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Abstract

In some situations, users need to authenticate as distinct members of some well-
defined group, without revealing their individual identities: to validate and corroborate
a leak, for example, or to count participants in a closed anonymous forum. Current
group authentication techniques offering this capability, however, may de-anonymize
users if an attacker later compromises their private keys. Addressing this under-explored
risk, we present deniable anonymous group authentication (DAGA), the first anonymous
authentication protocol offering proportionality, forward anonymity, and deniability in
combination. To offer these properties, DAGA leverages a federation of collectively
(but not individually) trusted servers. These servers collectively generate tags during
authentication, which ensure client distinctness and proportionality, while cryptograph-
ically scrubbing information that could later de-anonymize clients. After an authenti-
cation round, clients and (honest) servers securely erase their ephemeral secrets, pro-
tecting clients from later de-anonymization even if an attacker eventually compromises
all long-term client and server keys. A proof-of-concept prototype validates DAGA’s
practicality, authenticating a client into a 32-member group in one second, or into a
2048-member group in two minutes.

1 Introduction

In privacy-sensitive communications, one user sometimes needs to prove to be a member
of some explicit, well-defined group, without revealing his individual identity. Consider for
example a whistleblower who wishes to leak evidence of corporate or government wrongdoing
to a journalist, via an anonymous electronic “drop box” [23]. The journalist needs to
validate the source’s trustworthiness, but the whistleblower is reluctant to reveal his identity
for fear their communications might be compromised [34], or that the journalist will be
coerced into testifying against the source [52]. The whistleblower thus wishes to authenticate
anonymously as a member of some authoritative circle who plausibly has knowledge of and
access to the leaked information, such as a corporate board member or executive, or a
government official of a given rank.

Even if the whistleblower convinces the journalist of his authority, the journalist may also
require corroboration: e.g., confirmation by one or more other members of this authoritative
circle that the leaked information is genuine. Other members of this authoritative circle may
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be just as reluctant to communicate with the journalist, however. If a potential corroborator
also demands anonymity, how can the journalist (or the public) know that the corroborator
is indeed a second independent source, and not just the original source wearing a second
guise? In general, if the journalist knows k pseudonymous group members, how can he
know that these pseudonyms proportionally represent k real, distinct group members, and
are not just k Sybil identities [26]?

Finally, the whistleblower is concerned that once the leak becomes public, he may be
placed under suspicion – perhaps merely for being in the relevant authoritative circle – and
any of his computing devices may be confiscated or compromised along with his private
keys. Even if his keys are compromised, the whistleblower needs his anonymity forward
protected, against both the journalist and any third-parties who might have observed their
communications. Further, the whistleblower wishes to be able to deny having even par-
ticipated in any sensitive communication, including the fact of having authenticated at all
(even anonymously) to the journalist.

We present deniable anonymous group authentication (DAGA), the first protocol we
are aware of satisfying the above requirements, which we term anonymity, proportionality,
forward anonymity, and deniability. Like ring signatures [50], DAGA allows a user to au-
thenticate as an anonymous member of an ad hoc group or ring, defined by an arbitrary list
of public keys. The user can conscript other users into a group without their participation,
consent, or even knowledge. Neither ring signatures nor deniable ring authentication [47]
offer proportionality, however: a verifier cannot tell whether several authentications were
by the same or distinct group members. Linkable ring signatures [44] include a tag en-
abling a verifier to check distinctness, but anyone who later compromises the user’s private
key can reproduce the linkage tags in all past signatures, violating forward anonymity and
deniability. It appears likely that no purely offline anonymous signature scheme can of-
fer both proportionality (corroboration capability), forward anonymity, and deniability in
combination.

To resolve these apparently conflicting requirements, DAGA relies on a federation of
independently operated servers that are collectively but not individually trusted. DAGA’s
security property properties are ensured as long as at least one server operates correctly and
honestly during an authentication process, even if the client does not know which server is
honest. The servers divide authentication activity into epochs, choosing a set of fresh server-
side secrets for each epoch. These secrets collectively protect the relationship between a
client’s private key and the epoch-specific tags that DAGA produces to offer proportionality
and corroboration capability. After each epoch, the honest server(s) securely erase their
secrets, preventing anyone from compromising any client’s anonymity in past authentication
epochs – even if the attacker later compromises the long-term private keys of all clients
and all servers. Finally, the authentication process offers deniability by employing only
interactive zero-knowledge proofs, ensuring that any valid DAGA communication transcript
could have been synthesized independently by anyone.

We have analyzed and verified DAGA’s four key security properties of anonymity, pro-
portionality, forward anonymity, and deniability. We have also built a working proof-of-
concept implementation of DAGA to validate its performance and practical usability. Us-
ing 2048-bit DSA keys, our DAGA prototype can authenticate as a member of a 32-member
group to 2 servers in about one second after consuming less than 1KB of total messaging
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bandwidth. Authenticating in a 2048-member group takes about two minutes and con-
sumes about 100KB of bandwidth. Our initial prototype is currently unoptimized, and we
expect its performance and efficiency can be improved in many ways. Nevertheless, our
results suggest that DAGA is already practical for sensitive anonymous interactions re-
quiring maximum security, and we believe DAGA’s unique combination of proportionality
(corroboration), forward anonymity, and deniability features can justify this cost in such
scenarios.

This paper makes the following key contributions:
1) proposes a new authentication scheme that offers anonymity, deniability, and propor-

tionality even in the case of a full compromise of private keys (Section 4),
2) proposes an authentication scheme that supports evolving groups while preserving

proportionality,
3) separates the notions of deniability, anonymity and forward anonymity, and analyzes

these security properties.
Section 2 offers an overview of DAGA’s trust model, operation, and security properties.

Section 3 outlines several applications for which DAGA might be suited. Section 4 presents
the details of the DAGA protocol. Section 5 outlines potentially useful extensions to the
basic protocol, and Section 6 outlines practical implementation and deployment consid-
erations. Section 7 presents our prototype implementation and experimental results, and
Section 8 summarizes DAGA’s formal security properties and briefly sketches our proofs of
these properties. Finally, Section 9 outlines related work, and Section 10 concludes.

2 Overview

2.1 Trust Model

We assume an anytrust [60, 61] model, where there is a large set of n clients and a smaller
set of m reliable servers, which includes at least one honest server that runs the prescribed
protocols and does not collude with dishonest entities. The clients do not need to assume
that any particular server is trustworthy; they need only trust that some honest server
exists. We further assume that there are always at least two honest clients; anonymity is
trivially impossible if n´ 1 clients choose to collude against only one honest client.

We assume that each anytrust server is run by a respected, reliable, and independently
managed organization, each responsible for ensuring that its server remains online and
uncompromised. We envision these anytrust servers being deployed by a federation of orga-
nizations wishing to support responsible forms of anonymous participation: e.g., providers
of online services such as Wikipedia or Twitter, anonymity system providers such as the
Tor project, non-profit organizations whose aim is to further online privacy and anonymity,
or even for-profit organization desiring strong guarantees and large anonymity sets for their
clients.

In such a deployment scenario, we expect the servers to offer high reliability and to offer
clients with a high level of confidence that at least one honest server exists. In practice, we
hope and expect a majority of the servers to be honest, allowing for an efficient resolution
of issues related to the servers’ performance or availability, should they arise, but we leave
such availability issues outside the scope of this paper.
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2.2 Protocol Overview

The main idea underlying DAGA is to allow a client to authenticate anonymously, and
at the same time enforce proportionality, by enabling the servers to link authentications
of the same client. To achieve this goal, we use a combination of proofs of knowledge to
prove membership to a particular group and per-client linkage tags that effectively become
clients’ anonymous IDs.

Each client i authenticates using a publicly available authentication context C, which
consists of a group definition G and other per-round authentication information. A client
i prepares and sends his authentication message to an arbitrarily chosen server who starts
the collective process of producing the client’s final linkage tag by all servers, and upon its
completions responds to the client with an authentication decision as shown in Figure 1.

To produce an authentication message, a client i generates an initial linkage tag T i0 “

h
śm

k“1 sk
i , where hi is the client’s per-round generator assigned by the servers and sk is a

shared secret for every server k that a client generates in a way that each server is able
to independently reconstruct it. In addition to creating the tag, the client proves in zero-
knowledge that he correctly computed T i0 and that he is a member of the group G and
therefore he knows a private key xi that corresponds to one of the public keys included in
the group definition. A client i executes the following interactive “OR” proof [14,21]:

PK = t_ni“1pI know private key xi ^ T0 is correctly based on hiqu

After completing these steps, client i securely erases his private ephemeral state and sends
to some server j his tag, proof, and all other information needed by the servers to process
his authentication request. The server who receives i’s authentication request, verifies the
attached proof, and processes the initial tag by scrubbing from T0 the secret sj it shares
with i and adding his own per-round secret rj . Finally, server j proves in zero-knowledge
that he correctly performed these steps and generates the following proof using a standard
proof of knowledge about discrete logarithms [19,29,53]:

PK = tpTag Tj is correct ^ I know my secret rjqu

The remaining servers repeat this process, however, also verifying that the proof coming
from the previous server is valid. Provided that the client i and the servers correctly follow

the protocol, it yields a final linkage tag T if “ h
śm

k“1 rk
i . Each final linkage tag Tf is unique

to a client and remains the same for each authentication within the same context C as the
tag depends on a client’s generator and a product of all servers’ secrets which remain the
same.

2.3 Security Properties

DAGA provides for a deniable and anonymous authentication scheme that maintains its
properties even if a client’s private key is compromised. A client should be able to convince
the servers that he is a unique member of a particular group, without disclosing his non-
anonymous identity and without leaving any evidence that can be used later on to link him
to his well known identity. Anonymity and deniability should persist even in the case of a
compromise of a client’s private key after the round completion. More specifically, DAGA
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Figure 1: Conceptual model of DAGA

maintains anonymity and deniability as long as the private keys of at least two honest
members and a private key of at least one honest server are not compromised. To maintain
forward security, the basic DAGA protocol assumes that at least one honest server’s pri-
vate key remains secure. Section 5.4 proposes an extension that relaxes this requirement,
however, preserving forward secrecy even if all servers are eventually compromised.

In addition to completeness and soundness, DAGA offers four security properties: anonymity,
deniability, forward anonymity, and proportionality.

Soundness: Under the Discrete Logarithm assumption, servers only accept authentica-
tion requests coming from a client who is a member of a group G specified in his authenti-
cation context.

Anonymity: Informally speaking, we want to ensure that after a complete protocol run,
an adversary cannot guess which group member has been authenticated with a probability
greater than random guessing. DAGA provides anonymity under the DDH assumption in
the random oracle model.

Forward Anonymity: We extend the anonymity property to situations in which an
adversary obtains a client’s private key but only after a protocol run has completed, and
ensure that the knowledge of even all but the honest server’s key does allow an adversary
to break any client’s anonymity.

Deniability: We want to ensure that the protocol does not leave a “paper trail” that
an adversary could use to link a client to his authentication requests based on intercepted
authentication transcripts. This guarantee persists even in the case of a compromise of
private keys yielding an interesting notion of forward deniability.

