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Abstract

We begin by surveying some results concerning the gate complexity of com-
puting arbitrary boolean and symmetric functions in threshold circuits. Paturi
and Saks [PS90] proved that 2 (n/ log? n) gates are necessary to compute par-
ity by a depth-2 threshold circuit with bounded weights. By a theorem of
Winder [Win63], the same bound holds for most symmetric functions without
any restrictions on weights. Siu, Roychowdhury and Kailath [SRK91] present
a construction that computes parity in depth d + 1 using O (dnll d) threshold

gates. In contrast, it is implicit in the work of Lupanov [Lup71] that Z(ﬁﬁ)l/ 2
gates are necessary to compute most symmetric functions, even without bounds
on weight or depth. Combining constructions of [SRK91] and [LupT71], we
present circuits that achieve this bound for all symmetric functions. Compar-
ing results of [Win63] and [SRK91], we prove that, for most sizes G, more
functions can be computed by depth-3 threshold circuits of size (v/2+ €)G than
by unbounded-depth circuits of size G, for any ¢ > 0.

It is implicit in [Win63] that Z;(1—o0(1)) threshold gates are needed to com-
pute arbitrary boolean functions in depth 2. Using a novel application of error-
correcting codes, we show that arbitrary boolean functions can be computed
by depth-2 threshold circuits with 3-2"~!/n gates. In the last section, we con-
struct wire-efficient circuits that compute arbitrary symmetric functions. Our
construction simplifies the construction of Beame, Brisson and Ladner [BBL90]
and improves its constant factors.

1. Introduction

TC°, the class of polynomial-size threshold circuits, has been the subject of much
recent study [HMP*87, PS88, SRK91, BBL90, SB91]. One question of interest has
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been the complexity of computing symmetric functions [BBL90, SRK91]. A sym-
metric function of n variables is a function f: {0,1}" — {0,1} such that the value
of f(z1,...,2z,) only depends on 3%, z;. If f is a symmetric function of n vari-
ables, we will denote by f : {0,...,n} — {0,1} the associated function such that
f(z1,...,z,) = f(X™~, ;). This paper is based on the intuition that efficiently
computing f, a symmetric boolean function of n variables, is similar to efficiently
computing f, which can be considered an arbitrary boolean function of logn vari-
ables.

2. Notation

Throughout this paper, z,...,z, will denote the boolean input variables to a circuit.
We refer to the inputs as being at the “bottom” of a circuit and to the output gate
as being at the “top”.

By a threshold gate, we mean a gate that computes a predicate of the form

n
> wizi > w,

1=1

where z1,...,z, are the input variables and wy,...,w, are integers specific to the
gate, usually called the weights of the gate. We make no restrictions on the weights
other than that they must be integers. We will use the name of a gate to refer to
both the gate and to its output value. Which meaning is intended should be clear
from context.

All logarithms in this paper are base 2.

3. A sum-to-binary converter

In order to treat arbitrary symmetric functions on n inputs as arbitrary boolean
functions on logn inputs, we must be able to obtain the binary representation of the
sum of the inputs. In this section, we explain work by [SRK91] that enables us to do
this. The “sum-to-binary” converters that we obtain will be useful in both the gate
efficient and wire efficient computation of arbitrary symmetric functions.

Definition 1. A function f(z1,...,2,) is linearly-computable from a threshold cir-
cuit C, if there exist gates gi,...,gm in C and weights wo, ..., wn,v1,...,v, such
that

@y, o 20) =) wigi + ) viwi — wo.

=1 =1

When talking about linear computability, we will use the term “circuit” to refer to
collections of gates, regardless of whether or not they have only one output gate. We



use this loose definition because we will want to talk about functions being linearly
computable from sub-circuits of a circuit under construction. If a function is linearly
computable from a sub-circuit of a circuit, then there is no need to have a gate
representing that function: it can just be incorporated into the input of another
threshold gate as the linear sum. An example of linear computability appears in the
following well-known lemma:

Lemma 2 ((HMP*87]). Let C be a circuit that contains gates g1,...,8. and let
f(z1,...,z,) be a symmetric function. Moreover, assume that g; = 1 if and only if
ri2; < j. Then f(z1,...,2,) is linearly computable from C.

