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Abstract
The multilevel iterative technique is a powerful technique
for solving the systems of equations associated with
discretized partial diffe:eﬁtial equations. We describe how
this technique can be combined with a globally convergent
approximate Newton method to solve nonlinear PDEs. Ve show
that asymptotically only one Newton iteration per level is
required; thus the complexity for linear and nonlinear

problems is essentially equal.
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1., Introduction

In this discussion we present an extension of a multilevel iterative
method for linear elliptic equations to monlinear boundary value problems.
In particular, we show how to use an approximate—Newton multilevel scheme
to solve the discrete monlinear systems of equations which arise form &

standard weak formulation of the nonlinear partial differenmtial equation.

The framework of our analysis combines the multilevel iterative

methods for linear finite element equations discussed in Bank and Dupont

[2] and Bank [3] with the global approximate Newton setting of Bank and
Rose [4], [5]. Under appropriate conditions of elliptic regularity, we
show that both the continuous and discrete solntioﬁs exist and that our
scheme converges to an approximation within the discretization error of the
continuous problem in time (and also space) proportional to the largest
discrete problem. That is, we can compute in time O(Nj) an approximation
which is O(N-q) accurate, where q is the appropriate expoment for the

3

N.-dimensional finite element spaces Mj.

3

In Section 2, we set up the weak (variatiomal) form of the nonlinear
boundary value problem. Using this formulation, we then specify, in
Section 3, our regularity assumptions on the smoothness of the nonlinear
operator. These assumptions are motivated by the generalized Lax-Milgram
analysis presented by Babuska and Aziz in [1] and our previous analysis in

[5]. Our main result here is that, asymptotically, we need computé only
one approximate Newtom iteration per level (refinement), provided that the
approximate and exact Newton steps agree to some tolerance which is

independent of the level. This implies that the total cost of solving a




nonlinear problem of size Nj is bounded by C-F(Ns), where F(Nj) is the cost
of solving a linear problem of size Nj and C = 1, F(Nj) = O(Nj) for the
linear multigrid methods described in [2], [3].

In Section 4, we consider the case where the linear approximate—Newton
equations are solved by the j-level scheme of [2], [3], and complete the
analysis for the time bound cited above. We illustrate our analysis with an

example boubdary value problem of the form

Lw) =0 inQ R,

du/dn = 0 on 30, (1.1)
where
L(u) = VaVu + f(x,u,Vu) . (1.2)

Our approach for extending multilevel methodology to nonlinear
operators using an approximate—Newton iterative scheme differs in several
respects from other approaches recentl& reported or under investigation.
Ve discuss briefly the relation of our scheme to those of Brandt and

McCormick [8], BHackbusch [10], and Mansfield [11].

A common thread in our approach and those of [8], [10], is the
*
consideration of a sequence of discrete nonlinear problems, say, Lj(uj) =

*
0, where the u, are successively more accurate approximations of the

3

solutions of the nonlinear operator L(u) = 0. As a comsequence, the

. * * *
representation of nj in the space containing nj+113 such that Lj+1(uj) is

J

:relatively small. This motivates the choice of taking nj ,» for some

iteration index sj, as the initial guess in an iterative method to solve
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- . . _
Lj+1(uj+1) 0. The integer sj is chosen such that the ezror “uj uj I is

accurate to within the discretization error. Thus Lj+1(an) will also be
relatively small, and consequently the iterative method should require sj £

s steps (independent of j) for each mesh level j.

Usually the iterative method selected to compute the n?. 1<{k < sj,
is a subtle and recursively winds its way through a sequence of coarser
mesh levels; the details need not concern us here. However, each choice of
such an iterative method leads to a different 'j—level’ strategy. The
j-level strategy can be based on a nomlinear iteration, such as the
nonlinear Gauss—Seidel method advocated i# [8], or on a nonlinear Picard
type iteration used in [10]. These schemes make no use of Jacobian

information.