Proportionality: We enforce that a client can authenticate as a unique member only
once given a particular authentication context and each subsequent authentication request
within the same context is recognized as coming from that client. At the same time, we
ensure that client’s authentications made within two different authentication contexts are
unlinkable. Additionally, proportionality persists even when new clients are added to a
group because proportionality is independent of the group membership.

3 Applications

DAGA may be useful in many applications desiring anonymous authentication, such as
online surveys, electronic coupons, trial subscriptions, etc. DAGA is most suitable for
authentication into well-defined, closed groups of manageable size, and when guarantees of
deniability and forward security are needed.
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3.1 Distributing Keys for Group Anonymity Systems

Most anonymity systems fall into two categories: mix networks [15] (mix-nets) mask the
identity of the sender by forwarding messages through multiple relays, and Dining Cryp-
tographers networks [17] (DC-nets) leverage secrets exchanged within a well-defined group
of members to anonymize messages. While mix-nets based systems (e.g., Tor [24]) are
efficient, they do not provide unconditional anonymity and traffic analysis resistance as
DC-nets based systems (e.g., Dissent [?, 61], Herbivore [54]) do.

To provide accountability – the ability to identify and expel members that attempt to
disrupt group communication – Dissent requires each member to have a long-term signing
key. This key, if well-known, links the intermediate output of the protocol to the key’s
owner, and links the protocol’s entire output to a particular group of keys. If a client’s
identity is defined by a long-term non-anonymous key pair, a compromise of the client’s
private key could retroactively compromise the user’s anonymity in all past exchanges.

Therefore, an anonymity system such as Dissent can leverage DAGA to set up ephemeral
pseudonyms (signing keys) for participating group members, breaking the link between the
client’s long-term key (and identity) and the anonymous exchanges, while ensuring fairness
via DAGA’s proportionality property. Additionally, we can achieve a larger anonymity
set and plausible deniability for the anonymous communication if we draw ephemeral
pseudonyms from a much larger group of members than those who actively participate:
e.g., many “members” may be conscripted into the group without their participation or
knowledge.

3.2 Anonymous Voting with Deniability

DAGA may lend itself to certain forms of anonymous voting. Anonymity (to preserve
voter’s privacy) and proportionality (to enforce one-voter one-vote rule) is generally re-
quired in any anonymous voting scheme. Many anonymous e-voting schemes [2, 38, 39, 42]
provide additional properties such as coercion-resistant and receipt-freeness, which offer a
weaker notion of deniability. DAGA’s deniability property ensures that once an election
has ended, the resulting communication transcript leaves no verifiable proof that the vote
even occurred. DAGA may thus be attractive for voting in a “dissident forum” under
repression from an authoritarian regime, for example.

3.3 Secure Access to Sensitive Resources

We can envision using DAGA to distribute access tokens to resources, in particular to
sensitive resources, in a way that gives access to a certain group of clients while providing
deniability of ever requesting those sensitive resources.

Additionally, because DAGA provides proportionality, the servers can keep track of
requests made by a particular anonymous user based on his final linkage tag. This gives
the servers the ability to limit access to resources as desired (to one or k times) without
exposing a client who inadvertently makes k`1 requests as done in many k-show credential
systems [41]
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3.4 Server-provided Signatures

After a client has been successfully authenticated as a unique group member, he might
request that the servers collectively perform a specific action on his behalf, for example to
sign a message anonymously and deniably.

This might be accomplished in several ways. Servers might sequentially sign a message
as they process the client’s tag provided that the client’s proof is valid. At the end of
a successful authentication, the servers might endorse a collective ephemeral signing key
and produce a signature on the provided message. Alternatively, a client-defined subset of
servers might issue a threshold DSS signature [30,31].

3.5 Supporting Anonymous Federated Login

Crypto-Book [46] provides for a privacy-preserving and accountable digital identities. It
leverages the existing digital identity providers, such as Facebook or Twitter, and the use
of public-key encryption and linkable ring signatures. Linkable ring signatures [44,45] allow
a group member to anonymously sign a message in a way that hides his identity but allows
others to verify that the signature was produced by a group member and to link all future
signatures as coming from the same, anonymous member.

DAGA can be used in place of any linkable ring signature scheme as it provides the same
functionality (anonymity and linkability) while adding deniability and forward security.

4 Protocol Description

4.1 Notation

We denote the client i’s proof of correctness as PKclienti , the server j’s proof of correctness
as PK

serverj
1 , and the server j’s proof of a client i’s misbehavior as PK

serverjpiq
2 . We denote

the client i’s initial linkage tag as T i0, the intermediate linkage tag created by a server j as
Tj , and the client i’s final tag as T if . We will omit the client’s ID from T i0 (T if ) and write T0
(Tf ) when it is clear from the context which client the tag belongs to. We denote a client

i’s authentication message as Mi
0 and a server’s j message as Mj .

To simplify notation, we will omit “mod p” when performing computation on elements
of Zp and “mod q” when performing computation on exponents. We will denote choosing
a random element x from Z˚q as x PR Z˚q

4.2 Building Blocks

Σ-Protocols

Zero-knowledge proofs of knowledge [32] are proofs that yield nothing beyond of the validity
of the assertion a prover P wants to convince a verifier V about. However, such proofs
normally require a large number of interactions between the prover and verifier. A Σ-
protocol [22] is a special type of an interactive zero-knowledge proof of knowledge that
requires only one interaction and always consists of exactly three moves: given common
input I (1) P sends a commitment t to V , (2) V responds with a random `-bit challenge c,
and (3) P sends back a response r. V makes a decision based on pI, t, c, rq. By definition [22],
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a Σ-protocol has the properties of completeness, special soundness and special honest-
verifier zero-knowledge. The client’s and servers’ proofs instantiated in DAGA have these
properties.

“OR” Proofs

An “OR” proof of knowledge is an example of a Σ-protocol and allows a prover to convince
a verifier that he knows a secret x that corresponds to one out of two assertions without
the verifier learning which one. An “OR” proof can be easily generalized to proving the
knowledge of a witness to one of many assertions (“1-out-of-n”) or even multiple witnesses
(“k-out-of-n”).

DAGA makes use of interactive and non-interactive proofs. The client’s proof is an in-
teractive protocol instantiated using the techniques of Camenisch and Stadler [14] which are
an extension of the previous works on proof of knowledge [21,29,53]. The server’s proofs uses
non-interactive protocols based on Schnorr’s proof of knowledge of discrete logarithms [53],
proof of equality of discrete logarithms [19], While Σ-protocols are interactive by nature, a
heuristic proposed in [29] allows to replace the interaction with a verifier with a hash func-
tion modeled as a random oracle. For simplicity, we write “proof” or “proof of knowledge”
for “three-move honest-verifier computationally zero-knowledge proof of knowledge”.

4.3 Assumptions

We assume that communication channels exist between all parties and a client has an
authenticated channel with every server. We assume an adversary that is polynomial-time
limited, can control a colluding subset of up to n´ 2 clients and up to m´ 1 servers, and
can observe and record all network messages.

We assume that each client has a long-lived non-anonymous identity associated with a
public-private key pair. We define a client’s identity as his associated key pair; therefore, a
client i represents a client who owns a public key Xi. Specifically, each client i has a long-
term Diffie-Hellman (DH) key pair consisting of a private key xi and public key Xi “ gxi

and each server j has a corresponding private/public key pair pyj , Yj “ gyj q. We assume

that there is a readily available group definition G “ p ~X, ~Y q listing clients and servers and
their long-term public keys, Xi and Yj respectively. The author of a group definition may
conscript arbitrary clients knowing only their public keys. Some of the clients listed in
the group definition need not ever participate in the protocol or even be aware that they
are included. The group definition is a part of an authentication context which defines all
constants for each authentication round.

4.4 Authentication Context

In DAGA, a client i anonymously authenticates as a member of a particular group G with
the help of a set of anytrust servers using a publicly available authentication context C. An
authentication context C “ pG, ~R, ~H, p, gq consists of a group definition G, a set ~R of each
server’s commitment to a per-round secret, a set ~H of each client’s per-round generators, a
safe prime p “ 2q ` 1 where q is a sufficiently large prime, and a generator g of the order q
subgroup G of Z˚p . We define a group G as a tuple p ~X, ~Y q where ~X is a set of the n clients’
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public keys and ~Y is a set of the m servers’ public keys. To generate ~R “ pR1, . . . , Rmq, each
server chooses a secret rj PR Z˚q and publishes a commitment Rj “ grj . ~H “ ph1, . . . , hnq
consists of n unique per-round generators of G, one for each client i, such that no one knows
the logarithmic relationship between any hi and g or between hi and hi1 for any pair of
clients i ‰ i1. Section 6.5 describes how to find these generators and Section 6.3 further
discusses issues related to creating and using an authentication context.

4.5 Client’s Protocol

A client i wishing to authenticate, obtains an authentication context C, uses it to produce
an authentication message M0

i , and sends it to one arbitrarily chosen server listed in ~Y .
Upon receiving the client’s message, all servers collectively process M0

i and either accept or
reject i’s authentication request. If i’s request is accepted, then it results in a final linkage
tag T if . It it is rejected, however, then the client’s proof PKclienti is invalid, at least one

server produces a proof PK
serverjpiq
2 of the client’s misbehavior, or some server produces an

invalid proof PK
serverj
1 .

We define an authentication round with respect to a particular authentication context
C. Each authentication request, regardless of the identity of the originating client, belongs
to the same round if it is made with respect to C. All requests within the same round are
linkable, that is, each time a client i authenticates, the servers will be able to link these
requests as coming from some client from G.

A client i performs the following steps to create M0
i .

Step 1: Client i first picks an ephemeral private DH key zi PR Z˚q and computes a
public key Zi “ gzi . Client i keeps zi secret.

Step 2: For each server j, i computes a shared secret exponent sj “ H1pY
zi
j q “

H1pg
yjziq, where H1 : t0, 1u˚ Ñ Z˚q is a hash function and Yj is the sever j’s public key as

listed in ~Y .
Step 3: Client i computes his initial linkage tag T i0 “ h

śm
k“1 sk

i using his per-round

generator hi as listed in ~H and the secret exponents shared with all servers. Then, for each
server 1 ď j ď m, i computes ~S “ pS0, . . . , Smq, a set of commitments to a secret sj he

shares with each server j: Sj “ g
śj

k“1 sk such that S0 “ g, S1 “ gs1 , . . . , Sm “ g
śm

k“1 sk .

Finally, client i sets S “ pZi, ~Sq.
Step 4: Now, client i proves that (i) he correctly followed the protocol, that is his

initial linkage tag T i0 is correctly constructed using hi and s “
śm
k“1 sk, and (ii) he belongs

to the group G because he knows some private key x that corresponds to some public key
X P ~X. To do so, i runs an interactive proof of knowledge as described in Section 4.7. The
client’s proof PKclienti looks as follows.

