
On	
 the	
 Resilience	
 of	
 Routing	
 Tables1	

Joan	
 Feigenbaum2	
 	
 	
 	
 Brighten	
 Godfrey3	
 	
 	
 	
 Aurojit	
 Panda4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Michael	
 Schapira5	
 	
 	
 	
 Scott	
 Shenker4	
 	
 	
 	
 Ankit	
 Singla3	

	

	

Technical	
 Report	
 YALEU/DCS/TR-­‐1454	

August	
 2012	

	

	

	

Abstract:	
 	
 Many	
 modern	
 network	
 designs	
 incorporate	
 ``failover''	
 paths	

into	
 routers'	
 forwarding	
 tables.	
 While	
 such	
 resilient	
 routing	
 tables	
 are	

widely	
 used	
 in	
 practice	
 (e.g.,	
 ECMP),	
 there	
 has	
 been	
 little	
 theoretical	

work	
 on	
 their	
 inherent	
 power	
 and	
 limitations.	
 We	
 initiate	
 the	

theoretical	
 study	
 of	
 the	
 conditions	
 under	
 which	
 such	
 resilient	
 routing	

tables	
 can	
 guarantee	
 delivery	
 of	
 packets	
 and	
 take	
 the	
 first	
 steps	
 in	
 this	

research	
 direction.	
 We	
 prove	
 that	
 routing	
 tables	
 can	
 provide	

guaranteed	
 resilience	
 against	
 single	
 failures,	
 as	
 long	
 as	
 the	
 network	

remains	
 connected.	
 We	
 show,	
 in	
 contrast,	
 that	
 perfect	
 resilience	
 is	
 not	

achievable	
 in	
 general.
	

Keywords:	
 Internet	
 routing,	
 fault	
 tolerance	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Brief	
 announcement	
 appeared	
 in	
 Proceedings	
 of	
 the	
 2012	
 ACM	
 Symposium	
 on	

Principles	
 of	
 Distributed	
 Computing	
 (PODC).	

2	
 Yale	
 University,	
 Computer	
 Science	
 Department,	
 New	
 Haven,	
 CT	
 06520	
 USA,	

joan.feigenbaum@yale.edu,	
 supported	
 in	
 part	
 by	
 NSF	
 grant	
 CCF	
 0728443.	

3	
 University	
 of	
 Illinois,	
 Computer	
 Science	
 Department,	
 Urbana,	
 IL	
 61801	
 USA,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

{pbg,	
 singla2}@illinois.edu,	
 supported	
 in	
 part	
 by	
 NSF	
 grant	
 CNS	
 1017069.	

4	
 University	
 of	
 California,	
 EECS	
 Department,	
 Berkeley,	
 CA	
 94720	
 USA,	
 	
 	
 	
 	
 	
 	
 	

{apanda,	
 shenker}@eecs.berkeley.edu,	
 supported	
 in	
 part	
 by	
 NSF	
 grants	
 	
 	
 	
 	
 	
 	
 	
 	

CNS	
 1040838	
 and	
 CNS	
 1117161.	

5	
 Hebrew	
 University,	
 School	
 of	
 Computer	
 Science	
 and	
 Engineering,	
 91904	

Jerusalem,	
 Israel,	
 schapiram@huji.ac.il.	
 	
 Work	
 done	
 in	
 part	
 as	
 a	
 postdoc	
 at	
 Yale	

and	
 UC	
 Berkeley,	
 supported	
 by	
 NSF	
 grant	
 CNS	
 0331548.	
 	

On the Resilience of Routing Tables

Joan Feigenbaum (Yale), Brighten Godfrey (UIUC), Aurojit Panda (UC Berkeley),

Michael Schapira (Hebrew University), Scott Shenker (UC Berkeley), Ankit Singla (UIUC)

Abstract

Many modern network designs incorporate “failover” paths into routers’ forwarding tables.
In this paper, we formally address the conditions under which such resilient routing tables can
guarantee delivery of packets.