In contrast, we use a j—level strategy based on a linear iteration
after choosing a linear system to represent the Jacobian. Since
asymptotically sj = 1 for this procedure, this strategy will usually
require substantially fewer function evaluations of the Lj' On the other
hand, for problems where the Jacobian is difficult to compute, our method

becomes less attractive.

The recent paper by Mansfield [11] takes a differeat approach., In
.
order to solve Lj(nj) = 0, for some fixed mesh index j, she considers a omne

parameter embedding hj(v.k) =0, 0 A <1, such that hj(0,0) = 0, and

"

* . i

hj(uj.l) = Lj(nj) = 0. The solution is continued from v = 0 to v v; by
oo - _

solving hj(vi,li) = 0, where 0 = Xl < 12...( lm 1. The li are chosen

such that v, can be computed by Newton’s method using Vi1 S the initial

*
jterate, Mansfield proves that the error “nj-u". where L(u) = 0, is



accurate to the discretization order, and the number of continuation steps,

m, is independent of the mesh. Furthermore, by showing that the number of
i
i i

the mesh, and by using a linear j—level iterative scheme for the Newton

Newton steps, s, to obtain the computed v, satisfies s, £ s independent of
equations, she obtaims an O(Nj) time bound. Assuming that the computed
approximation to the u; are accurate to the discretizatiom error, this
result is analagous to our theorem in section 4. Note that this method may
require m*s linear systems be solved on the finest mesh. Our results would
suggest an alternative in which one continues from A =0 to A =1 on the
coarsest mesh only, thereby obtaining nil. One then refines the mesh for A

S

= 1, and obtains the sequence an

on the finer meshes. This would

asympotically require only ome linear system be solved on the finest mesh.

Multilével iteration is a general, powerful technique for solving
nonlinear operator equations which can be approximated by an orderly
sequence of discrete nonlinear systems. The linear multigrid schemes of
Brandt [7], Hackbusch [9], Nicolaides [12] and possibly others could be
adapted in a similar manner to the one proposed here and would yield
methods with similar properties. We have found our particular procedure to
be effective on & variety of nonlinear PDE’s; the implementation was a
reasonaby straightfoward extension of the one described in [6] for linear

problems.

2, Preliminaries

To introduce ideas, we consider a weak form of the example nonlinear

elliptic boundary value problem (1.1)-(1.2): find uw e nl(n) such that



a(u,v) =0 for all v ¢ Hl(n)
a(u,v) = [ aVu'Vv + f(x,u,Vu)v dx . (2.1)
0

Here Hl(ﬂ) denotes the usual Sobelev space equipped with the norm
2 _
lell] = (v,0)y

(n,v)1 = [ VuVv + uv dx. (2.2)
Q
We will defer our discussion of nonlinear elliptic problemé such as (2.1)

pntil Section 4. In this section and the the next, we prefer to deal with

a more abstract problem for which (2.1) is a special case.

Let g be a mapping of a Hilbert space H onto itself. Equip H with an
inner product (u,v) and norm ﬂn“z = (v,u). We consider the following

L ]
problem: find u ¢ H such that
.
(g(u),v) =0 for all ve H . (2.3)

In the example above, g is defined implicitly via the Reise representation

theorem, H = nl(a), and the norm and inner product are givenm by (2.2).

We shall (formally) apply an approximate Newton method to (2.3).
Starting from some initial guess no ¢ H, we compute a sequence of itérates

nk e H, ¥k=1,2,3..., as follows: find xk ¢ H such that
(kak,v) = - (g(uk),v) for all v ¢ H, (2.4)

where M* is a linear mapping from H to H, approximating, in some sense, the

derivative g’(nk). Then we set

uk+1 = uk + thk, (2.5



where tk e (0,11 is a scalar damping parameter. Setting Mk = g'(nk) and tk

= 1 corresponds to Newton’s method.

