on left sides
are mnon-negative. The coefficient matrix of unknown functions n:, v? has
dominant diagonal elements and negative non-zero—off-diagonal elements, so it
has an unique non—negative inverse. Thus we get u:, vi 2 0, Further we shall
verify ni, vi.> 0. If for some (m,i) u? or vi = 0, suppose n:°=0 and n:.v: >0

for all m < m,, then check the signs of every term in (Bh), we shall see the

right side is positive which is conflict with left side.

Theorem 12. Only in region where K(x) ) 0 could n1 reach u" hax-in and to
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which we have

m
LR S m ¢ x (IIh)
only in region where K(x) ¢ 0 could v" reach v© ., and we have
i max—in
m m -
£ Voax-in®i £ K- (IIh)

The proof of theorem 12 can be carried on in the same way as theorem 3 or

10.

Many other schemes have been found. Here we only mention the
computational scheme (Bh). The reason is that does this scheme (Bh) keep
almost same characteristics as the original problem (B). Besides the equatiomns
of problem (B) contain the main core of many more complex problems. We hope
that it will be useful to those who are interested in fi;lds we mentionéd, and
the method of constructing (Bh) could be easily used in solving some other

related problems.
5. Discussion of The Algorithm

We write equations (Bh) in a matrix form as follows:

(@ - T hae = %1 Oestl- [P 1 © u’i‘
0 2, 0 bzxi
_ blu“i"'l -—blu1 7 b x olgm.
—bzv‘;"l bzvlz-l 0 bk, ’

- *
where U, is a column vector (nm,vg) . Using notations:
i i’7i
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T, =At/h, hi+1' p;= hi/(hi+hi+1)’ qi=1—pi,

-8,q,T, 0 ~8,p. T, 0
Ai= 0-aq.rl’” “ilo-ap,rl’
24174 2174
1422, 1,+b K At+b.u™ TAt -b,u” 1At
e 1517010 1% 1%
i m—l m-1
b At 1+2‘z‘1+bzx At+b2 At
(1+4b, x 1:)::"'1
F?= m—l
(1+b K At)v .

27
we get the following block-tridiagonal system:

Aiﬁ:_ + Bmﬁm +C.0,, =F,

i i+l i
i=0,+1,#2,...,+(N-1) (III)
where U:N are given. The direct method can be used in solving (III). By
eliminating Ai we transform (III) into (IV):
U" + C, n';ﬂ F"'
i==0.i1.12,...,:t(N"1). (IV)
_1 * _1
cn+1 -N+1 ‘CN-I-I’ F-“-IN+1 (B -N+ 'FEN+1’
cl.=(B, -A..Chlc
ivl T il iertd i+1’
*
p'iﬂ+1 = (Byyg™ A1+1 i (F:.lﬂ AiﬂFm )

ia"N"'lgcoo'-2’—1’0'1’2,0001N—1¢
We recall that processes (IV) and (V) are computable and the number of

operations is about O(N) for each step.
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We have worked on this coupled equations for a while. Noéice 1) Theorem
12 is not sufficient for the stability; 2) Theorem 12 omly provide a reasonable
restriction on the difference solution as theorem 10 does; 3)because of
nonlinear effect At should not be too big, so that a stable approximation can
be used.
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