1 Introduction

The core mission of computer networks is delivering packets from one point to another. To ac-
complish this, the typical network architecture uses a set of forwarding tables (that dictate the
outgoing link at each router for each packet) and a routing algorithm that establishes those for-
warding tables, recomputing them as needed in response to link failures or other topology changes.
While this approach provides the ability to recover from an arbitrary set of failures, it does not
provide sufficient resiliency to failures because these routing algorithms take substantial time to
reconverge after each link failure. As a result, for periods of time ranging from 10s of milliseconds
to seconds (depending on the network), the network may not be able to deliver packets to certain
destinations. In comparison, packet forwarding is several orders of magnitude faster: a 10 Gbps
link, for example, sends a 1500 byte packet in 1.2 µsec.

In order to provide higher availability we must design networks that are more resilient to failures.
To this end, many modern network designs incorporate various forms of “backup” or “failover”
paths into the forwarding tables that enable a router (or switch), when it detects that one of its
attached links is down, to use an alternate outgoing link. We call these resilient routing tables since
they embed failover information into the routing table itself and do not entail changes in packet
headers (and so require no change in the low-level packet forwarding hardware). Because these
failover decisions are purely local — based only on the packet’s destination, the packet’s incoming
link, and the set of active incident links — they occur much more rapidly than the global recovery
algorithms used in traditional routing protocols and thus result in many fewer packet losses.

While such resilient routing tables are widely used in practice (e.g., ECMP), there has been
little theoretical work on their inherent power and limitations. In this paper, we prove that starting
with arbitrary loop-free routing tables, we can add forwarding rules to provide resilience against
single failures in all scenarios (so long as the network remains topologically connected). We show,
in contrast, that perfect resilience is not achievable in general (i.e., there are cases in which no
set of routing tables can guarantee packet delivery even when the graph remains connected). We
leave open the question of closing the large gap between our positive and negative results. Other
interesting open questions include exploring resilient routing tables in the context of specific families
of graphs, randomized forwarding rules, and more.

The prior work closest to ours is Failure Insensitive Routing (FIR) [6]. FIR is also able to
guarantee resilience to a single link failure, but is restricted to starting with shortest path routing
tables. Our result on resilience to a single failure is more general, allowing the use of arbitrary
(loop-free) routing tables in the absence of failure; and adding rules for tolerating one failure. In
addition, we also demonstrate the impossibility of perfect resilience. FIR does not discuss a negative
result of this nature.

While there is other significant past research on how to make routing more resilient, these efforts
differ from our discussion here in one or more important respects. For instance, the literature
discusses approaches that: (a) use bits in the packet headers to determine when to switch from
primary to backup paths (this includes MPLS Fast Reroute) [1, 4, 9]; (b) encode failure information
in packet headers to allow nodes to make failure-aware forwarding decisions [5, 8, 2] (work on fault-
tolerant compact routing [10] also fits in this category); and (c) use graph-specific properties to
achieve resilience [3]. Our own recent work [7] provides full resilience (i.e., guaranteed packet
delivery as long as the network remains connected), but modifies routing tables on the fly.

2 Model

The network is modeled as an undirected graph G = (V,E), in which the vertex set consists of
source nodes {1, 2, . . . , n} and a unique destination node d /∈ [n]. Each node i ∈ [n] has a forwarding
function f

d
i : Ei×2Ei → Ei, where Ei is the set of node i’s incident edges. fd

i maps incoming edges
to outgoing edges as a function of which incident edges are up. We call an n-tuple of forwarding
functions fd = (fd

1 , . . . , f
d
n) a forwarding pattern.

Consider the scenario that a set of edges F ⊆ E fails. A forwarding path in this scenario is a
route in the graph H

F = (V,E \ F) such that for every two consecutive edges e1, e2 on the route
which share a mutual node i it holds that fd

i (e1, Ei \ F) = e2.
Intuitively, our aim is to guarantee that whenever a node is connected to the destination d,

it also has a forwarding path to the destination. Formally, we say that a forwarding pattern f

is t-resilient if for every failure scenario F ⊆ E such that |F | ≤ t, (1) if there exists some route
from a node i to d in H

F then there also exists a forwarding path from i to d in H
F ; and (2)

all forwarding paths in H
F are loop-free. (Observe that the combination of these two conditions

implies, intuitively, that a packet never enters loop en route to the destination or, alternatively,
“gets stuck” at an intermediate node.)