Generally, a procedure such as (2.4)-(2.5) is intractable
compgtationally since H may be infinite dimensional. Thus we seek to
discretize (2.3)-(2.5). Let {Mj] be an indexed family of finite
dimensional subspaces dense in H, nested in the sense that Mj Hk for k >

j. Let N, denote the dimension of Mj. We assume the dimensions of the

3

spaces increase geometrically,

= N‘ »
N.i B -1

g>1 , » (2.6)

since this will be the typical situation arising in practice. The discrete

$
analogue of (2.3) is: find nj & Mj such that

(g(n;),v) =0 forallvel,. (2.7

Once a basis for M, has been chosen, (2.7) can be formulated as a set of Nj

3

nonlinear algebraic equationmns.

The analogue of (2.4)-(2.5) proceeds from an initial guess ug & Mj,

and computes u? e M, such that

3

kK . __ (. .k
(M§xj,v) = (g(nj),v) for all v e Mj. (2.8)

Equation (2.8) corresponds to an Nj x N, linear algebraic system to be

3

solved. Then set

nk+1 = u% + t? x? . (2.9)

b J J



Corresponding to Mj, we define a sequence of semi—norms, |°|j on H by

lul, = sup (e, 7 IIvll . (2.10)
veMj

v#0

In essence, if u ¢ H and Pj is the orthogonal projector from H to Mj, then

lal. = “Pj(u)“} furthermore, since the Mj are dense in H,

3

lall = sup Inlj . (2.11)
j

Thus, |'|j represents a strong norm on M, k < j, and lulj = llull for u e

Hk, k { j, while |'|j is a semi-norm on Mk with k > j. Ig the solution of
' *

“(2,7), it is the semi-norm |°|j which is computable, and the solution uj

. .
satisfies lg(uj)lj = 0, while ﬂg(nj)“ > 0 in general.

. .
Suppose solutions u and u, of (2.3) and (2.7), respectively, exist

b

(this follows from our assumptions below; see Remark 4). Our central
*
assumption is that the discrete solutions uj are increasingly good
*
approximations of u . Specifically, we assume there exists a fixed

constant C1 = Cl(u,g,{Mj}) and a positive number q such that
s % -
=l ¢c, N . (2.12)
j ! i

Given (2.12), our stratgedy for computing approximate solutioms which
satisfy bounds like (2.12) is to sequentially compute approximate solutions
of (2.7), using (2.8)-(2.9), and using the final iterate of the j-l-st

problem as the initial guess for the jth. We summarize this procedure in



Algorithm I.
(i) for j=1, carry out 54 iterations of (2.8)-(2.9),
starting from initial guess ng € Ml.
(ii) for j > 1, carry out 5 iterations of (2.8)-(2.9),

. 0o _ %j-1
starting from initial guess u, = u, g M, M.
8 g j j-1 i-1 J

3. Analysis

Ve begin by stating the underlying assumptions of our analysis.

presentation is chosen to be consistant with our amalysis in [5].

Given ug,‘let S. be closed subsets of M, inductively defined as

j 3
follows:
. 1]
S, ={uweM | lg(u)|1 < lg(ul)l1 },
, = M, .
SJ {ue S | |g(u)|j £ i:g lg(v)lj }
j-1
Define
Sp={ueH I Hg()ll € sup Ng(w)ll 3
veS,
J
j21

Al. So is bounded.
Remark 1. For w ¢ Mj’ ze Mj—l’ and v ¢ H,

(v, ml < Iew,p._ Wl + l(g(v)—z.(I-Pj_l)w)l .

j—

(3.1)

(3.2)



Hence

|g(v)|j < lg(v)lj_1 + inf |g(v)-z|j . (3.3)

zeMj-l

Typically, the spaces Mj will be such that the second term can be bounded

by C N,
y CN,_

then

If (2.6)

10

-
]

Thus if

0
7 = |g(n1)|1.

sup lg(v)lj.
vesj

< +CNY ,
Ty = Y1 -1

i 1.
holds,

TN N, a-pH e .

