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Abstract:	
  	
  Many	
  modern	
  network	
  designs	
  incorporate	
  ``failover''	
  paths	
  
into	
  routers'	
  forwarding	
  tables.	
  While	
  such	
  resilient	
  routing	
  tables	
  are	
  
widely	
  used	
  in	
  practice	
  (e.g.,	
  ECMP),	
  there	
  has	
  been	
  little	
  theoretical	
  
work	
  on	
  their	
  inherent	
  power	
  and	
  limitations.	
  We	
  initiate	
  the	
  
theoretical	
  study	
  of	
  the	
  conditions	
  under	
  which	
  such	
  resilient	
  routing	
  
tables	
  can	
  guarantee	
  delivery	
  of	
  packets	
  and	
  take	
  the	
  first	
  steps	
  in	
  this	
  
research	
  direction.	
  We	
  prove	
  that	
  routing	
  tables	
  can	
  provide	
  
guaranteed	
  resilience	
  against	
  single	
  failures,	
  as	
  long	
  as	
  the	
  network	
  
remains	
  connected.	
  We	
  show,	
  in	
  contrast,	
  that	
  perfect	
  resilience	
  is	
  not	
  
achievable	
  in	
  general. 
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Abstract

Many modern network designs incorporate “failover” paths into routers’ forwarding tables.
In this paper, we formally address the conditions under which such resilient routing tables can
guarantee delivery of packets.

1 Introduction

The core mission of computer networks is delivering packets from one point to another. To ac-
complish this, the typical network architecture uses a set of forwarding tables (that dictate the
outgoing link at each router for each packet) and a routing algorithm that establishes those for-
warding tables, recomputing them as needed in response to link failures or other topology changes.
While this approach provides the ability to recover from an arbitrary set of failures, it does not
provide sufficient resiliency to failures because these routing algorithms take substantial time to
reconverge after each link failure. As a result, for periods of time ranging from 10s of milliseconds
to seconds (depending on the network), the network may not be able to deliver packets to certain
destinations. In comparison, packet forwarding is several orders of magnitude faster: a 10 Gbps
link, for example, sends a 1500 byte packet in 1.2 µsec.

In order to provide higher availability we must design networks that are more resilient to failures.
To this end, many modern network designs incorporate various forms of “backup” or “failover”
paths into the forwarding tables that enable a router (or switch), when it detects that one of its
attached links is down, to use an alternate outgoing link. We call these resilient routing tables since
they embed failover information into the routing table itself and do not entail changes in packet
headers (and so require no change in the low-level packet forwarding hardware). Because these
failover decisions are purely local — based only on the packet’s destination, the packet’s incoming
link, and the set of active incident links — they occur much more rapidly than the global recovery
algorithms used in traditional routing protocols and thus result in many fewer packet losses.

While such resilient routing tables are widely used in practice (e.g., ECMP), there has been
little theoretical work on their inherent power and limitations. In this paper, we prove that starting
with arbitrary loop-free routing tables, we can add forwarding rules to provide resilience against
single failures in all scenarios (so long as the network remains topologically connected). We show,
in contrast, that perfect resilience is not achievable in general (i.e., there are cases in which no
set of routing tables can guarantee packet delivery even when the graph remains connected). We
leave open the question of closing the large gap between our positive and negative results. Other
interesting open questions include exploring resilient routing tables in the context of specific families
of graphs, randomized forwarding rules, and more.

The prior work closest to ours is Failure Insensitive Routing (FIR) [6]. FIR is also able to
guarantee resilience to a single link failure, but is restricted to starting with shortest path routing
tables. Our result on resilience to a single failure is more general, allowing the use of arbitrary
(loop-free) routing tables in the absence of failure; and adding rules for tolerating one failure. In
addition, we also demonstrate the impossibility of perfect resilience. FIR does not discuss a negative
result of this nature.



While there is other significant past research on how to make routing more resilient, these efforts
differ from our discussion here in one or more important respects. For instance, the literature
discusses approaches that: (a) use bits in the packet headers to determine when to switch from
primary to backup paths (this includes MPLS Fast Reroute) [1, 4, 9]; (b) encode failure information
in packet headers to allow nodes to make failure-aware forwarding decisions [5, 8, 2] (work on fault-
tolerant compact routing [10] also fits in this category); and (c) use graph-specific properties to
achieve resilience [3]. Our own recent work [7] provides full resilience (i.e., guaranteed packet
delivery as long as the network remains connected), but modifies routing tables on the fly.