3 Positive Result

3.1 High-Level Overview

We now present our main result, which establishes that for every given network it is possible to
efficiently compute a 1-resilient forwarding pattern.

Theorem 3.1. For every network there exists a 1-resilient forwarding pattern and, moreover, such
a forwarding pattern can be computed in polynomial time.

We prove Theorem 3.1 constructively; we present an algorithm that efficiently computes a 1-
resilient forwarding pattern. We now give an intuitive exposition of our algorithm. We first orient
the edges in G so as to compute a directed acyclic graph (DAG) D in which each edge in E is
utilized. Our results hold regardless of how the DAG D is computed. An example network and
corresponding DAG appear in figures 1(a) and 1(b), respectively. The DAG D naturally induces
forwarding rules at source nodes; each node’s incoming edge in D is mapped to its first active
outgoing edge in D, given some arbitrary order over the node’s outgoing edges (e.g., node 4 in the
figure forwards traffic from node 5 to node 2 if the edge to 2 is up, and to node 3 otherwise).

Intuitively, the next step is to identify a “problematic” node, that is, a node that is bi-connected
to the destination in G but not in the partial forwarding pattern computed thus far, and add
forwarding rules so as to “fix” this situation. Once this is achieved, another problematic node is

2





 

 





 

 

 

Figure 1: Illustration of high-level idea

identified and fixed, and so on. Observe that nodes 1-4 in the figure are all problematic. Observe
also that adding the two following forwarding rules fixes node 4 (i.e., makes node 4 bi-connected
to the destination in the forwarding pattern): (a) when both of node 4’s outgoing edges in D are
down, traffic reaching 4 from node 5 is sent back to 5; and (b) when node 5’s direct edge to the
destination is up, traffic reaching node 5 from node 4 is sent along this edge. Thus, the algorithm
builds the forwarding functions at nodes gradually, as more and more forwarding rules are added
to better the resilience of the forwarding pattern.

Implementing the above approach, though, requires care; the order in which problematic nodes
are chosen, and the exact manner in which forwarding rules are fixed, are important. Intuitively,
our algorithm goes over problematic nodes in the topological order <D induced by the DAG D

(visiting problematic nodes closer to the destination in D first), and when fixing a problematic
node i, forwarding rules are added until a minimal node in <D whose entire sub-DAG in D does
not traverse i is reached. We prove that this scheme outputs the desired forwarding pattern in a
computationally-efficient manner.

3.2 Algorithm and Correctness

3.2.1 Algorithm

1. Initialize. ∀e = (i, j) ∈ E, ∀T ⊆ E, set fd
j (e, T) := ∅.

2. Construct DAG. Construct a DAG D = (V,ED) (e.g., using BFS/DFS) that is rooted in
d and such that ∀(i, j) ∈ E, (i, j) ∈ ED or (j, i) ∈ ED. D induces the following partial order
<D over V : ∀i, j ∈ V , i <D j iff there is a route from j to i in D.

3. Install DAG-based forwarding rules. ∀i ∈ V , let E
i
D denote the set of i’s outgoing

edges in D. Choose an order over every E
i
D in some arbitrary manner. ∀j ∈ V such that

e = (j, i) ∈ E and ∀T ⊆ E such that T ∩E
i
D �= ∅ set fi(e, T) to be the highest element in E

i
D

that is not in T .

4. Install additional forwarding rules. While there exists a node q that is bi-connected to

3

d in G but not in f
d = (fd

1 , . . . , f
d
n) (that is, for which there do not yet exist at least two

edge-disjoint forwarding paths to the destination in f
d) do:

(a) Choose i to be a minimal node (under <D) that is bi-connected to d in G but not in
f
d = (fd

1 , . . . , f
d
n).

(b) Choose j to be a minimal node (under <D) such that (1) i <D j and (2) ∃x ∈ V such
that (j, x) ∈ D and i �D x.

(c) Choose a simple route R = (j = v1, v2, . . . , vk = i) from j to i in D.

(d) Set c := k − 1.

(e) While (c > 1) and (fd
vc(vc+1, vc) = ∅) do:

• f
d
vc(vc+1, vc) := (vc, vc−1)

• c := c− 1

(f) If c = 1, then f
d
j (v2, v1) := (j, x).