Using (2.11), we see that So is contained in the level set

sp={uek I gl < C* )

(c.f. Al of [5]).

A2. We assume g is differentiable on SO’ and for u ¢ So and v,v ¢ H:

| (g’ (@vew | <€y vl fiwll ; (3.4)
inf sup | (g'(w)v,w) | 2 k;l >0 ; (3.5)

livii=1 liwlia

sup | (g'(a)v,w) | >0, w#oO. (3.6)
v
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and k, are independent of u).

(C2 is finite and C2 3

Remark 2. Equations (3.4)-(3.6) guarantee that a unique solution v ¢ H

will exist for the problem
(g'(w)v,w) = (z,w) for 211 w ¢ H,
vhere z ¢ H and
Ivll < &, Mzl ; (3.7
see Babuska and Aziz [1], section 5.2.
A3, For u ¢ Sj, v,¥W & Mj, and M; as in (2.8), assume
inf sup | (g’ (w)v,w) | z_kzl >0 , . (3.8)

lvil=1" liwlica

inf sup | (M%v,w) I > k;l >0 . (3.9)
livil=1  liwli<a J

(k1 and k, are independent of u and j).

Remark 3. In our particular application (3.8) will follow from A2, and

we will show k, < 2k6 (see inequality 4.7).

Ve embed S0 in the closed, coavex ball

S, ={uek I llll ¢ sup vl + klﬂg(v)ﬂ } . (3.10)
veSo

Ad. Ve assume g’ is Lipshitz on 81 and for u,v & 81,

llg’ (w)-g' (vl < k2 lha-vll . (3.11)
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Since g is differentiable, we also have
g (n)-g(»ll < kg llo—vli (3.12)
for u,v & 81 (as in [5], equation (2.28)).

Remark 4. Assumption Al above is analagous to Al in [5]. Equation

(3.9) implies a bound as in (3.7), which, in turn, implies A2 of [5].
Finally, A4 above implies A3 of [5]. Thus the argument used to obtain

* *
Theorem 1 of [5] implies the existence of each nj e Mj and also u ¢ H,
We define the relative residuals a? for the solutioms of (2.7) by
k k, k k k
“ = lg'(uDx; + glu)dl, / lg(e, . 3.13)
o g J)xJ g J) i g nJ)|j (

The quantity a? is computable, and measures how well x? approximates the
true Newton step (n§ = 0 for Newton's method). We will chose the damping

parameters t? of (2.9) according to the formula
k k -1
tF= (148 ' (3.14)
j 3 |s(uj)lj ) s
where the K? are nonnegative scalars.
The following result applies Proposition 1 of [5] for each j 2 1.

cas 0 k
Proposition J5.1: Py A ’ . » s .
Proposition 3.1 Let 80 e (0,1 ao) aJ e (0,a0) e {1, and let tJ be

chosen as in (3.14), where
og%g%,
and

2 ko 41 _ k, -1
K? > (x7k,/2) (1 o 8,) |g(uj)|j . (3.15)



i2
k 0
Assume A1 — A4 and all aj £ aj. Then

(i) alil u? g Sj, the sequence |g(n§)|j is strictly decreasing, and |g(n§)|j

—> 0.

Furthermore,

(ii) lg(u§+1)|j / 'g(u?)lj -—> 0 iff a? —> 0, and for any fixed p & (0,11,

k+1 k, ¢1+p
lg(nj )'j £ C3 lg(uj)lj

iff

k k, p
o £c, lg(uj)|j

for positive constants 03 and C4.