PKtpxi, sq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskqu

Step 5: Client i securely erases each secret sj and zi. Finally, client i creates and sends

to an arbitrarily chosen server j his message M0
i “ pC, S, T0, P0q, where C “ pG, ~R, ~H, p, gq

is the authentication context i used, S “ pZi, S0, . . . , Smq is the client’s ephemeral public
key and the set of client’s commitments, T i0 is the initial linkage tag, P0 is the client’s proof.
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4.6 Servers’ Protocol

All servers collectively process a client i’s authentication message M0
i and at the end of this

process either reject i’s authentication request or accepts it as output i’s final linkage tag
T if . A client i arbitrarily chooses some server j to whom he sends M0

i . We denote that
server j as server 1, since j is the first server to process i’s request, and denote server 2 as
j ` 1 and finally the last server m as j ´ 1. This defines a unique order based on the list of
server in ~Y in which each server processes i’s message.

The first server to process the client’s authentication requests receives the message
M0
i “ pC, S, T0, P0q. Then, each server j creates a message Mj “ pMj´1, Tj , Pjq to pass to

the next server in sequence, where Mj´1 is the authentication message M0
i (if j “ 1) and

the message received from the previous server (if j ą 1), Tj is the linkage tag produced by j
and Pj is the proof produced by j. Each Mj for j ą 1 consists of all previous messages such
that each server j can verify all messages produced thus far (including the client’s original
message M0

i ).

Each server j performs the followings steps to create Mj .

Step 1: Server j checks the incoming message Mj´1 and rejects it the message is valid.
Then, j checks the proof of correctness of the previous servers’ computations (unless j “ 1)
as well as the client’s proof P0. Server j proceeds only if all proofs are valid, and aborts
otherwise.

Step 2: First, server j reconstructs the secret sj he shares with the client as sj “
H1pZ

yj q “ H1pg
yjzq. Then, j verifies the client’s commitments Sj´1 and Sj against sj .

That is, the server checks that Sj “ S
sj
j´1. If yes, then j proceeds to Step 3 and if not,

then j reveals sj together with a proof that he computed it correctly based on the client’s
commitment Z and his public key Yj as described in Section 4.9. In such a case, server j
produces the following proof PKserver

2 .

PKtpyjq : pZsj “ Zyj ^ Yj “ gyj qu.

Server j creates and sends to the next server his message Mj “Mj´1, Tj “ 0, Pj “ PKserver
2 .

Step 3: Server j computes his intermediate linkage tag Tj “ pTj´1q
prjqps

´1
j q using his

per-round secret rj and a multiplicative inverse of the shared secret sj which results in a

tag Tj “ h
śj

k“1 rk
śm

k“j`1 sk
i . Now, j produces a non-interactive proof Pj of correctness as

described in Section 4.8. The server proves that he correctly computed the new tag Tj
with respect to the server’s per-round commitment Rj and the shared secret sj . Server j
produces PKserver

1 as follows.

PKtprj , sjq : T
rj
j´1 “ T

sj
j ^Rj “ grj ^ Sj “ S

sj
j´1u

Step 4: Finally, server j securely erases sj , forms his outgoing message Mj “ pMj´1Tj , Pj “
PKserver

1 q, and sends Mj to server j ` 1 if j ă m, or to all servers if j “ m.
Step 5: Server j securely erases his per-round secrets rj upon a completion of a round,

that is when the authentication context C expires.
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After a successful completion of the protocol, all servers learn a final linkage tag Tf “

h
śm

k“1 rk
i . The tag only depends on the client’s per round generator hi and a product of

all servers’ per-round secrets rj , regardless of the initial linkage tag T0. Thus, a client can
obtain only one linkage rage per round.

4.7 Client’s Proof PKclienti

Each clients ı̂’s authentication message M0
ı̂ includes the following proof of knowledge P0:

PKtpxı̂, sq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskqu

In this proof, the client ı̂ proves that he either knows a private key x1 and his tag T0
is correct, or that he knows x2 and T0 is correct, including an “OR” statement for each
private key included in ~X. Because ı̂ knows only one private key, namely xı̂, he simulates
the “OR” statements for all other private keys in a way that will convince the servers
that the authenticating client knows one private key and the tag is properly formed. More
specifically, client ı̂ proves that that (i) client ı̂’s linkage tag T0 is created with respect to
his per-round generator hı̂, (ii) Sm is a proper commitment to s “

śm
k“1 sk, the product of

all secrets that ı̂ shares with the servers, and (iii) client ı̂’s private key xı̂ corresponds to
one of the public keys included in the group definition G.

Prover’s Steps The prover, a client ı̂ holding private key xı̂ and s performs the following
step to calculate P0 “ P :

1. Choose w1, . . . , wn such that wı̂ “ 0 and wi PR Z˚q for i ‰ ı̂, and choose v1.0, v1.1, . . . , vn.0, vn.1 PR
Z˚q . For each client i P G, compute commitments ti.0 “ Xwi

i gvi.0 , ti.10 “ Swi
m gvi.1 , and

ti.11 “ Twi
0 hvi.1i .

Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q and send it to an arbitrarily chosen server.

2. Upon receiving the client’s commitments, the severs collectively generate a random
challenge cs (as described in Section 6.4) and send cs back to the client.

3. Compute c “ pc1, . . . , cnq as:

ci “

#

cs ´
řn
k“1wk for i “ ı̂

wi otherwise

Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q as follows. Let xi.0 “ xi.1 “ 0 for all
i ‰ ı̂, let xı̂.0 “ xı̂, and let xı̂.1 “ s. Compute ri.k “ vi.k ´ cixi.k for all 1 ď i ď n and
k P t0, 1u. Set P “ pcs, t, c, rq.

Verifier’s Steps The verifier, one of the servers, performs the following steps to verify
the proof.

1. Check the commitments ti.0
?
“ Xci

i g
ri.0 , ti.10

?
“ Scimg

ri.1 , and ti.11
?
“ T ci0 h

ri.1
i , for all

1 ď i ď n.

2. Check the challenge cs
?
“

řn
i“1 ci.
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4.8 Server’s Proof: Proving Correctness of its Work

After processing an incoming tag Tj´1, each server j must prove the correctness of its

computations. That is, a server produces a proof of knowledge PK
serverj
1 that he created

the tag Tj according to the protocol specification. That is, j proves that he (i) correctly
recovered the shared secret sj , (ii) used the correct per-round secret rj with respect to

Rj P ~R, and (iii) correctly removed sj and added rj to the tag.

PKtprj , sjq : T
rj
j´1 “ T

sj
j ^Rj “ grj ^ Sj “ S

sj
j´1u

Server j can generate such a proof if it knows rj and sj . Each honest server knows its own
per-round secret rj , and the secret sj that relates Sj to Sj´1, otherwise if j were unable
to reconstruct a correct sj , then he would have exposed the client by producing a proof
PK

serverj
2 and would have never produced his tag Tj .

Prover’s Steps The prover, server j holding sj and rj , performs the following steps to
create Pj “ P .

1. Choose v1, v2 PR Z˚q . Calculate t1 “ T v1j´1T
´v2
j , t2 “ gv1 , t3 “ Sv2j´1.

2. Calculate c “ H2pTj´1, Tj , Rj , g, Sj , Sj´1, t1, t2, t3q, where H2 : t0, 1u˚ Ñ Zp is a hash
function.

3. Calculate r1 “ v1 ´ crj and r2 “ v2 ´ csj .

4. Set P “ pt1, t2, t3, c, r1, r2q.

Verifier’s Step The verifier, another server, upon receiving Pj can verify the proof as
follows.

1. Reconstruct commitments t11 “ T r1j´1T
´r2
j , t12 “ gr1Rcj , t

1
3 “ Sr2j´1S

c
j .

2. Check c
?
“ H2pTj´1, Tj , Rj , g, Sj , Sj´1, t

1
1, t

1
2, t

1
3q.

4.9 Server’s Proof: Exposing a misbehaving client

To create a tag Tj , server j needs to reconstruct and then remove the secret sj it shares with
the client from the incoming tag Tj´1. Server j calculates sj “ H1pZ

yj q using the client’s
commitment Z and its own private key yj , and verifies that the recovered secret is correct
by checking Sj “ S

sj
j´1. If the recovered secret is not correct, then j exposed the client as

dishonest by providing a proof PK
serverj
2 to other servers. To do so, the server reveals the

secret sj it computed and Zsj “ Zyj , the preimage of sj under H1. Then, server j prepares

a proof that he (i) used his private key yj that corresponds to a public key Yj P ~Y , and (ii)
correctly computed Zsj by raising the client’s commitment Z to his private key yj . Server
j prepares the following proof of knowledge:

PKtpyjq : pZsj “ Zyj ^ Yj “ gyj qu.

After receiving and verifying PK
serverj
2 , each server can can reconstruct sj “ H1pZsj q, check

that indeed Sj ‰ S
sj
j´1, and
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Prover’s Steps The prover, server j holding a private key yj , performs the following
steps and obtains Pj “ pZsj , P q:

1. Choose v PR Z˚q . Calculate t1 “ Zv and t2 “ gv.

2. Calculate c “ H2pZsj , Z, Yj , g, t1, t2q.

3. Calculate r “ v ´ cyj

4. Set P “ pt1, t2, c, rq.

Verifier’s Steps The verifier, either a server or the client, upon receiving Pj can verify
the proof as follows:

1. Reconstruct commitments t11 “ ZrZcsj and t12 “ grY c
j .

2. Check c
?
“ H2pZsj , Z, Yj , g, t

1
1, t

1
2q.

5 Extensions of DAGA

In this section we describe several possible extensions of our main protocol. First, we discuss
ideas for improving DAGA’s performance, then we discuss trading deniability for verifiabil-
ity, show how to give the servers the ability to collectively revoke a client’s anonymity, show
how to make DAGA secure on full clients’ and servers’ key exposure, and lastly we present
a variant of DAGA in which the client has a chance to inspect his linkage tag before it is
revealed to the servers.

5.1 Improving Efficiency

Currently, the computation and communication overhead of DAGA grows linearly in the
number of members in a group G. Ideally, we would like to improve the efficiency from
Opnq to Op1q to make it independent from the group size n.

One possibility is to use a cryptographic accumulator [28] (or a dynamic accumulator [11]
to retain support for evolving groups) that makes it possible to accumulate multiple values
into a single one such that for each accumulated value there is a proof that the value was
correctly incorporated. Therefore, instead of using a 1-out-of-n “OR” proof, we could first
accumulate all public keys and then prove that a client’s public key is indeed a part of the the
resulting short accumulator. Similar ideas were used to design a short linkage ring signature
scheme [3], for example. Another possibility is to use more efficient proofs of knowledge [13]
and new, efficient batching verification techniques for proofs of partial knowledge [36,37,49].
We fully expect to obtain a much efficient protocol using the outlined ideas.