3.2.2 Proof of Theorem 3.1

We now show that the algorithm outputs a forwarding pattern f
d as in the statement of Theo-

rem 3.1. Consider a node i chosen in Step 4b of the algorithm.

Claim 3.2. For every node i that is bi-connected to d in G but not in f
d there exists a node j such

that (1) i <D j; and (2) j has a directed edge in D to some node x such that i �D x.

Proof. D spans all nodes in G and so there must exist a route R1 from i to d in D. i is bi-connected
to d in G and so there must also exist another route R2 that is edge-disjoint from R1 and is not in
D (otherwise i would be bi-connected to d in D). Let j be a node on R2 that has a route R3 to
d in D that does not go through i. We can now go over the nodes in R3 (from j to d) one by one
until we reach a node as in the statement of the claim.

Consider an iteration of Step 4 of the algorithm. Recall that the node i chosen at that iteration
is a node that (at that point in time) is bi-connected to d in G but not in f

d, and node j is a
minimal node such that i <D j and that has a child x in D for which i �D.

We now show that following the execution of Step 4 the chosen node i becomes bi-connected to
d in f

d and thus ceases to be “problematic”. We handle two cases.

• Case I: In the execution of Step 4, c is decreased until c = 1. Observe that in this case i (that
already has a route to d in D) has (at the end of that iteration) two edge-disjoint forwarding
paths to d in f

d.

• Case II: c is decreased until a non-empty “entry” in f
d is reached. We now show that in this

case, too, i has two edge-disjoint forwarding paths to d in f
d at the end of that iteration.

We now handle Case II above. For ease of exposition we illustrate our arguments on the specific
(sub)network described in Figure 2. Recall that in Step 2 of the algorithm we construct a DAG D.
The nodes and the red directed edges in the figure are some subgraph of D (the destination node
d does not appear in the figure). Let i1 and j1 be the nodes i and j, respectively, chosen at some
iteration q1 of Step 2 of the algorithm, and let R1 = (j1,α,β, i1) be the route R selected at iteration
q. The blue directed edges in Figure 2 represent the changes to the forwarding functions made in
the q1’th iteration (along the route R1). Let i2 and j2 be the nodes i and j, respectively, selected

4

x

i2

i1

j1 j2

Figure 2: Illustration of proof idea

as some later iteration q2 > q1 of Step 2, and let R2 = (j2,α,β, γ, i2) be the route R selected at
iteration q2.

Now, suppose that at the end of iteration q1 node i1 is not only bi-connected to d in G but also
in f

d. We now show that at the end of the q2’th iteration, i2 too shall be bi-connected to d in both
G and f

d. Consider the q2’th iteration of Step 2. Observe that at the q2’th iteration c is decreased
until it reached the node α as, at that point, a non-empty entry in the forwarding function is
reached. Hence, after the q2’th iteration the route (i2, γ,β,α, j1, x) exists in the network. We now
show that i2 �D x and so there exists a route from i2 to d that does not intersect its routes to d

in D.
By contradiction. Suppose that i2 ≤D x. Recall that j1 was chosen at iteration q1 because it

was a minimal node such that i1 <D j1 and has a child x in D such that i �D x. Hence, it must
be that i1 <D γ because otherwise β would have been chosen instead of j1. Similarly, i1 <D i2

because otherwise γ would have been chosen instead of j1. This, combined with our assumption
that i2 ≤D x implies that i1 ≤D x — a contradiction! The proof of the theorem follows.

4 Negative Result

We say that a forwarding pattern f is perfectly resilient if it is ∞-resilient — so that regardless of
the failure scenario F ⊆ E, if there exists some route from a node i to the destination d in H

F then
there also exists a forwarding path from i to d in H

F . To prove that forwarding patterns cannot
always achieve perfect resilience, we first prove two properties of perfectly resilient forwarding
patterns.

5

1

4

3

5

2 6

8

79

10

11d

Figure 3: A failure scenario where perfect resilience is impossible.

Lemma 4.1. For any edge euv, if v has any working path to the destination which does not use
the edge evu, then v must not send a packet traveling u → v back to u.