Proof:  Let wo = f(0). For 1 <i < n, let

0, if f(5) = f(z—1); )
wi =141, if f(i) # f(i —1) and f(i) = 1;
—1, if f(i) # f(i — 1) and (i) = 0.

Then, it is clear that f(z1,...,2,) = X, giw; + wo. |

For completeness, we present a circuit from [SRK91] from which the bits of the
binary representation of Y% ; z; are linearly-computable. For convenience, we will let
X =T .

Let d be a natural number and let e be the least integer such that 2¢ > nl/¢. We
construct a family of circuits B; where the circuit for inputs of length n has gates

gjrfor 1 <7 <dand 1<k <2°—1. Gate gjr computes the predicate

d 2¢-1
X- Y oY (E gj.,k,) > k2eli-1), (1)

J'=j+1 k'=1

It is easy to see that these gates can be arranged into d levels, with the gy 4’s at the
bottom and the g;x’s at the top.

Theorem 3 ([SRK91]). For every natural number d, By is a circuit of depth d

with at most 2dn*/? gates from which the binary representation of Y""_, z; is linearly
g y rep i=1

computable.

We provide a proof in Appendix A.

4. Unbounded Depth

Let B(n) be the number of threshold gates needed to compute an arbitrary boolean
function of n variables and let S(n) be the number of threshold gates needed to
compute an arbitrary symmetric function of n variables. Lupanov [Lup7l, Lup73]
proves:




Theorem 4 (Lupanov).

Corollary 5.

S(n) ~2( - )1/2.

logn

Proof:  The lower bound is well known: one can consider any boolean function
of n variables as a symmetric function of 2" variables: just assign weight 2~ to
input z;. This map from inputs in {0,1}" to integers in {0,...,2" — 1} is clearly
injective. So, if any symmetric function of 2" variables can be computed by G gates,
then any boolean function of n variables can be computed by G gates. This implies
that B(n) < S(27).

For the upper bound, use the sum-to-binary converter B3 from Section 3 to convert
the sum of the n inputs to binary. This requires at most 6n!/® gates. Since the sum
is represented by at most logn binary bits, Theorem 4 says that we can compute any
function of these bits using B(log n) gates. Thus, we see that S(n) < B(logn)+6n'/>.
|

To achieve the number of gates used in Theorem 4, Lupanov uses unbounded
depth. However, his construction can be used to compute any boolean function in

depth 4 using O (\ /27 ] n) threshold gates. It follows that any symmetric function can

be computed in depth 7 using O (, /n/log n) threshold gates. It would be interesting
to know whether this depth can be improved.

5. Unbounded depth vs. depth 3

The following theorems demonstrate that for for most sizes, G, more functions can
be computed by depth-3 circuits of size (v/2 + €)G than by unbounded-depth circuits
of size G, for any € > 0.

Theorem 6 ([Win63]). A threshold circuit of size G can realize one of at most

Gricn? - .
277 0" different functions.

Let zi,...,z, be the inputs to a circuit. Let X = Y%, 2""1z;. We see that
functions mapping (21,...,2,) € {0,1}" into {0,1} are in one-to-one correspondence
with functions mapping X € {0,...,2" — 1} into {0,1}. Let f: {0,...,2" =1} —
{0,1}. We say that f changes value at i if f(i) # f(i +1).

Siu, Roychowdhury and Kailath prove:
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Theorem 7 ([SRK91]). If f(X) changes value at most m times as X goes from 0
to 2" — 1, then the corresponding function f can be computed by a depth-3 threshold
circuit of size 2[/m| + O (1).

For completeness, we provide a proof in Appendix B.

Corollary 8. There are at least (szn)) distinct functions computable by depth-3
threshold circuits of size 2G(n) + O (1).