5.2 Trading Deniability for Verifiability

DAGA offers a strong zero-knowledge notion of deniability; the protocol does not leave a
‘paper trail” that one could use to prove that some, and therefore at least one, member
participated in the protocol. DAGA achieves deniability by using an interactive rather
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than non-interactive zero-knowledge proof on the client’s side. An interactive proof is
not transferable and only “convinces” the party directly involved in the proof. In a non-
interactive proof, the verifier is replaced with a hash function [29] to create an unpredictable
challenge that a prover cannot anticipate in advance. Therefore, anyone can verify the non-
interactive proof, even after the protocol’s completion. This property, while useful, goes
against the notion of deniability we set out to achieve. However, certain applications might
benefit from the transferability of the proof that would allow for a third-party verifiability
that some user or a certain number of users indeed authenticated.

Consider an anonymous voting scenario, where voters want to remain anonymous but
wish for a third-party verifiable proof (independently of the election results) that a specific
number of voters participated. A small change to DAGA, changing the client’s proof
from interactive to non-interactive, easily achieves this goal and each voter’s authentication
message M0 becomes such a proof.

Interestingly, trading deniability for verifiability does not affect other properties, specif-
ically forward anonymity and proportionality. Moreover, DAGA still retains a weaker
notion of plausible deniability: since DAGA is anonymous and a group G can be created
without the listed members’ participation or knowledge, any member can plausibly deny
participating in the protocol.

5.3 Optional Anonymity Revocation

DAGA provides clients with a strong notion of anonymity. However, the ability to revoke
a client’s anonymity might be a desirable feature but only if it is done carefully so that the
client’s anonymity is not inadvertently or maliciously compromised.

Any client’s anonymity can be revoked if each server j reveals his per-round secret rj , in
which case the anonymity of all clients is compromised, or each server reveals his secret sj
shared with a client in question, breaking the rule of retaining private input secret, however.
Therefore, we wish for a protocol which explicitly allows for anonymity revocation.

To achieve this goal, we use a threshold version of the ElGamal encryption scheme
to encrypt the client’s ephemeral private key zi under a public key that is a product of all
servers’ commitments to their per-round secrets r (if we want to limit anonymity revocation
to the lifetime of an authentication context) or under a public key that is a product of all
servers’ long-term public keys (if we want the ability to revoke clients’ anonymity at any
point).

After encrypting his ephemeral key zi under a shared public key Kall of all servers,
a client i produces a modified version of the PKclienti proof which includes a proof that
EKall

pziq is an encryption of an element committed to as Zi, using a standard technique
of proving a property of a ciphertext from [12]. To reveal a client’s identity, all servers
collectively decrypt EKall

pziq, retrieve zi and use it to recover all secrets the client shares
with the servers’ finally recovering a per-round generator, which corresponds to a unique
client i as defined by ~H.

This modification does not affect the properties offered by DAGA. Specifically, the
anonymity and forward anonymity properties are still guaranteed, unless explicitly revoked,
assuming that there is always one honest and never compromised server.
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5.4 Secure on Full Key Exposure

Currently, the forward anonymity property holds as long as the honest server’s private key
is protected. If the long term private key zh of the honest server is known, an adversary who
controls all other servers can recover the ephemeral secret shared with a client i and calculate
sh. Then, if the adversary has access to the previous authentication messages that include
the initial linkage tags, the adversary can trivially calculate T

1i
0 “ hs1...smi for every hi P ~H

and compare with the initial linkage tags. Knowing the association of a client’s identity
with a per-round generator, the adversary breaks the anonymity and forward anonymity of
every client for whom he finds a matching tag.

We can avoid this (rather unlikely but not impossible) attack by adding a server-side
per-round randomness into the secret a client shares with each server. This way even if
the adversary compromises the server’s private key, the additional secret included in sh has
been forgotten.

To do so, we extend the authentication context C to include an additional a vector
~A “ A1, . . . , Am, where Aj “ gaj and modify Step 2 of the client’s protocol described
in Section 4.5 as follows. For each server j, i uses both Aj and Yj to compute a shared
secret exponent sj “ H1pA

zi
j , Y

zi
j q “ H1pg

ajzi , gyjziq. Then, each server j recovers sj as
H1ppZ

aj , Zyj q “ H1pg
ajzi , gyjziq.

The protocol works as follows.

1. Client i encrypts his ephemeral key zi under RS “
śm
j“1Rm: as follows: i chooses

` PR Z˚q and calculates ERS
pziq “ pA “ gr, B “ ziR

`
Sq.

2. Then, client i creates a modified version of the PKclienti proof appending to it a proof
that ERS

pziq is an encryption of an element committed to as Zi using a technique of
proving a property of a ciphertext from [12].

In order to reveal an identity of a client, the servers perform the following steps.

1. Each server j calculates and publishes Aj “ Arj “ g`rj as well as a proof of knowledge
that DLpAjq “ DLpRjq, that is j correctly computed Aj by raising it to its private
key yj .

2. All servers retrieve zi “ Bp
śm
j“1Amq

´1.

3. For each server i P G, j calculates si “ HppY qixziq.

4. The client’s identity is reveled by removing all secrets the client shares with the servers
from a particular tag was created to: pT0q

śm
i“1 s

´1
i and deciding which generator the

result is equal to.

PKtpxi, s, ziq : t_nk“1pXk “ gxk ^ Sm “ gs ^ T0 “ hskq ^B “ zig
řm

j“0 rju

While we recognize that the client’s identity can be revealed if each server reveals their
secret shared with the client, we wish to be able to do so in a way that guarantees that
a client is aware of this possibility (by creating a modified proof of knowledge). This
modification does not affect the properties offered by DAGA. Specifically, the anonymity
and forward anonymity properties are still guaranteed assuming that there is always one
honest and never compromised server.
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5.5 Delayed Revealing of Final Linkage Tags

After a successful authentication, the severs immediately learn the client’s final linkage tag.
However, the client might want to have an opportunity to “inspect” the tag first before
finishing authentication. This way a client could check if the servers already seen such
a tag by looking it up in a server-published list of the linkage tags seen in a particular
authentication context C thereby avoiding the potential risk of unintentionally trying to
authenticate twice in a linkage context, for example.

This can be easily accomplished by delaying the removal of the client-side secret s from
the linkage tag until the client can verify T0 “ hsri . That is, a client allows the servers
to incorporate their per-round secrets r, then verifies the resulting tag, and if the tag is
correct, he removes his secret s, proves in zero-knowledge that he did so correctly and sends
the final tag back to the servers.

To do so, a client creates the initial linkage tag as before, T0 “ hsi , however now s is a
single secret known by the client, not a product of all secrets i assigns to the servers, and i
produces a proof PKclienti as before.

Upon receiving the client’s message M0, the servers iteratively incorporate their per-
round secrets rj as before, but this time without removing the client’s secret, finally yielding

a final linkage tag Tf “ h
s

śm
k“1 rk

i . Each server j prepares a simplified proof of its correctness:

PKtprjq : Tj “ T
rj
j´1 ^Rj “ grj

After all servers process the tag, the last server sends Tj and the proofs of its correctness back
to the client, who can verify the proofs and calculate the client’s final linkage Tf “ pTjq

´s.
This way the client has a chance to inspect the tag before making it available to the servers.
If the client decides to complete the authentication, he can prove the correctness of Tf with
respect to Tj as follows

PKtpsq : Tf “ T sj ^ S “ gsu

While this approach gives the client more control over his authentication requests, it
requires an additional communication round, but might be suitable for applications where
clients are limited to a certain number of authentications within a certain authentication
context and authenticating more than the allowed number of times has negative conse-
quences.

6 Practical Considerations

6.1 Servers’ Liveness

DAGA depends on a set of servers to process each authentication request. Therefore, if
a server goes offline or refuses to process a message, the protocol stalls or aborts. While
we cannot guarantee that DAGA terminates if one of the above happens, we can employ
a wrapper protocol that uses gossip techniques such as those used in PeerReview [35] to
ensure liveness.
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6.2 Dealing with Dishonest Servers

Before processing an incoming authentication message, each server j verifies all proofs of
correctness of every server that comes before j. If an invalid proof PKserverk

1 or PK
serverkpiq
2

for some server k is discovered, the authentication must be aborted and the client cannot
be authenticated. We assume that the issue of dealing with dishonest servers within the
anytrust set is done administratively [60,61].

6.3 Authentication Context

Generating an authentication context In order to establish a new authentication
context, the servers need to define the clients who belong to a group G and establish
servers’ per-round secrets and clients’ per-round generators.

Step 1: First, the servers choose a safe prime p “ 2q ` 1 where q is a sufficiently large
prime a generator g of a prime order q group G.

Step 2: Each server j picks a per-round secret rj PR Z˚q , which is kept secret, and then
j sends to other servers a commitment Rj “ grj .

Step 3: Servers collectively establish a random per-round generator hi for each client i
such that no one knows the logarithmic relationship between hi and g, or between hi and
hi1 for any pair of clients i ‰ i1, for example using a technique described in Section 6.5.

Step 4: Servers create a set of the servers’ commitments ~R “ pR1, . . . , Rmq and clients’
generators ~H “ ph1, . . . , hnq. Then, the servers publish an authentication context C “

pG, ~R, ~H, p, gq.

Validity of an authentication context An authentication context might be one time,
where each client is expected to make exactly one authentication request or a context may
remain valid for certain period of time or some maximum number of authentications made
by a single clients or all of clients in G. Since the servers can keep track of each anonymous
client’s authentication request, a client may be allowed to make up to k requests so that
each request beyond that is rejected regardless of the validity of the supplied authentication
message. After a context expires, all servers securely erase their per-round secrets r making
it impossible to process authentication messages within this context.

Updating an authentication context DAGA supports the evolution of the clients is a
particular group G included a context C in a way that preserves the proportionality property
within that context. A new client k may be efficiently added to G, by simply adding his
public key Xk to ~X and adding a new generator hk to ~H. The proportionality property
is preserved, because each client’s linkage tag only depends on the client’s generator and
the servers’ per-round secrets making it independent of the membership of G. After the
context is updated, each client would create PKclienti with respect to the new group G.
Care needs to be taken to propagate the updated context to all clients to avoid accidentally
compromising the identity of the newly added client as he would be the only one using the
updated context.
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6.4 Challenge Generation

A client i produces a proof of knowledge using an interactive honest-verifier zero-knowledge
proof of knowledge as described in Section 4.7. Because the proof is interactive, a client
i must obtain a random challenge cs from the servers after submitting his commitments.
Additionally, because the proof is honest-verifier, the challenge must be indeed randomly
chosen. This can be ensured by requiring all servers to collectively generate cs so that each
server, which would include at least one honest server, contributes its randomness towards
cs.

One approach to collectively establish cs is as follows.
Step 1: Upon receiving a client’s request, server j assumes the role of a leader and

requests that the other servers generate a new challenge cs for client i.
Step 2: Each server i chooses ci PR Z˚q and then calculates a commitment Ci. Server i

signs and publishes Ci.
Step 3: Upon receiving Ci from every other server i, server j verifies if all Ci are of valid

form and properly signed, and if yes server j publishes an opening cj of his commitment Cj
and requests other serves to open their commitments.