Proof. Assume the contrary, i.e., there is a perfectly resilient forwarding pattern f with f
d
v (euv, Ev) =

evu and ∃evw ∈ Ev, w �= u such that w has a working path to d. Now, consider a scenario where all
edges at u other than euv fail while v is connected to d through evw. A packet from u must be sent
to v along euv. Then f

d
v (euv, Ev) = evu implies v sends the packet back to u. u having no other live

edges, sends it back to i, and we have a forwarding loop, even though there is a route to d. This
contradicts the claim of f being perfectly resilient.

Lemma 4.2. A node i in the destination’s connected component must route in some cyclic ordering
of Ei\F , i.e., an ordering of its edges with its neighbors v1, . . . , vm such that ∀j < m : fi(vj , Ei\F) =
vj+1 and fi(vm, Ei \ F) = v1. For example, in figure ??, node 1 may route packets from 2 to 3,
packets from 3 to 4, from 4 to 5, and from 5 to 2.

Proof. Let nbrs(i) be the set of neighbors of node i. Assume the lemma is false, i.e., there is a
perfectly resilient forwarding pattern f such that fi does not use such a cyclic ordering over nbrs(i).
Then fi must have a smaller cyclic ordering which skips some neighbors S ⊂ nbrs(i). Consider a
scenario where u ∈ S has a route to d, but all edges from nodes in nbrs(i) \ S have failed, except
those to i. The cyclic ordering in f over nbrs(i) \ S ensures that packets loop over these nodes:
packets starting at any node in nbrs(i)\S are sent to i which forwards them to some other node in
the set (per the cyclic ordering). Any such node has no other connectivity except i, so the process
repeats ad infinitum. However, each node in nbrs(i) \ S does have a route to d through u. This
contradicts the claim of f being perfectly resilient.

Theorem 4.3. There exists a network for which no perfectly resilient forwarding pattern exists.

Proof. Consider the example network in figure (c). We show that after certain failures, no for-
warding pattern on the original graph allows each surviving node in the destination’s connected
component to reach the destination. In figure (c), the surviving links are shown in bold; all other
links fail.

By Lemma 4.2 above, node 1 has to route packets in some cyclic ordering of its neighbors. By
the topology’s symmetry, we can suppose w.l.o.g. that this ordering is 2, 3, 4, 5, 2, i.e., fd is defined
such that 1 forwards packets from 2 to 3, packets from 3 to 4, etc. Note that a forwarding loop is
formed when a packet repeats a directed edge in its path (rather than just a node). To show that

6

this occurs, consider the path taken by packets sent by 5 after the failures. By Lemma 4.1, packets
sent 1 → 2 must not loop back, and so must travel 2 → 10 → 4 → 1. As a result the packet travels
5 → 1 → 2 → 10 → 4 → 1 → 5 → 1 which is a loop since the edge 5 → 1 is repeated.

References
[1] S. Cho, T. Elhourani, and S. Ramasubramanian. Resilient multipath routing with independent directed acyclic graphs.

In ICC, 2010.
[2] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dynamic graphs. In INFOCOM, 2009.
[3] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs. R-BGP: Staying connected in a connected world. In NSDI, 2007.
[4] A. Kvalbein, A. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP network recovery using multiple routing

configurations. In INFOCOM, 2007.
[5] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and I. Stoica. Achieving convergence-free

routing using failure-carrying packets. In SIGCOMM, 2007.
[6] S. Lee, Y. Yu, S. Nelakuditi, Z. Zhang, and C. Chuah. Proactive vs Reactive Approaches to Failure Resilient Routing. In

INFOCOM, 2004.
[7] J. Liu, B. Yan, S. Shenker, and M. Schapira. Data-driven network connectivity. In HotNets, 2011.
[8] S. Lor, R. Landa, and M. Rio. Packet re-cycling: eliminating packet losses due to network failures. In HotNets, 2010.
[9] P. Pan, G. Swallow, and A. Atlas. RFC 4090 Fast Reroute Extensions to RSVP-TE for LSP Tunnels. May 2005.

[10] K. Wada and K. Kawaguchi. Efficient fault-tolerant fixed routings on (k+1)-connected digraphs. Discrete Applied
Mathematics, 1992.

7