Note that we may consider Ko as bounded uniformly in j by

2 -1
Ky 2 (k7k,/2) (1-a -8 )7 . (3.16)

Proposition 3.1 states that the approximate Newton method converges
and that the rate of convergence is govermed by the'a?. The parameter 50
is a sufficient decrease parameter and can ﬁe used in the actual
computation to determine if (3.15) is satisfied. In [5] we prove that for

*
u? sufficiently close to nj, we have
k * k k *
k, Iln-u.ll < lg(u k. flu)-u,
g Bogmull Cletaply < xg llujo

showing that the rate of convergence of lg(ny)lj to zero is also the

*

j.

asymptotic rate 6f convergence of u? to u

In our case, however, we are interested in computing u? only insofar
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as it is an approximation of u‘ of (2.3), and not as an approximation of u;
(although the two are clearly related). Thus we want to avoid wasting
iterations by computing ’'too good' an approximation of n;; In Theorem 3.2,
we indicate the degree to which we must approximate u; in order to obtainmn

bounds of the form (2.12) for the computed solutioms.

Theorem 3.2: Let n; satisfy (2.7) and let u?, 0k ¢ sj

in Algorithm I, using (2.8), (2.9), and (3.14). Let & & 0,89, and

, be computed as

suppose
4 = -
flo, - ll < °13“1q A (3.17)
where

e =5 (14p% (1-58H7T

S. * *
n;jl—nja <5 “ng—njﬂ , (3.18)
s._
and ng = nj;‘_ll. j > 1. Then

S. @ -
ﬂujJ—u < 01 (1+e) N

. 3.19
j ( )

s,
Proof. Let ej = ﬂujJ-n;“. Then by (3.18), (2.12), and (2.6),

0 *
& llu.—u.
°5 <8l 3 nJ“
s
j-1_* L + =
£8 { “nj_1 uj_ln + ““j-l all + 1l nj“ }

q —q
,<_s{ej_1+c1(1+ﬁ)nj} .

Solution of the majorizing difference equation, and the use of (3.17) shows

ej -(- ClaN;q

’
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Theorem 3.2 gquantifies the advantage of using the stratgedy embodied
in Algorithm I. For each problem after the first, ome must reduce the error
by only a fixed amount, independent of j, in order to obtain a sequence of
approximations at the level of discretization error. The central result of
this section is that for j sufficiently large sj = 1. Thus, the asymptotic
cost of solving the nonlinear systems (2.7) is essentially the cost of

computing approximate solutions of linmear systems of the form (2.8).

To see this we use a Taylor expansion as in (2.16) of [5] to obtain,

for veM,

J

0 = (g(n;).V)

= (g(uj’?),v) + (g'(u;:) {u;-n?, v

1, . ..k k. _ o k. % %
+ fb ( {g (uj + s{nj nj]) g (uj)} {nj uj].v) ds

=-(1~t§) (g(n§>.v) (3.20)

k k k k
+ "{(u))x, + .,
tj (g (uJ)xJ g(nJ) v)

ok * k4l
+ (g (nj) uj uj 2 V)

+ f; ( {g'(n; + s{n;-u§]) - g'(ny)} {u;-ni}.v) ds .

Moving the third term to the left hand side, taking (semi) norms, and using

(3.8), (3.11), and (3.13), we have
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k+1 = k k
luj nj'j £ k6 { (1 tj) |g(nj)|j

Xk k K %2
* t, lg(uj)|j + (k,/2) |uj njlj } . (3.21)

Using Proposition 3.1 and (3.15), (3.16), and

k k *
. {k .~u,
|g(uJ)|j L kg |nJ nJ!j

(an easy consequence of (3.12), noting that |v|j < lIvll with equality for v

€ M&), we obtain

2 k_* k, | k_*
< ke {(Kgky + k,/2) lnj ujlj +k5aj] Inj ujlj . (3.22)

Franstn
i i
Consider the case k=0. Then, using Theorem 3.2 inductively,

0 ¢
u.-u

s
j-1 * s s
< . - + -u,

j jlj £ “nj“l u “A 1 nJH

9 v 4
£C {1+ (1+e)p7) Nj ,

and from (3.22),

1 e —q K, [ 0_®
Inj njlj £ (CGNj + C7aj) luj “jlj , (3.23)

where

= 2 q, .
Cs = Cikg (Koks + kp/2) {1 + (1+e)B%} ;

C7 = kaS'

For example, suppose that j is sufficiently large that

c N;q < 8/2.