Proof: By Theorem 7, we see that any function that alternates value at most
G?(n) times can be computed by a depth-3 threshold circuit of size 2G(n) + O (1).
There are at least (szn)) such functions. |

Comparing the values obtained by Corollary 8 and Theorem 6, we get that:

Theorem 9. Let ¢ > 0 and let G(n) be a function such that n = o(G(n)) and
G(n) = 2°™. Then, for almost all n, there are more functions computable by depth-3
threshold circuits of size (v/2 + €)G(n) than by unbounded-depth threshold circuits of
size G(n).

Proof:  We will prove the equivalent assertion that for almost all n, there are more
functions computable by depth-3 threshold circuits of size 2G(n) + O (1) than by
unbounded-depth threshold circuits of size (v/2 — €)G(n). For convenience, we will
use G to denote G(n).

By Corollary 8, the number of functions computable by depth-3 threshold circuits
of size 2G + O (1) is

(2") ~ 2"V
G?) (2= )PP (@) V2 - GPV2r G

2 2"-G? n\ G2
1+ .___.g____ (2_) ____1__9(1)
pyes G VrGr

> 2G2 «(n—2log G+log e)—log G- O(1)

6(1) by Stirling’s formula

v

We compare this with the number of functions computable by unbounded-depth
threshold circuits of size (v/2 — €)G(n) from Theorem 6:

QM%ME'F(ﬁ“)GnQ — 25G2‘n+(\/5—e)Gn2

for some 6 < 1, which proves the theorem. |




6. Depth 2

Depth-2 threshold circuits require many more gates to compute most functions than
do depth-3 threshold circuits. Paturi and Saks [PS90] proved that any depth-2
threshold circuit with polynomially bounded weights that computes parity requires
2 (n/ log? n) gates. In fact, most symmetric functions of n variables require this
many gates, even without restrictions on the weights. The best bound that we know
on the number of gates that a depth-2 threshold circuit with unbounded weights needs
to compute parity is 2 (y/n) from [PS90].
R.O. Winder [Win63] proved the following theorem:

Theorem 10 (Winder). The class of depth-2 threshold circuits with G gates can
compute at most 9G(m*+n)+n? functions on n input variables.

Corollary 11. Most functions of n variables require i—;(l—o(l)) gates to be computed
by a depth-2 threshold circuit.

Proof: There are 22" boolean functions of n variables. In order for every one

of them to be computable by a threshold circuit of G gates, we must have that
92" < 9G(n*+m)+n? which implies that G > (2" — n?)/(n? +n). |

Corollary 12. Most symmetric functions of n variables require E’;—;(l —o(1)) gates
to be computed by a depth-2 threshold circust.

Proof:  The reduction is the same as that used in the lower bound of Theorem 5.

The best upper bound that we know for computing symmetric functions by
depth-2 threshold circuits is the obvious linear upper bound from [HMP*87]. Al-
though we do not know of a construction matching Winder’s lower bound for depth-2
circuits, we can come close to Winder’s bound. This suggests that linear lower bounds
on the number of threshold gates necessary to compute symmetric functions in depth-2
threshold circuits will not be achieved by examination of the arbitrary boolean case.

Theorem 13. If n = 2¢ — 1 for some integer d, then every boolean function of n
variables can be computed by a depth-2 threshold circuit with at most 32" /n gates.

Proof:  For this construction, we let the inputs be points (represented as vectors)
on the {1,—1}" hypercube.

Let f be a boolean function. From the theory of error correcting codes [Tho83],
we know that an n-dimensional hypercube can be exactly covered by 2"/(n + 1)
Hamming balls of radius 1, provided that n = 2¢ — 1 for some integer d. Let the
points {61, vvv,Con /(n+1)} be the set of centers of such a set of Hamming balls, where
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¢ = (¢1,.--,¢jn). The Hamming ball with center ¢; is separated from the rest of
the hypercube by the hyperplane Y%, zic;; > n — 2. For all j, let h; be the gate
that computes the predicate
n
Ecj,,'ac,- >n—2.
i=1
Let €; denote the vector that is 1 in every place except the ¢th index, in which it

is —1. If we use componentwise multiplication, then multiplication by €; flips the ¢th
bit of a vector. For 1 <7 <2"/(n+1) and 1 <7< n, let

= (o 18 =1

2¢;;, otherwise.