Step 4: Upon receiving an opening ci from every other server i, server j verifies if every
ci is indeed a valid opening of Cj . If yes, server j calculates cs “ c1 ` ¨ ¨ ¨ ` cm. Server j
collects all commitments Ci, openings ci, and the calculated challenge cs and forwards to
server j ` 1 who signs cs after verifying that it was correctly calculated.

Step 5: Upon receiving cs signed by every other server, server j forwards cs for the client
along with a proof that every other server calculated the same value.

Under our assumption, there is at least one honest server h who will randomly choose
his cj and therefore guarantee that the collective challenge cs is properly generated.

6.5 Per-Round Generators

For each protocol round, defined by the same context C, we require that there is a set
~H “ ph1, . . . , hnq of n per-round generators of G, where there is one unique generator hi for
each client i. The proportionality property depends on the uniqueness of the final linkage
tags. Each client i’s linkage tag T if is unique and remains fixed within the same C, precisely

because each client i creates the initial tag T 0
i with respect to the same but unique per-round

generator hi.
As defined in Section 4.4, G is a multiplicative cyclic group of prime order q. Therefore,

all elements of G, except for the identity element, are generators of G so generating ~H
reduces to choosing n random elements of G.

However, it is important that ~H is chosen randomly to ensure that the assumption no one
knows the logarithmic relationship between any hi and g or between hi and hi1 for any pair
of clients i ‰ i1 holds. Therefore, the anytrust servers must collectively choose ~H in a way
that ensures that none of the servers know the aforementioned logarithmic relationships.
An efficient method to find generators is to use a hash function H : t0, 1u˚ Ñ Z˚q to map a

per-round fixed string pi, ~Rq into each client i’s generator.
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7 Evaluation

7.1 Implementation

We have implemented DAGA within the context of Dissent [61] using C++ with the Qt
framework and the CryptoPP cryptography library. The prototype implements both the
client and server aspects of DAGA, but currently does not support exposing misbehaving
clients nor any of the extensions to DAGA, discussed in Section 4.9 and Section 5, respec-
tively. The prototype assumes that all keys derive from the same modulus and subgroup,
and that all participants have used an outside channel to agree upon a common set of
authentication servers and an authentication context. With the introduction of DAGA,
Dissent now includes a modular authentication framework that supports pre-exchanged keys
using Stinson’s two-way authentication protocol [55] (Protocol 9.6), linkable ring signatures
(LRS) [44], and DAGA.

7.2 Micro benchmarks

We evaluate DAGA in comparison to pre-exchanged keys and LRS. The evaluations were
performed on a 64-bit x86 machine running Ubuntu 12.04. This evaluation simulates the
authentication of a client to one or more servers within a single process. All communication
between parties occurs through bytestreams as if they were sent over the network. Both
the authentication time for a single client and the amount of data transmitted during this
authentication were recorded. All client and servers keys derive from a common 2048-bit
DSA key. For both DAGA and LRS, the number of clients varied from 2 to 32768 by powers
of 2. Only DAGA depends on more than one server for authentication. Both the LRS and
DAGA depend on a linkage context. For this evaluation, we assume that the administrators
of the authentication systems have agreed upon and distributed the linkage context along
with the set of the group’s public keys.

Figure 2d shows the total system traffic during a single client authentication for the
various forms of authentication and group configurations. The traffic results have been
broken down into client to server, server to client, and server to server traffic in figures 2a,
2b, and 2c, respectively. As expected, pre-exchanged key authentication does not depend
on the number of clients in the group. DAGA authentication transfers more data in all
three cases and uniquely has the requirement that servers communicate with each other
during an authentication. LRS authentication involves a non-interactive zero knowledge
proof, therefore has constant traffic from server to client. Finally, all forms of DAGA traffic
grow linearly in the number of clients and nearly linearly in the number of servers, while
only LRS client to server traffic grows linearly.

The time for authentication, Figure 2e, exhibits similar characteristics to that of the
traffic for the respective authentication techniques. In this scenario, however, unlike traffic,
DAGA and LRS computation time remain competitive, particularly when using 4 or less
DAGA servers.

While DAGA compares well with other anonymous authentication schemes, like LRS,
the performance concerns remain. In order to remain anonymous among k individuals,
anonymous authentication systems traditionally require linear computation. Using more
efficient DSA keys, such as, those derived from elliptic curves, would reduce computation
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Figure 2: Time and traffic comparison among DAGA, LRS, and pre-exchanged key authen-
tication
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and traffic load for these style of protocols including DAGA and LRS.

8 Security Properties and Analysis

This section describes and analyzes DAGA’s security properties.

8.1 Assumptions

We assume that the Discrete Logarithm (DL) and Decisional Diffie-Hellman (DDH) assump-
tions hold, that is, any probabilistic polynomial algorithm solves the DL problem and the
DDH problem respectively only with a negligible probability [5]. DAGA assumes a cyclic
multiplicative group G of prime order q, where p “ 2q ` 1, where the Discrete Logarithm
and Decisional Diffie-Hellman assumptions hold in G [5].

8.2 Properties of the Proofs of Knowledge

In this section we show that the client’s and server’s proofs of knowledge have the properties
of completeness, special soundness and special honest-verifier zero-knowledge [22]. Note that
H is modeled as a random oracle.

Definition 1 (Σ-protocol [22]). A protocol P is said to be a Σ-protocol for relation R if:

• P is of the 3-move form, and if P, V follow the protocol, the verifier always accepts
(completeness).

• From any x and any pair of accepting conversations on input x, pt, c, rq, pt, c1, r1q
where c ‰ c1, one can efficiently compute w such that px,wq P R (special soundness).

• There exists a polynomial time simulator Szk, which on input x and a random e outputs
an accepting conversation of the form pt, c, rq, with the same probability distribution
as conversations between the honest P, V on input x (special honest-verifier zero-
knowledge).

8.2.1 PKclient: Client’s Proof of Knowledge

Completeness. If a prover and verifier faithfully follow the protocol on common input C
and prover’s private input x, then the verifier always accepts the proof generated by the
prover. Assume that the proof P0 is generated by a client i who knows a solution xi, his
private key, and s, the product of all secrets shared with the servers. The verifier checks
the commitment t and the challenge cs. For client i, the commitment verification proceeds
as follows.

ti.0
?
“ Xci

i g
ri.0

gvi.0 “ Xci
i g

ri.0

gvi.0 “ gcixigvi.0´cixi

gvi.0 “ gcixigvi.0g´cixi

gvi.0 “ gvi.0

ti.10
?
“ Scimg

ri.1

gvi.1 “ Scimg
ri.1

gvi.1 “ hcisi gvi.1´cis

gvi.1 “ gcisgvi.1g´cis

gvi.1 “ gvi.1
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ti.11
?
“ T ci0 h

ri.1
i

hvi.1i “ T ci0 h
ri.1
i

hvi.1i “ hcisi hvi.1´cisi

hvi.1i “ hcisi hvi.1i h´cisi

hvi.1i “ hvi.1i

For every client j ‰ i, the commitment verification proceeds as follows.

tj.0
?
“ X

cj
j g

rj.0

X
wj

j gvj.0 “ X
cj
j g

rj.0

X
wj

j gvj.0 “ X
wj

j gvj.0

tj.10
?
“ S

cj
mg

rj.1

S
wj
m gvj.1 “ S

cj
mg

rj.1

S
wj
m gvj.1 “ S

wj
m gvj.1

tj.11
?
“ T

cj
0 h

rj.1
j

T
wj

0 h
vj.1
j “ T

cj
0 h

rj.1
j

T
wj

0 h
vj.1
j “ T

wj

0 h
vj.1
j

The challenge verification proceeds as follows.

cs
?
“ c

cs “
n

ÿ

i“1

ci

cs “
k

ÿ

i“1

wk ` cs ´
k

ÿ

i“1

wk

cs “ cs

As shown above, the verifier will be able to successfully verify the commitments t and c
based on the challenge cs, hence, the proof is complete.

Special Soundness. Given common input i and two transcripts of successful conversa-
tions pt, c “ pc1, . . . , cnq, r “ pr1, . . . , rnqq and pt, c1 “ pc11, . . . , c

1
nq, r

1 “ pr11, . . . , rnqq, where
c ‰ c1, client i’s private input xi and s can be successfully computed as follows:

ri.0 “ vi.0 ´ cixi

r1i.0 “ vi.0 ´ c
1
ixi

xi “
ri.0 ´ r

1
i.0

ci ´ c1i

ri.1 “ vi.1 ´ cis

r1i.1 “ vi.1 ´ c
1
is

s “
ri.1 ´ r

1
i.1

ci ´ c1i

Special Honest Verifier Zero-Knowledge. There exists a polynomial time simulator Szk,
which on common input I generates a conversation transcript that is computationally indis-
tinguishable from a transcript generated by a prover. The simulator Szk works as follows:

1. Choose w1, . . . , wn PR Z˚q for all i and v1.0, v1.1, . . . , vn.0, vn.1 PR Z˚q for all i. Compute
commitments ti.0 “ Xwi

i gvi.0 , ti.10 “ Swi
m gvi.1 , and ti.11 “ Twi

0 hvi.1i for each i.
Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q,
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2. Compute cs “
řn
k“1wk. Set ci “ wi for each i and set c “ pc1, . . . , cnq.

3. Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q using ri.k “ vi.k for all 1 ď i ď n and
k P t0, 1u.

4. Set P “ pcs, t, c, rq.

The verification of the proof works as follows for every i:

ti.0
?
“ Xci

i g
ri.0

Xwi
i gvi.0 “ Xci

i g
ri.0

Xwi
i gvi.0 “ Xwi

i gvi.0

ti.10
?
“ Scimg

ri.1

Swi
m gvi.1 “ Scimg

ri.1

Swi
m gvi.1 “ Swi

m gvi.1

ti.11
?
“ T ci0 h

ri.1
i

Twi
0 hvi.1i “ T ci0 h

ri.1
i

Twi
0 hvi.1i “ Twi

0 hvi.1i

cs
?
“

n
ÿ

k“1

ck.

n
ÿ

k“1

wk “
n

ÿ

k“1

wk

8.2.2 PKserver
1 : Proving correctness of its work

Completeness. The verifier reconstructs the commitments as follows:

t11 “ T r1j´1T
´r2
j

“ T
v1´crj
j´1 T

´pv2´csjq
j

“ T v1j´1T
´crj
j´1 T

´v2
j T

csj
j

“ T v1j´1T
´v2
j

“ t1

t12 “ gr1Rcj

“ gv1´crjgcrj

“ gv1g´crjgcrj

“ gv1

“ t2

t13 “ Sr2j´1S
c
j

“ S
v2´csj
j´1 S

csj
j´1

“ Sv2j´1S
´csj
j´1 S

csj
j´1

“ Sv2j´1

“ t3

Given that t11 “ t1, t
1
2 “ t2 and t13 “ t3, we have

c
?
“ HpTj´1, Tj , Rj , g, Sj , Sj´1, t11, t12, t13q

c “ c

Special Soundness. Given common input i and two transcripts of successful conversa-
tions pt1, t2, t3, c, r1, r2q and pt1, t2, t3, c

1, r11, r
1
2q, where c ‰ c1, server j’s private input rj and
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sj can be successfully computed as follows:

r1 “ v1 ´ cyj

r11 “ v1 ´ c
1yj

rj “
r1 ´ r

1
1

c´ c1

r2 “ v2 ´ cisj

r12 “ v2 ´ c
1
isj

sj “
r2 ´ r

1
2

c´ c1

Special Honest Verifier Zero-Knowledge. The simulator Szk accepts h as input and
performs the following steps to produce Pj “ P :

1. Choose v1, v2 PR Z˚q .

2. Set c “ h.

3. Calculate t1 “ T v1j´1T
´v2
j , t2 “ gv1Rcj , t3 “ Sv2j´1S

c
j .