2 Model

The network is modeled as an undirected graph G = (V,E), in which the vertex set consists of
source nodes {1, 2, . . . , n} and a unique destination node d /∈ [n]. Each node i ∈ [n] has a forwarding
function f

d
i : Ei×2Ei → Ei, where Ei is the set of node i’s incident edges. fd

i maps incoming edges
to outgoing edges as a function of which incident edges are up. We call an n-tuple of forwarding
functions fd = (fd

1 , . . . , f
d
n) a forwarding pattern.

Consider the scenario that a set of edges F ⊆ E fails. A forwarding path in this scenario is a
route in the graph H

F = (V,E \ F ) such that for every two consecutive edges e1, e2 on the route
which share a mutual node i it holds that fd

i (e1, Ei \ F ) = e2.
Intuitively, our aim is to guarantee that whenever a node is connected to the destination d,

it also has a forwarding path to the destination. Formally, we say that a forwarding pattern f

is t-resilient if for every failure scenario F ⊆ E such that |F | ≤ t, (1) if there exists some route
from a node i to d in H

F then there also exists a forwarding path from i to d in H
F ; and (2)

all forwarding paths in H
F are loop-free. (Observe that the combination of these two conditions

implies, intuitively, that a packet never enters loop en route to the destination or, alternatively,
“gets stuck” at an intermediate node.)

3 Positive Result

3.1 High-Level Overview

We now present our main result, which establishes that for every given network it is possible to
efficiently compute a 1-resilient forwarding pattern.

Theorem 3.1. For every network there exists a 1-resilient forwarding pattern and, moreover, such
a forwarding pattern can be computed in polynomial time.

We prove Theorem 3.1 constructively; we present an algorithm that efficiently computes a 1-
resilient forwarding pattern. We now give an intuitive exposition of our algorithm. We first orient
the edges in G so as to compute a directed acyclic graph (DAG) D in which each edge in E is
utilized. Our results hold regardless of how the DAG D is computed. An example network and
corresponding DAG appear in figures 1(a) and 1(b), respectively. The DAG D naturally induces
forwarding rules at source nodes; each node’s incoming edge in D is mapped to its first active
outgoing edge in D, given some arbitrary order over the node’s outgoing edges (e.g., node 4 in the
figure forwards traffic from node 5 to node 2 if the edge to 2 is up, and to node 3 otherwise).

Intuitively, the next step is to identify a “problematic” node, that is, a node that is bi-connected
to the destination in G but not in the partial forwarding pattern computed thus far, and add
forwarding rules so as to “fix” this situation. Once this is achieved, another problematic node is
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Figure 1: Illustration of high-level idea

identified and fixed, and so on. Observe that nodes 1-4 in the figure are all problematic. Observe
also that adding the two following forwarding rules fixes node 4 (i.e., makes node 4 bi-connected
to the destination in the forwarding pattern): (a) when both of node 4’s outgoing edges in D are
down, traffic reaching 4 from node 5 is sent back to 5; and (b) when node 5’s direct edge to the
destination is up, traffic reaching node 5 from node 4 is sent along this edge. Thus, the algorithm
builds the forwarding functions at nodes gradually, as more and more forwarding rules are added
to better the resilience of the forwarding pattern.

Implementing the above approach, though, requires care; the order in which problematic nodes
are chosen, and the exact manner in which forwarding rules are fixed, are important. Intuitively,
our algorithm goes over problematic nodes in the topological order <D induced by the DAG D

(visiting problematic nodes closer to the destination in D first), and when fixing a problematic
node i, forwarding rules are added until a minimal node in <D whose entire sub-DAG in D does
not traverse i is reached. We prove that this scheme outputs the desired forwarding pattern in a
computationally-efficient manner.