Let wjo = Y iz |wji| — 2. Thus, if z differs from ¢; in £+ 1 places, then Y"1 ; w;z; <
wjo — 2k; if 2 = e;¢; for some ¢ and f(z) = f(c;), then Y1, wjz; = wjp; if z = €;C;
for some ¢ and f(z) # f(c;), then ¥, wjz; = wjo—2. For 1 < j <2™/(n +1), let
gate g; compute the predicate

ij,gw,' Z wj,0-
i=1
Note that it will never be the case that h; = 1 and h; = 1 for ¢ # j, and that
gi = 1 implies that h; = 1 for all 7. Let r = sgn (Zj f (EJ)) (We could choose r to
be 1, but this choice is optimal.) We now note that f is linearly computable from
the g;’s and the h;’s because f(Z) = r if and only if

> g+ Y (hj-g)=1

{ils(@)=r} {9l/(&)=-r}
Observe that we chose r so that gate h; need exist for only 1/2 of the j’s. |

As far as we know, this upper bound is new and the best known.

Recall that in the unbounded-depth case, the upper and lower bounds match.
We conjecture that there is a better construction which achieves the upper bound of
O (2"/n?) gates suggested by the lower bound in Corollary 11.

7. Wire-efficient constructions

Instead of considering the number of gates, one can study the number of wires needed
to compute a function with a threshold circuit. In this model, each wire is only allowed
to have weight 1. Thus, to have weight w from an input, it is necessary to have w
wires from that input. For example, we provide the following lemma concerning the
sum-to-binary converters from Section 3:




Lemma 14. Circuit By uses at most 4dn'*1/4(1 + o(1)) wires. Moreover, any bit in
the binary representation of the sum of the inputs to By may be linearly computed
with at most 2n/? wires.

Proof:  Every time an input wire appears, it has weight 1. Since there are at most
2dn/? gates in the circuit, wires from the inputs can account for at most 2dn1+1/d
wires. Similarly, there are 2n'/¢ threshold gates that have output wires of weight
n!=1/4: these can account for at most another 2dn!*/?¢ wires. Since the weights
from the wires on the remaining gates have a smaller exponent, their contribution is
negligible. That at most 2n'/¢ wires are necessary to linearly compute any of the bits
of the binary representation follows from Lemma 2 and that only one row of gates
need be examined to compute any one bit. |

Beame, Brisson and Ladner [BBL90] present a wire-efficient construction of thresh-
old circuits that compute arbitrary symmetric functions. Their construction also uses
the trick of computing the binary representation of the sum of the inputs. To save
wires, they use a recursive construction that divides the inputs into several sections,
computes the binary representation of the sum in each section, and then uses a binary
adder to find the sum over all the sections. In this section, we present a simplified
version of their construction which takes advantage of the sum-to-binary converters
from Section 3. Independently, [SRK92b] have improved upon the results in [BBL90];
however, their results are weaker than those presented here.

In order to minimize both gates and wires used in our circuit, it will be necessary
to have a construction for computing arbitrary boolean functions that is efficient in
both wires and depth. We derive such a circuit below. We do not use Lupanov’s
circuit mentioned in Theorem 4 because we are not sure of the number of wires used
in his construction. The theorem we use is originally due to Redkin [Red70]. We
present a proof for completeness.

Theorem 15 (Redkin). Any boolean function f of n variables can be computed by
a depth-8 AND/OR circuit having 2(2"/%) 4+ 1 gates if n is even and \—3-52"/2 +1 gates
if n is odd.

Proof: For z,0 € {0,1}, we define

20— {x, if o =1,

l—z, ifo=0.
Let z1,...,z, be theinput variables. Let m = [n/2]. By a disjunction of the variables
Ty,...,T, We mean a term of the form V7, z7*, where o; € {0,1} for 1 < ¢ < m.
The bottom level of our circuit will consist of gates computing all the disjunctions of
T1yee ., Tm. We will call g(q, .0 the gate computing the disjunction corresponding

to (01,...,0m) € {0,1}™. Thus, the bottom level of the circuit requires 2™ gates.