6

Since we can control ag, we may require

c7a9 < 8/2. (3.24)
J
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Then (3.18) will be satisfied for sj=1. Note that C6 and C7 are

independent of j.

Theorem 3.3: Let the hypothses of Proposition 3.1 hold, and suppose ao is

J
sufficiently small (ag satisfies (3.24), for example). Then for j

sufficiently large, we may take sj=1 in (3.19).

We will establish (3.24) for the multi-level iterative method in the

next section.

Remark 5. In Algorithm I, we obtain linear qonvergence of u:j to u‘
with the rate of convergence being roughly B_q, Since Newton’s method is
quadratically_convergent, one can ask under what circumstances we can have
u;j converge to u' quadratically. Assuming (2.12) is sharp, this can be

accomplished if we allow the dimensions of the spaces Mj to square rather

than increase geometrically, i.e.,

N, = p N

j j-1°

g >0, (3.25)

rather than (2.6). If we repeat our analysis using (3.25) in place of
(2.6), the analogue of Theorem 3.2, equation (3.18) would indicate that we

-q/2

must reduce the imitial error by SNj rather than by a fixed amount. If

we require
k k
a; £ C D1,
j < ¢ lsteply

(which is consistent with quadratic convergence on the basis of Proposition

3.1), then (3.22) implies that the first iteration produces an error
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-q/2

‘reduction of the right order of magnitude O(Nj ), but the constant may be

too large. Two iterations, however, will be more than sufficient; hence sj

£ 2 for j sufficiently large.

4. A Newton—Multi-level Method

We now return to the example problem (1.1). Let a e Cl(ﬁ) be positive

and bounded in ﬁ: i.e.,

0<¢g(alx) (aforxel.

Let 9f/3u e C°(%), and at/ou_ e cl(8)), i=1,2. For u & H (D),define

i
b(u;v,w) = J aVv*Vw + b-Vvw + cvw dx (4.1)
1]
- where
of
bi = anx (X,n.vn) »
i
and

_ ot
c = an(x.u.Vn) .

If we make a correspondence between a(u,v) and (g(u),v) as in Section 2,
then b(u;v,w) corresponds to (g’'(u)v,w). Recall that H = n;(n), and that

the norm and inner product for H are given in (2.2).

Let 2 be a quasi-uniform, shape regular triangulatiom of 2, and let
,h1 denote the diameter of the largest triangle in i) (for convenience,
assume 2 is a polygon). We inductively comstruct a nested sequence of

‘triangulations tj, j=1,2,..., as follows: for each triangle t ¢ tj—l’



i8

construct 4 triangles inmn tj by pairwise connecting the midpoints of the
edges of t. Each triangulation will then be quasi-uniform and shape
regular, and will have hj = h121-J (see [3], [2]). Let Mj denote the

space of C0 piecewise linear polynomials associated with tj. Then Mj Hi,

x> j, and B = 4 in (2.6).

The central issue to be addressed in this section is the method of
solving the linear systems (2.8) required by Algorithm I. If we were to use
Newton's method (M? = g'(u?)) then, in the present context, we would solve

the problems: find ;§ e Hj such that

b(u%;;%,v) = - a(n?,v) for all v e M, . (4.2)
J J J J
(In this case a? =0 on (3.13).

However, rather than solve (4.2) exactly, we will compute an
approximate solutiom, x§, using a multi-level iterative method, in
particular, one of the j—level schemes described in [3], [2]. In this
case, M? # g'(u?) in general, but rather M? is defined implicitly in terms

of the iteration (see [5], section 4).