4. Set r1 “ v1 and r2 “ v2.

5. Set P “ pt1, t2, t3, c, r1, r2q.

The verification of the proof works as follows:

t11 “ T r1j´1T
´r2
j

“ T v1j´1T
´v2
j

“ t1

t12 “ gr1Rcj

“ gv1Rcj

“ t2

t13 “ Sr2j´1S
c
j

“ Sv2j´1S
c
j

“ t3

Then, we verify the challenge c
?
“ h, which gives h “ h.

8.2.3 PKserver
2 : Exposing a misbehaving client

Completeness. The verifier reconstructs the commitments as follows:

t11 “ ZrZcsj

“ Zv´cyjZcyj

“ ZvZ´cyjZcyj

“ Zv

“ t1

t12 “ grY c
j

“ gv´cyjgcyj

“ gvg´cyjgcyj

“ gv

“ t2

Given that t11 “ t1 and t12 “ t2,

c
?
“ HpZsj , Z, Yj , g, t11, t12q

HpZsj , Z, Yj , g, t1, t2q “ HpZsj , Z, Yj , g, t11, t12q
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Special Soundness. Given common input i and two transcripts of successful conversa-
tions pt1, t2, c, rq and pt1, t2, c

1, r1q, where c ‰ c1, server j’s private input yj can be successfully
computed as follows:

r “ v ´ ciyj

r1 “ v ´ c1iyj

yj “
r ´ r1

c´ c1

Special Honest Verifier Zero-Knowledge. The simulator Szk accepts h as input and
performs the following stepts to produce Pj “ pZsj , P q:

1. Choose v PR Z˚q . Calculate c “ h.

2. Calculate t1 “ ZvZcsj and t2 “ gvY c
j .

3. Set r “ v

4. Set P “ pt1, t2, c, rq.

The verification of the proof works as follows:

t11 “ ZrZcsj

“ ZvZcsj

“ t1

t12 “ grY c
j

“ gvY c
j

“ t2

Then, we verify the challenge as follows:

c
?
“ h

h “ h

8.3 Completeness

We require that servers accept a properly formed authentication request from every honest
client i who belongs to a group G defined by a particular authentication context C, unless
the protocol is aborted because of a discovered misbehavior of some server. A client i
belongs to a group G if he knows a private key xi such that Xi “ gxi P ~X.

Definition 2. An authentication protocol offers the completeness property, if for any client
i P G “ p ~X, ~Y q who correctly follows the prescribed protocol, the servers accept i ’s authen-
tication request with an overwhelming probability.

Theorem 1. DAGA offers the completeness property.

Proof. Under our assumptions, a client i belongs to a group G, is in a possession of a private
key xi such that Xi “ gxi and Xi P ~X. Further, we assume that i is in possession of a well-
formed authentication context C “ pG, ~R, ~H, p, gq where G “ p ~X, ~Y q is the group definition,
H “ phi, . . . , hnq is a set of per-round generators for clients, and R “ pR1, . . . , Rmq is server-
published randomness. From the trust model it follows that all servers participate in the
round and all server’s but one can behave arbitrarily dishonestly.

25



In order to make an authentication request, a client i must prepare an authentica-
tion message M0

i “ pC, S, T0, P0q, where C is the authentication context, S “ pZ, ~S “

S0, . . . , Smq consists of the client’s ephemeral public key and the set of client’s commit-
ments, T0 is the initial linkage tag, and P0 is a proof of correctness for T0. We will show
that client i is able to produce a valid message M0

i and that this message will be accepted
by the servers and therefore result in an accepted authentication request.

To produce a valid message M0
i , client i needs to produce all of its components.

• Authentication context C. Client i obtains C before making an authentication request.

• Ephemeral key and commitments S. Client i can produce S since it depends on i’s
randomly chosen key and information included in C.

• Linkage tag T0. The tag T0 “ hs1s2...smi depends on i’s publicly available per-round
generator hi and secrets s1, s2, . . . , sm created in the previous step.

• Proof P0. The proof P0 depends on the knowledge of xi and s. Based on the complete-
ness property of the underlying proof of knowledge, a client i can always produce a
valid proof if he’s in possession of the private information he tries to prove knowledge
of. In our case, i creates a proof of knowledge PKpxi, sq, where xi is i’s private key
and s “ s1s2 . . . sm.

Therefore, i can produce a valid message M0
i “ pC, S, T0, P0q. Now, we will show that

this message will be accepted by the servers with an overwhelming probability and therefore
result in an accepted authentication request.

After creating M0
i , i sends it to an arbitrarily chosen server j. Each server j verifies the

message M0
i and either (i) accepts it and produces an outgoing tag Tj and a proof PK

serverj
1

of correctness of its own work or (ii) rejects it and produces a proof PK
serverjpiq
2 of the client

i’s misbehavior. By the soundness property of the underlying proof of knowledgePKserver
2 ,

none of the servers can expose i as dishonest and therefore reject i’s authentication request,
except with a negligible probability, given that i’s M0

i is valid. By the soundness property
of PKserver

1 , none of the servers can produce a valid proof of correctness if they did not
follow the protocol, except with a negligible probability. Therefore, if the protocol is not
terminated and a faulty server discovered, each server produces a valid intermediate tag Tj ,

which results in a valid final tag T if . Consequently, i’s authentication request is accepted
with with an overwhelming probability.

8.4 Soundness

We require that DAGA is a sound authentication protocol, that is, servers only accept
properly formed authentication requests from members who belong to a particular group G
as defined in an authentication context C. This means that it should offer soundness and
not allow forgeries, where the notions of forgeability from [33] apply.

Typically, the soundness property of a non-anonymous authentication protocol is defined
with respect to “legitimate” users that have established credentials with a verifier. In case of
DAGA, we define legitimate users as users who belong to a particular group G. Any client
that possesses a correct long-lived well-known key pair associated with a non-anonymous
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identity can belong to any G, even without their knowledge. This is true because any
member i can be listed in G if their public key is publicly available since there is no action
required on the client’s side in order to be added to G. We assume that honest clients keep
their private keys secret and dishonest clients can arbitrarily share their private keys. In
such a case, we note that if i is in possession of a private key ı̂ such that Xı̂ “ gı̂ and
Xı̂ P ~X, then i can successfully impersonate ı̂ by authenticating as a legitimate client and
does not violate the soundness property.

Definition 3. An authentication protocol offers the soundness property if an authentication
request from any client i R G is rejected with an overwhelming probability.

Theorem 2. DAGA offers the soundness property.

Proof. Assume that a client i does not belong to a group G, that is, i’s public key Xi is
not included in ~X. Therefore, i does not know any xı̂ such that Xı̂ “ gxı̂ and Xı̂ P ~X.
To successfully authenticate as a member of G, i needs to prepare a message M0

ı̂ on behalf
of some ı̂ P G. To do so, i must prepare a valid message M0

ı̂ “ pC, S, T0, P0q without the
knowledge of xı̂, such that each server accepts i’s authentication request.

We will show that i cannot produce a valid message M0
ı̂ , except with a negligible prob-

ability, and each message M
10
ı̂ i can produce will be rejected by the servers because of

the invalid proof. Hence, i’s authentication requests will be denied with an overwhelming
probability.

In order to forge a message M
10
ı̂ , a client i must forge its individual elements, that is

C, S, T0 and P0.

• Authentication context C. C is publicly available and so i has access to a valid
authentication context.

• Ephemeral key and commitments S. Client i can produce a valid S since it does
not depend on xı̂. To do so, i chooses z PR Z˚q and calculates S “ pZ, ~Sq, where
~S “ S0, . . . , Sm, since it only depends on the knowledge of z, a generator g and the
set of servers’ public keys ~Y included in C.

• Linkage tag T0. To calculate the tag T0 “ hs1s2...smı̂ , i uses hı̂ included in C and and
secrets s1, s2, . . . , sm created in the previous step.

• Proof P0. The last piece i must produce is the proof PKclient which depends on the
knowledge of xı̂ and s. i knows one of the secrets, namely s, but he does not know
client ı̂’s private key xı̂.

By the soundness property of the underlying proof of knowledge PKclienti , i cannot
produce a valid proof P0 on behalf of some ı̂ P G, except with a negligible probability.
Therefore, i must forge P0 and create an authentication message M

10
ı̂ that includes the

forged proof. By the anytrust assumption, there exists at least one honest server and
therefore i’s message will be eventually rejected. If i can forge a proof P0, however, such
that each honest server j accepts the proof as coming from a member ı̂ with non-negligible
probability, then i must be able to find x1ı̂ such that Xı̂ “ gx

1
ı̂ . This, however, is impossible

under the Discrete Logarithm assumption, except with a negligible probability. Therefore,
each authentication request from i R G is rejected with an overwhelming probability.
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8.5 Anonymity

Informally, we want to ensure that an adversary cannot guess which member has been
authenticated with a probability greater than random guessing. We will show that DAGA
provides anonymity under the Decisional Diffie-Hellman assumption in the random oracle
model [4].

We argue that in order to break a client i’s anonymity, an adversary must leverage the
linkage tags because he cannot infer the client’s identity based on a proof PKclient under
the zero-knowledge property of the proof.

An adversary cannot infer the identity of a client based on a proof of knowledge PKclient

because the proof is zero-knowledge and does not leak the identity of its creator. Conse-
quently, the adversary must focus on the initial, intermediate or final tags of a particular
client in hopes of discovering the client’s identity. After observing a protocol run, the ad-
versary sees the initial tag T0, all the intermediate linkage tags Tj , a final linkage tag Tf ,
and all partial intermediate tags of the servers he controls. By using per-round secrets rj
and sj of every dishonest server j, the adversary obtains T0 “ hshı̂ and Tf “ hrhı̂ , two tags
protected by the per-round secrets rh and sh of an honest server. For simplicity, assume
that there are only two clients ti, ju P G, hence, the adversary’s goal is to decided whether
ı̂ “ i or ı̂ “ j based on the tags he obtained but without the knowledge of either sh or rh.
Because both hi and hj are generators of G, then both generators generate the entire group
G when raised to x P t1, . . . , qu. Therefore, hshi , h

sh
j P G as well as hrhi , h

rh
j P G, and each

element is a random and indistinguishable element of G. Moreover, by the properties of G,
there exists s1, s2, r1, r2, h1, h2 P G such that hs1i “ hs2j and hr1i “ hr2j , hence, the tag can be
created with respect to hi and hj equally likely.