Observe that any function f : {0,1}™ — {0,1} can be expressed in disjunctive
normal form as

flz1y-ooyzm) = N Vitizi
{(e11es0m)|f(F140esFm)=0}

Accordingly, the second level of our circuit will consist of gates h(r,,,,rmyz,umn)
where (Trmt1,...,7a) € {0,1}"7™. Gate hA(r,y1,mmszrama) Will compute the predicate

n
-
/\ 1,'1" /\ g(a'l yoonsTm)
i=m+1 {(01100s0m)|F(F1ees0msTm41,e,Tn) =0}

That is, gate h(r,,1,7me,.m) COMpUtes

{ f(.'l:l, oo ,.’tn), if (:L'm+1, . .II)n) = (Tm+1, [ Tn);
0, otherwise.

The root of the circuit then computes the predicate

V h(7m+1 yeresTn)

(Tm414e-mn)€{0,1}"*" ™
The second level uses only 2"~™ gates. Thus, the circuit uses 2*/2! 4 2[*/21 11 gates.
I

Corollary 16. Any boolean function f of n variables can be computed by a depth-3
threshold circuit having —\3—5(2"/ %) gates and 2™(1 + o (1)) wires.

Proof:  Each AND/OR gate can be computed as a threshold gate. The wire bound
comes from counting the number of wires in the above construction. [

As the top level of our circuit, we will use this corollary to compute f with %nll 2
gates and n(1 + o (1)) wires.

8. A Binary Adder

Beame, Brisson and Ladner prove that

Theorem 17 ([BBL90]). For all d > 2 and n > 8 for any n input symmetric
Junction f there is a threshold circuit computing f with at most

/ logn 14 n
150 1+2—d‘:-1- n 2 1+0 logn

wires and depth bounded by Td + 6.




Their construction uses at least n/(logn) gates. Our construction will use their
binary addition trick; however, we will use a system of addition that, instead of
keeping two partial sums at each level, keeps many partial sums present up until the
last level. This enables us to save on the number of wires and gates used.

Assume that we have m — 1 numbers, Zi,...,%n,-1, each of length n. Let
ZTi,..-,Tim be the binary representation of Z; (ie., & = X} 291z, ;). For
1 < j < n,let §; be the column sums, §; = Y2, and let sj1,...,8;10gm be
the binary representation of §;. Observe that Y77' & = Y7, 2/~ 's;. Thus, we can
reduce the problem of adding m numbers of n bits each to the problem of adding n
staggered numbers of log m bits each:

m—1 n logm
E: — j—1 k-1
T; = 2 2 Sik] -
=1 =1

=1 J k

We will call this process folding the m — 1 numbers of length n into n staggered
numbers of length log m.

Proposition 18. We can fold m—1 numbers of length n into n staggered numbers of
length logm in depth 8 using at most n2d(m—1)'/¢ gates and ndd(m—1)+/4(14+0(1))

WITes.

Proof:  We use the circuits B, from Section 3 to obtain the binary representation
of the §;’s. Since we will actually want gates whose outputs are the s;x’s, this will
require depth 3. By Theorem 3 and Lemma 14, folding the summands will require at
most 2dn(m — 1)/¢ 4 nlogm gates and 4dn(m — 1)'+1/4(1 + o(1)) wires. 1

By performing this process recursively, we obtain:

Theorem 19. Let € > 0 and let a be a positive integer. Let § = 1/3+¢€. Then, there
exists a circuit of depth 3a+5 that uses 4n'~2%*(140(n~3%")) gates and 8n't2%* +o(n)

wires to compute the binary representation of the sum of the inputs x4,...,Z,.
Proof: At the bottom level of the circuit, we break the inputs, z1,...,z,, into
n!=%" groups of size n®*. For each of these groups, we compute the binary represen-

tation of the sum of the inputs in the group using B,. We will want to put gates on
top of the By’s that explicitly provide the binary representation. Thus, by Theorem 3
and Lemma 14, each copy of B; and the level on top uses 4n3®® 4 §° logn gates and
8n2%" 4 26°(log n)n3®" wires. This yields a total of 4n1~3%° + §*(logn)n'—%* gates and
8n1*2%° 4 25%(log n)n!~7% wires in depth 3.