If r iterations of the j—-level iteration as used, starting from
initial guess zero, then the analysis in [3], [2] shows, that under

suitable hypothesés
k -k r gk
I<;-<30 < ¥y I , 4.3)
i leI =7 lel ¢

where v ¢ [0,1) is a fixed constant independent of j. Furthermore, the cost

of each iteration is O(Nj) as j —> =,
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We assume that for u & So. the boundary value problem: find v & Hl(ﬂ)

such that
b(u;v,w) = (z,w) for all we Hl(ﬂ) (4.4)
and its adjoint: find v ¢ Hl(ﬂ) such that
*
b (u;v,w) = b(u;w,v) = (z,w) for all we Hl(ﬂ) (4.5)

have unique solutions for each z ¢ Hl(ﬂ) (This will follow if assumption A2

is satisfied).

If one assumes (4.4)-(4.5) and a modest amount of elliptic regularity,
then one can use the argument in Schatz [13] to prove that the proﬁlem:

find v ¢ Mj such that

b(u;v,w) = (z,w) for all w e Hj (4.6)

and its adjoint have unique solutions, provided h1 is sufficiently small.

This in turn can be used to verify assumption A3, equation (3.8) as
follows [1]: Let v e Hl(ﬂ), and choose the scalar A sufficiently large

that
b(usv,v) + A (v,v) 2 C “vﬂz.

- Note A is independent of v. By arguments given in [13], the problem: find
zZ & Mj such that
b(u;z,w) = (Av,w) for all we Mj

has a unique solution satisfying

Hzll < c* favll
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provided h1 is sufficiently small,

Now let v ¢ Mj with lIvll = 1, and let z be defined as above. Take

w=(v+z)/ (1+C')
and note that llwll < 1. Then
b(u;v,w) = (b(w;v,v) + blusv,z)) / (1 +C'A)
= b(u;v,v) + A(v,v)) / (1 + C'A)
2C/ (1+c'h) = k'
Finally, note that on the basis of (4.3),
Lo ™y < e @h™H, + Toh g a7,

uk)—l

T P
$(1+1)|s(j lj

£ ") kg (4.7
showing that we may take k1 = 2k6 in A3, equation (3.9).

Ve want to chose r such that the hypotheses of Theorem 3.3 will be

satisfied and we can take s, = 1 for large enough j. Observe that

i
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lg'(u%)x% + g(u%)l =‘sup | b(n%;x%.v) + a(u%.v) 17 livll
i 73 em i 3
Jj
= sup | vX 525,90 17 I+l
veMj 333
k -k
c, Ix,—x;
) % x.1"
r y=k
£ C2 ¥ ﬂxjn
r -k
=C Ix;1
2 ¥ id
<C " x lgd] ‘ (4.8)
= "2 6 i3 ¢

where we have used (3.4), (3.8), and (4.3). Thus, form (3.13),

k T .
aj £ 02 k6 v . | (4.9)

To apply Theorem 3.3, we must have ck

3
like (3.24) holds. To insure (3.24), we can require that r be sufficiently

sufficiently small that an inequality

large that

T
C7C2k61 £8/2 . (4.10)

Note that r can be chosen independent of j.

Since sj = 1 asympotically, the bulk of the work per level consists of
constructing the linear system (4.2), and then carrying out r iteratioms of
the j—level scheme. Since both of these are asymptotically O(Nj)

processes, the work per level can be bounded by, say, Cij operations. The

cumulative work for levels 1 to j can then be bounded by

-2

} CgNy & CgNy {1 s+l 0y
k<j

-1,-1
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due to (2.6). Ve summarize in

Theorem 4.1: Let Algorithm I be implemented using the j—level iteration
and assume that (4.3) and the hypotheses of Theorem 3.3 hold. Then for j

sunfficiently large and h1 snfficiently small,

1_* -q
“nj wa ll < C; (1+e) Nj

as in equation (3.19). Furthermore, the computatioan of u1

i
all previous computations in Mk’ k { j-1, requires O(Nj) time.

€ Mj, including
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