3.2 Algorithm and Correctness

3.2.1 Algorithm

1. Initialize. ∀e = (i, j) ∈ E, ∀T ⊆ E, set fd
j (e, T ) := ∅.

2. Construct DAG. Construct a DAG D = (V,ED) (e.g., using BFS/DFS) that is rooted in
d and such that ∀(i, j) ∈ E, (i, j) ∈ ED or (j, i) ∈ ED. D induces the following partial order
<D over V : ∀i, j ∈ V , i <D j iff there is a route from j to i in D.

3. Install DAG-based forwarding rules. ∀i ∈ V , let E
i
D denote the set of i’s outgoing

edges in D. Choose an order over every E
i
D in some arbitrary manner. ∀j ∈ V such that

e = (j, i) ∈ E and ∀T ⊆ E such that T ∩E
i
D �= ∅ set fi(e, T ) to be the highest element in E

i
D

that is not in T .

4. Install additional forwarding rules. While there exists a node q that is bi-connected to

3



d in G but not in f
d = (fd

1 , . . . , f
d
n) (that is, for which there do not yet exist at least two

edge-disjoint forwarding paths to the destination in f
d) do:

(a) Choose i to be a minimal node (under <D) that is bi-connected to d in G but not in
f
d = (fd

1 , . . . , f
d
n).

(b) Choose j to be a minimal node (under <D) such that (1) i <D j and (2) ∃x ∈ V such
that (j, x) ∈ D and i �D x.

(c) Choose a simple route R = (j = v1, v2, . . . , vk = i) from j to i in D.

(d) Set c := k − 1.

(e) While (c > 1) and (fd
vc(vc+1, vc) = ∅) do:

• f
d
vc(vc+1, vc) := (vc, vc−1)

• c := c− 1

(f) If c = 1, then f
d
j (v2, v1) := (j, x).

3.2.2 Proof of Theorem 3.1

We now show that the algorithm outputs a forwarding pattern f
d as in the statement of Theo-

rem 3.1. Consider a node i chosen in Step 4b of the algorithm.

Claim 3.2. For every node i that is bi-connected to d in G but not in f
d there exists a node j such

that (1) i <D j; and (2) j has a directed edge in D to some node x such that i �D x.

Proof. D spans all nodes in G and so there must exist a route R1 from i to d in D. i is bi-connected
to d in G and so there must also exist another route R2 that is edge-disjoint from R1 and is not in
D (otherwise i would be bi-connected to d in D). Let j be a node on R2 that has a route R3 to
d in D that does not go through i. We can now go over the nodes in R3 (from j to d) one by one
until we reach a node as in the statement of the claim.

Consider an iteration of Step 4 of the algorithm. Recall that the node i chosen at that iteration
is a node that (at that point in time) is bi-connected to d in G but not in f

d, and node j is a
minimal node such that i <D j and that has a child x in D for which i �D.

We now show that following the execution of Step 4 the chosen node i becomes bi-connected to
d in f

d and thus ceases to be “problematic”. We handle two cases.

• Case I: In the execution of Step 4, c is decreased until c = 1. Observe that in this case i (that
already has a route to d in D) has (at the end of that iteration) two edge-disjoint forwarding
paths to d in f

d.

• Case II: c is decreased until a non-empty “entry” in f
d is reached. We now show that in this

case, too, i has two edge-disjoint forwarding paths to d in f
d at the end of that iteration.

We now handle Case II above. For ease of exposition we illustrate our arguments on the specific
(sub)network described in Figure 2. Recall that in Step 2 of the algorithm we construct a DAG D.
The nodes and the red directed edges in the figure are some subgraph of D (the destination node
d does not appear in the figure). Let i1 and j1 be the nodes i and j, respectively, chosen at some
iteration q1 of Step 2 of the algorithm, and let R1 = (j1,α,β, i1) be the route R selected at iteration
q. The blue directed edges in Figure 2 represent the changes to the forwarding functions made in
the q1’th iteration (along the route R1). Let i2 and j2 be the nodes i and j, respectively, selected

4
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Figure 2: Illustration of proof idea

as some later iteration q2 > q1 of Step 2, and let R2 = (j2,α,β, γ, i2) be the route R selected at
iteration q2.