Definition 4. An authentication protocol is anonymous if for any probabilistic polynomial
time adversary A, the probability ppnq that A wins the anonymity game is negligible s.t.
|ppnq ´ 1

2 | “ neglpnq.

The following anonymity game is played between the adversary A and the challenger C.

1. The challenger C randomly generates all private and public keys for every client i P G
and for every server j P G, pXi “ gxi , xiq and pYj “ gyj , yjq respectively.

2. The adversary chooses two honest members i and j, both of which belong to G.

3. The challenger gives the adversary the public keys of all clients and all servers, and
the private keys of the n´ 2 dishonest clients (Gzti, ju) and m´ 1 dishonest servers.

4. The adversary is allowed to run the protocol polynomially-many times for any member
k P Gzti, ju.

5. The challenger chooses a bit b P t0, 1u uniformly at random. If b “ 0, then the
challenger chooses member i to participate in the protocol and chooses member j
otherwise.

6. The challenger participates in the authentication protocol playing the role of all honest
servers and the chosen honest member. The adversary participates in the authentica-
tion protocol playing the role of the dishonest members and the dishonest servers.
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7. After the challenge protocol run, the adversary is allowed to run the protocol poly-
nomially many times for any member k P Gzti, ju. Finally, the adversary outputs his
guess b1 “ t0, 1u. The adversary wins the anonymity game if b1 “ b.

Theorem 3. DAGA offers the anonymity property.

We will show that if there exists a polynomial time adversary Aanon that breaks the
anonymity property with non-negligible property, then we can use this adversary to create
an adversary Addh that solves the Decisional Diffie-Hellman problem with non-negligible
probability.

Proof. An adversary A has two choices for his behavior: (1) A can play the role of the
dishonest entities and deviate from the protocol in an arbitrary way, or (2) A can follow
the prescribed protocols and try to break the anonymity property by observing the protocol
runs. Briefly, DAGA requires that each entity produces a proof of correctness, hence, if
the adversary does not follow the protocol, he will fail to produce the required output by
the soundness property of the underlying proofs of knowledge, and the protocol will abort.
Therefore, in order to break the anonymity property, A follows the prescribed protocols.

Assume that there exists a probabilistic polynomial timeAanon that breaks the anonymity
property with a non-negligible probability and therefore has a non-negligible advantage
εanon in the anonymity game. We will show that if Aanon exists, then we can use Aanon as
a subroutine to another probabilistic polynomial time adversary Addh that solves the DDH
problem with non-negligible probability.
Addh plays the DDH game, receives a challenge tuple pg, ga, gb, gcq from the DDH chal-

lenger, and outputs 0 if pga, gb, gcq is a Diffie-Hellman tuple, that is c “ ab, otherwise Addh

outputs 1. Addh uses Aanon as a subroutine and therefore must simulate the Aanon’s view
of its interaction with the challenger in the anonymity game. Because all the client’s and
server’s proof of knowledge are zero-knowledge, Addh can efficiently simulate all proofs in
the random oracle model [4]. Therefore, we omit the proofs in the description below keeping
in mind that they can be simulated and correctly verified. Addh simulates the view of Aanon

as follows.
Step 1: Addh creates an authentication context C as prescribed in the protocol except

that he uses ga from the DDH challenge tuple as the public key Yh of the honest server h.
Addh sets the generator g of C to be the same as g from the DDH tuple.

Step 2: Addh proceeds to simulate the initial linkage tag T i0 by first setting gb from the
DDH tuple as the client’s ephemeral key Zi. Now Addh generates an ephemeral secret sk
for every server k ‰ h as follows: sk “ Hppgbqykq, which he can do because he possesses
all private keys of dishonest servers, and Addh uses gc for the ephemeral secret sh client i

shares with the honest server h. Then, Addh generates the initial linkage tag T i0 “ h
śm

k“1 sk
i .

Step 3: For every server k ‰ h, Addh processes the tag T i0 as prescribed in the protocol.
For server h, Addh uses gc for sh and Th “ pTh´1q

p´shqprhq, finally outputting a final linkage
tag T if .

Now, that Addh correctly simulated the view of Aanon, Aanon outputs his guess b1anon P
t0, 1u, which Addh copies and outputs as his own guess b1ddh “ b1anon.
Addh correctly simulates the view of the challenger in the anonymity game with proba-

bility 1
2 when the challenge tuple is a Diffie-Hellman tuple. Hence, Addh’s advantage is 1

2 of
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the advantage of Aanon. Following our assumption, Aanon has a non-negligible advantage
εanon in the anonymity game and therefore Addh’s advantage εddh “

εanon
2 , which is also

non-negligible. Hence, a contradiction.

8.6 Forward anonymity.

Informally, an authentication protocol is forward anonymous if an adversary cannot break
any client’s anonymity even if the adversary is in possession of some (or even all) group
members’ private keys obtained after the protocol round completed. Recall that a protocol
run is defined in terms of an authentication context. The reason that we can only ensure
forward anonymity after the protocol round has ended is because an adversary who pos-
sesses the private keys of the clients can run the protocol himself using some private key xi,
successfully impersonating a client i. After a successful authentication request, the adver-
sary would learn the final linkage tag T if that would allow him to distinguish all previous
authentication requests made by i as the linkage tag persists throughout the protocol round.

Definition 5. An authentication protocol is forward anonymous if for any probabilistic
polynomial time adversary A, the probability ppnq that A succeeds at the forward anonymity
game is negligible s.t. |ppnq ´ 1

2 | “ neglpnq.

The forward anonymity game is played between the adversary and the challenger and
is exactly as the anonymity game defined in the previous section except that in Step 7 the
adversary is given the private keys pxi, xjq of both honest members.

Theorem 4. DAGA offers the forward anonymity property.

Proof. Following that DAGA offers anonymity, we know that an adversary Aanon has a
negligible advantage in the anonymity game. The only difference between the anonymity
and forward anonymity games is the fact that Afa receives the clients’ private keys. Because
the linkage tags and per-round generators are independent of the private keys, Afa can at
most do as well as Aanon by using Aanon as a subroutine and simply not using the private
keys. Hence, Afa advantage εfa “ εanon, which is negligible.

The only element of any authentication message M0 that depends on the private key is
the proof PKclient . This is because each client would use the same authentication context
C, ~S is generated based on z PR Z˚q and ~Y P C. We can easily show that a proof P0 from M0

could have been produced using any private key in question (xi or xj), and the knowledge
of both keys does not aid Afa.

Recall the prover’s steps to prepare PKclient described in Section 4.7. P0 “ pcs, t, c, rq,
where cs is the random challenge t and c are the sets of commitments, and r is the set of
responses as follows

1. t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q for each i P G, where ti.0 “ Xwi
i gvi.0 ,, ti.10 “

Swi
m gvi.1 , and ti.11 “ Twi

0 hvi.1i .

2. c “ pc1, . . . , cnq, where

ci “

#

cs ´
řn
k“1wk for i “ ı̂

wi otherwise
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3. r “ pr1.0, r1.1, . . . , ri.0, ri.1q, where ri.k “ vi.k ´ cixi.k for all 1 ď i ď n and k P t0, 1u,
and xi.0 “ xi.1 “ 0 for all i ‰ ı̂, xı̂.0 “ xı̂, and xı̂.1 “ s.

We observe that a private key xı̂ of some prover ı̂ is only used once to calculate rı̂.0 “
vı̂.0 ´ cı̂xı̂ since for each i ‰ ı̂, ri.0 “ v1.0. Hence, in order to decide the value of b, Afa

needs to decide that rk.0 for some position k is equal to rı̂.0, where ı̂ P ti, ju, in which case
the adversary would have to distinguish an element of form vı̂.0 ´ cı̂xı̂ from vk.0.

However, both vı̂.0 and cı̂ are random and unknown to the adversary since they were
securely deleted. Thus, even with the knowledge of xı̂, all elements are indistinguishable.
Alternatively, Afa can solve each rı̂.0 “ vı̂.0 ´ cı̂xı̂, using both xi and xj . In this case,
however, Afa obtains two sets of valid, and therefore indistinguishable, solutions. Hence,
the knowledge of the private keys does not aid the adversary.

8.7 Proportionality

Intuitively, the proportionality property ensures that within an authentication context C
each client i can authenticate only once as a particular anonymous client and each subse-
quent authentication request within the same context will be recognized as coming from
that client. Therefore, the verifier will be able to recognize when the same client authenti-
cates but without knowing that client’s identity. We achieve this property by assigning a

unique linkage tag Ti “ h
śm

j“1 rj
i to each client i in a way that ensures that the tag is always

the same for each authentication request within the same context C.
The linkage tags enjoy an additional property of unlinkability between different authen-

tication contexts. That is, the same client i receives a different and unlinkable tag Tf within

some context C2 as long as C1 ‰ C2 such that ~R P C1 ‰ ~R P C2. This property is important
to ensure that clients remain anonymous and unlinkable even after performing authentica-
tions within different authentication contexts. It is straightforward to see that two linkage
tags of client i from two different contexts are two independent elements of the underlying
group G.

Definition 6. An authentication protocol offers the proportionality property if each member
i receives exactly one unique final linkage tag T if within the same authentication context C.

Theorem 5. DAGA offers the proportionality property.

Proof. We will show that each client i’s final linkage tag is unique, and that during each
authentication within the same authentication context C, i’s final linkage tag is the same.

First, however, we will consider the constraints placed on the behavior of each client i
and each server j by the fact that they need to produce a proof of correctness of their work
and other assumptions. By the soundness property of the underlying proof of knowledge
PKclient and the assumption that no client knows x such that gj “ gxi for any i, j, any client
i must generate his initial linkage tag T0 with respect to his per-round generator hi. That
is, T0 “ hsi for some s. By the soundness property of the underlying proof of knowledge
PKserver

1 , each server j must correctly remove the ephemeral secret sj assigned by a client
and add the correct server’s ephemeral secret rj . That is, each server j calculates Tj “

T
s´1
j rj
j´1 , where s´1j is a multiplicative inverse pmod qq of sj “ HpZyj q and rj “ loggpRjq.
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Each client’s final linkage tag is unique. The fact that each client’s final linkage tag
is unique, that is, T if ‰ T jf for any j ‰ i P G, follows from the basic number theoretic

properties of G. Assume the contrary, that is for i, j such that i ‰ j T if “ T jf . Then it must
be so that hri “ hrj where hi ‰ hj , and r “

śm
j“1 rj . Because hi is a generator of G, then

by definition every element of G can be expressed as hxi for some x P t0, . . . , q´ 1u, where q
is the order of G. Then, we have hrj “ hxri . Consequently, hri “ hxri only if r “ xr pmod qq.
Because |hi| “ q, then it must be so that x “ q. Then, r “ qr pmod qq and r “ r pmod qq.
This contradicts the assumption that hi ‰ hj .