Now, suppose that at the end of iteration q1 node i1 is not only bi-connected to d in G but also
in f

d. We now show that at the end of the q2’th iteration, i2 too shall be bi-connected to d in both
G and f

d. Consider the q2’th iteration of Step 2. Observe that at the q2’th iteration c is decreased
until it reached the node α as, at that point, a non-empty entry in the forwarding function is
reached. Hence, after the q2’th iteration the route (i2, γ,β,α, j1, x) exists in the network. We now
show that i2 �D x and so there exists a route from i2 to d that does not intersect its routes to d

in D.
By contradiction. Suppose that i2 ≤D x. Recall that j1 was chosen at iteration q1 because it

was a minimal node such that i1 <D j1 and has a child x in D such that i �D x. Hence, it must
be that i1 <D γ because otherwise β would have been chosen instead of j1. Similarly, i1 <D i2

because otherwise γ would have been chosen instead of j1. This, combined with our assumption
that i2 ≤D x implies that i1 ≤D x — a contradiction! The proof of the theorem follows.

4 Negative Result

We say that a forwarding pattern f is perfectly resilient if it is ∞-resilient — so that regardless of
the failure scenario F ⊆ E, if there exists some route from a node i to the destination d in H

F then
there also exists a forwarding path from i to d in H

F . To prove that forwarding patterns cannot
always achieve perfect resilience, we first prove two properties of perfectly resilient forwarding
patterns.
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Figure 3: A failure scenario where perfect resilience is impossible.

Lemma 4.1. For any edge euv, if v has any working path to the destination which does not use
the edge evu, then v must not send a packet traveling u → v back to u.

Proof. Assume the contrary, i.e., there is a perfectly resilient forwarding pattern f with f
d
v (euv, Ev) =

evu and ∃evw ∈ Ev, w �= u such that w has a working path to d. Now, consider a scenario where all
edges at u other than euv fail while v is connected to d through evw. A packet from u must be sent
to v along euv. Then f

d
v (euv, Ev) = evu implies v sends the packet back to u. u having no other live

edges, sends it back to i, and we have a forwarding loop, even though there is a route to d. This
contradicts the claim of f being perfectly resilient.

Lemma 4.2. A node i in the destination’s connected component must route in some cyclic ordering
of Ei\F , i.e., an ordering of its edges with its neighbors v1, . . . , vm such that ∀j < m : fi(vj , Ei\F ) =
vj+1 and fi(vm, Ei \ F ) = v1. For example, in figure ??, node 1 may route packets from 2 to 3,
packets from 3 to 4, from 4 to 5, and from 5 to 2.

Proof. Let nbrs(i) be the set of neighbors of node i. Assume the lemma is false, i.e., there is a
perfectly resilient forwarding pattern f such that fi does not use such a cyclic ordering over nbrs(i).
Then fi must have a smaller cyclic ordering which skips some neighbors S ⊂ nbrs(i). Consider a
scenario where u ∈ S has a route to d, but all edges from nodes in nbrs(i) \ S have failed, except
those to i. The cyclic ordering in f over nbrs(i) \ S ensures that packets loop over these nodes:
packets starting at any node in nbrs(i)\S are sent to i which forwards them to some other node in
the set (per the cyclic ordering). Any such node has no other connectivity except i, so the process
repeats ad infinitum. However, each node in nbrs(i) \ S does have a route to d through u. This
contradicts the claim of f being perfectly resilient.

Theorem 4.3. There exists a network for which no perfectly resilient forwarding pattern exists.

Proof. Consider the example network in figure (c). We show that after certain failures, no for-
warding pattern on the original graph allows each surviving node in the destination’s connected
component to reach the destination. In figure (c), the surviving links are shown in bold; all other
links fail.

By Lemma 4.2 above, node 1 has to route packets in some cyclic ordering of its neighbors. By
the topology’s symmetry, we can suppose w.l.o.g. that this ordering is 2, 3, 4, 5, 2, i.e., fd is defined
such that 1 forwards packets from 2 to 3, packets from 3 to 4, etc. Note that a forwarding loop is
formed when a packet repeats a directed edge in its path (rather than just a node). To show that

6



this occurs, consider the path taken by packets sent by 5 after the failures. By Lemma 4.1, packets
sent 1 → 2 must not loop back, and so must travel 2 → 10 → 4 → 1. As a result the packet travels
5 → 1 → 2 → 10 → 4 → 1 → 5 → 1 which is a loop since the edge 5 → 1 is repeated.
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