Each client i’s final linkage tag is the same for each accepted authentication request. The
fact that each client i’s final linkage tag is the same is straightforward. Assume two distinct
authentication requests from i using the same C that result in two initial linkage tags T

1

0 and
T
2

0 such that T
1

0 “ hs
1

i and T
2

0 “ hs
2

i , where each s1 ‰ s2. The servers will collectively process

both tags as follows: T
1

f “ pT
1

0q
s
1´1r “ phs

1

i q
s
1´1r “ hri and T

2

f “ pT
2

i q
s
2´1r “ phs

2

i q
s
2´1r “ hri .

Therefore, each client i receives exactly one unique final linkage tag for each accepted
authentication request.

8.8 Deniability

The deniability notion that DAGA provides follows the zero-knowledge notion of deniability
first formalized in the context of authentication in [27]. Informally, we can say that an
authentication protocol is deniable if after a complete protocol run there is no proof that
any client participated in the protocol given an authentication transcript of a protocol run
and all public information.

The notion of deniability is closely related to anonymity, however, the subtle differences
between these two properties might make a significant difference and make a protocol that
provides both properties more suitable for certain situations where the mere fact that some
client from a particular group authenticated anonymously reveals useful information. In
case of anonymity, an adversary should not be able to tell which member authenticated
while in case of deniability the adversary should not be able to tell whether any mem-
ber authenticated based on the authentication transcripts. We can achieve anonymity by
ensuring that two valid transcripts Ti and Tj of members i, j P G respectively are indistin-
guishable from one another. On the other hand, we achieve deniability by ensuring that a
valid transcript Ti of client i is indistinguishable from a simulated transcript Ts that was
computed without the help of any member i P G.

DAGA inherently offers a weak notion of deniability in the sense that any member listed
in G can plausibly deny being an active client because anyone can conscript an arbitrary
group G using publicly available public keys and without any help or knowledge of the
listed members. However, as pointed out above, this might not be sufficient because the
fact that a valid authentication transcript exists implies that at least one of the clients in
G authenticated.

DAGA achieves deniability by using an interactive rather than non-interactive zero-
knowledge proof. This is because an interactive proof is not transferable and only “con-
vinces” the party involved in the proof. In a non-interactive proof the verifier is replaced
with a hash function to create an unpredictable challenge that a prover cannot anticipate
in advance. Therefore, anyone at any point, even much later, can verify the non-interactive
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proof and be convinced (or not) that the prover knows his secret. This property, while
useful, goes against the notion of deniability.

Definition 7. An authentication protocol is deniable if for any client i P G there exists a
simulator SD produces a transcript TRsim of a protocol run such that TRsim is indistin-
guishable from a real transcript TRi that resulted from i’s run of the protocol.

Theorem 6. DAGA offers the deniability property.

Proof. We will show that there exists a polynomial-time simulator SD that produces a
transcript TRSD

that is computationally indistinguishable from a client generated tran-
script. We assume that SD produces a transcript “on behalf” of some client i using an
authentication context C “ pG, ~R, ~H, p, gq without the knowledge of any private key xi that
corresponds to some public key Xi P ~X. The simulator SD works as follows. First, SD
produces a linkage tag T0 using the client i’s prescribed per-round generator hi P ~H exactly
as client i would. Since SD has all required information (the per-round generator hi and
the product of all ephemeral secrets shared with the servers) the simulator reproduces the
exact tag T0 as follows.

1. Choose z PR Z˚q and compute Z “ gz.

2. For each server j, compute sj “ HpY z
j q.

3. Compute T0 “ hs1s2...smi . Then, for each 1 ď j ď m compute Sj “ gs1s2...sj such that

S0 “ g, S1 “ gs1 , . . . , Sm “ gs1s2...smq. Set ~S “ pZ, S0, . . . , Smq.

At this point SD has computed ~S and T0. Next, S must produce a proof P0, however,
without the knowledge of i’s private key xi (or any other key). To do so, we leverage the
fact that PKclienti is zero-knowledge and therefore there exists a polynomial-time simulator
Szk that produces computationally indistinguishable transcripts of PKclienti . SD uses Szk
as a subroutine to produce P0. Szk takes as input the authentication context C and works
as follows.

1. Choose w1, . . . , wn PR Z˚q for all i.

2. Choose v1.0, v1.1, . . . , vn.0, vn.1 PR Z˚q for all i.

3. Compute commitments ti.0 “ Xwi
i gvi.0 , ti.10 “ Swi

m gvi.1 , and ti.11 “ Twi
0 hvi.1i for each i.

Set t “ pt1.0, t1.10, t1.11, . . . , tn.0, tn.10, tn.11q,

4. Compute cs “
řn
k“1wk.

5. Set ci “ wi for each i and set C “ pc1, . . . , cnq.

6. Compute responses r “ pr1.0, r1.1, . . . , ri.0, ri.1q using ri.k “ vi.k for all 1 ď i ď n and
k P t0, 1u.

7. Output P “ pC,Rq.

33



After obtaining P , SD sets P0 “ P .
It is straightforward to see that the tag produced by SD is identical to a tag a client i

would have produced, hence, it will be accepted by servers. Also, the proof P0 is correct
and can be successfully verified with respect to the simulated challenge.

Ti.0
?
“ Xci

i g
ri.0

Xwi
i gvi.0 “ Xci

i g
ri.0

Xwi
i gvi.0 “ Xwi

i gvi.0

Ti.10
?
“ Scimg

ri.1

Swi
m gvi.1 “ Scimg

ri.1

Swi
m gvi.1 “ Swi

m gvi.1

Ti.11
?
“ T ci0 h

ri.1
i

Twi
0 hvi.1i “ T ci0 h

ri.1
i

Twi
0 hvi.1i “ Twi

0 hvi.1i

cs
?
“

n
ÿ

k“1

ck.

n
ÿ

k“1

wk “
n

ÿ

k“1

wk

Finally, SD prepares an authentication message M0 “ pC, S, T0, P0q and sets TRSD
“M0.

Now we argue that the transcript TRSD
“ pC, S, T0, P0q is computationally indistin-

guishable from a client generated one.

• C, the authentication context, has an identical distribution,

• ~S, client’s ephemeral key and commitments, has an identical distribution,

• T0, the linkage tag, has an identical distribution,

• P0 is produced by a simulator Szk that produces proofs that are computationally
indistinguishable from a client generated one as the underlying proof of knowledge is
honest-verifier zero-knowledge.

8.9 Forward Deniability

One of the goals of DAGA is to retain anonymity even under the exposure of the clients’
long term private keys. This raises an interesting idea to apply the same requirement of
forward security to the deniability property. That is, we would like to ensure that a pair
of transcripts TRsim and TRreal generated using an authentication context C, remains in-
distinguishable even given the additional knowledge of the compromised private keys. We
call this notion of deniability forward deniability. Intuitively, forward deniability should
hold given that deniability holds as we were able to show that we can generate an indistin-
guishable transcript Tsim without the knowledge of any private key. The proof of forward
deniability follows similarly to the proof of forward anonymity where we argue that the
additional knowledge of the private key does not aide the adversary in distinguishing the
transcripts.

Definition 8. An authentication protocol is forward deniable if for any client i a simulated
transcript TRSD

remains (computationally) indistinguishable from a real transcript TRi
that resulted from i’s run of that protocol even given a private key xj of every client j P G.
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Theorem 7. DAGA offers the forward deniability property.

Proof. Assume we have an authentication context C and two transcripts TRi and TRSD

where each transcript consists of an authentication message Mi
0 “ C, ~S, T0, P0 and MSD

0 “

C 1, ~S1, T 10, P
1
0 respectively created using C. We previously argued, in the proof of deniability,

that these two transcripts are (computationally) indistinguishable. Now we wish to revisit
this claim and verify if the knowledge of all private keys xi aids to distinguish the two
transcripts.

• C “ C 1 are identical and therefore have an identical distribution.

• ~S and ~S1 are randomly generated based on z, z1 PR Z˚q and have an identical distribu-
tion, and do not depend on a client’s private key.

• T0 and T 10 have an identical distribution and also do not depend on a client’s private
key.

• P0 is produced by a simulator Szk without the knowledge of any private key and P 10
is a client generated transcript using his private key xi.

Therefore, the only element of the transcript that could be affected by the knowledge
of the private keys is the proof of knowledge P0 as P0 is created using xi and P 10 without
xi. Therefore, we observe the following differences in the set of responses of r and r1:
ri.0 “ vi.0 ´ cixi and r1i.0 “ v1i.0. In order to distinguish between P0 and P 10, it must be
possible to distinguish between ri.0 and r1i.0. However, both vi.0 and ci are random and
unknown and therefore even with the knowledge of xi ri.0 and r1i.0 are indistinguishable.

9 Related Work

There are several approach to realizing anonymous authentication, a broad class of schemes
offering varying sets of properties. Some of them focus on providing properties, such as
unlinkability or anonymity revocation by a third party, that are in contradiction to the
properties DAGA is design to achieve.

Group and ring signatures Group signatures [13, 20] allow a member to anonymously
sign a message on behalf of a pre-defined group. However, user’s anonymity is revocable
by a group manager. Ring signatures [1, 7, 25, 50, 51] offer greater flexibility by allowing
ad-hoc group creation thereby supporting a weaker notion of deniability. Linkable ring
signatures [44,45] and short linkable signatures [3,59] further improve upon ring signatures
by adding linkability. The schemes of [1, 50] support heterogeneous keys.

E-cash E-cash schemes [6, 9, 16, 18] are designed with anonymity (also referred to as
untraceability) in mind and often achieve deniability as well. However, normally these
schemes prevent double-spending as using a coin twice reveals the owner’s identity, rendering
the schemes useable for one-time authentication only.

Anonymous credentials The credential system proposed in [10] allows users to obtain
credentials from organizations and later demonstrate their possession in an anonymous and
unlinkable way as many times as desired. The lack of linkability was later addressed by
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one-time credentials [43] in form of coins that if spent twice would reveal user’s identity.
The schemes proposed in [8, 41,48,58] bridge this gap and offer credentials that a user can
show up to k times, offering limited linkability which in case of [8] applies to certain periods
of time.

Other schemes Deniable authentication [27] defines the idea of deniability in the context
of authentication. Their notion of deniability assures that the protocol does not leave any
paper trail, however, the scheme is not anonymous. Deniable Ring Authentication [47]
combines deniable authentication with ring signatures [50]. While it offers protection against
compromised private keys, it still lacks proportionality. [56, 57] makes the protocol of [27]
non-interactive. [40] proposes another protocol to achieve deniable ring signature, however,
the deniability property is viewed as non-frameability of honest client.

10 Conclusions and Future Work

DAGA is a new anonymous group authentication protocol that offers a unique set of prop-
erties: anonymity, deniability, and proportionality that persists even in a case of private key
exposure. Our initial evaluation suggests that DAGA compares reasonably well to LRS
and non-anonymous authentication given the functionality gain, however, the performance
concerns remain.

Future work includes extending DAGA to handle heterogeneous keys, use batching
techniques for proofs of knowledge [37] and elliptic curves to improve performance, and
extend the current implementation to a fully distributed system.
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