The goal of the rest of the circuit is to obtain the sum of the resulting n
subsums. We will do this in a stages. The first stage above these subsums will take
groups of n%*™ (1=9) subsums of length §*(log n) and fold them into §*(log n) staggered
numbers of length 6°71(1 — §)(logn) + 1. We will perform the folding with circuits
B,. By Proposition 18, this will use 46%(logn)(n®* ™ (1=9)1/2 4 §~2(1 — §)(log®n)

1-6¢
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-1

gates, 86%(logn) (n‘sa—l(l’s)(l + o(l)))s/2 wires and depth 3. Since there are n!~%"
such groups, a total of at most

46%(log n)(nl”‘sa_l(l+6)/2) +0 (nl""sa‘l log® n)

gates and

88°(logn) (n! "7 1-20-9)(1 4 o(1))) = o(n)

wires are used at the first stage. (Recall that (1 —§) < 2/3.)

The sum of the inputs in each group can be obtained as the sum of §%(logn)
staggered numbers of length §*71(1 — §)(log n) + 1; however, we will overestimate and
assume that each sum can be obtained as the sum of §*(logn) numbers of length
§°~*(log n). We will keep in mind that their sum is at most n®*™".

For the remaining a — 1 stages, we proceed by induction. Assume that, at stage
i, we want to compute the sum of at most §°~*+?(logn) binary numbers of length
6= (logn), but whose sum is at most n%*~*'. Then, to get to the (i + 1)st stage,
we take collections of n®*7"(1=8) numbers to fold together. Since each number is
a sum of 8 ***(logn) binary numbers, we are folding §°~*+2(logn)n®*~ (1= num-
bers of length §*=*+!(logn) into §°~*+!(log n) staggered numbers of length at most
§°7(1 — 8)(log n) + loglog n. We overestimate this as the sum of §2~i+! (log n) binary
numbers of length §°~*(logn) + loglogn. To complete the induction, we recall that
we were summing n®*” (=% terms of length at most §2=+! (logn); so, we can assume
that the length of each of the §*~*+!(log n) binary numbers is at most §*~*(log n).

If we always use By’s to do the folding, then for each group, we use depth 3 and
at most

481 (log n) (6a‘i+2(log n)n‘sa—'(l"s)) 12
gates, and at most

86°*(log n) (5““i+2(log n)n‘sa_i(l_s)) o2

wires.
Since there are at most n!=%*~" such groups, we use depth 3 and a total of at most

4491 (logn) (5“'i+2(log n))l/2 pl-semi e
gates, and at most
86°*1(log n) (6°~**(log n))B/ 2 pl=5"1-30-8) _ o(p)

wires.

After the ath stage, we are left with §logn binary numbers, each of which is less
than n, and whose sum is the sum of the inputs zy,..., z,.

We now create a depth-2 circuit that obtains their sum. Call the §logn binary
numbers rq,...,7si0gn. Let 7; = Ei—‘;gln 2=1p.; be their binary representation. Let
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b1,. .., biog(nt1) be the binary representation of 37, &,. For any /,1 <1 <logn, b
can be computed as

§logn blogn |-1 )
b= (( > (7; mod 2l)> div 2"1) mod 2 = (( > 22’7‘3',{) div 21“1) mod 2
j=1 j=1 =1

Since nglg "(7; mod 2') < 2!6logn, b; can be computed by a depth-2 circuit with
at most 2§ logn + 1 gates and 2!+ (§log n)? + (§log n) wires.

Thus, to compute all the b;’s from the 7;’s will require at most (26 log n + 1) log(n + 1)
gates and 2'+%(§logn)? + (log(n + 1))(6log n) wires. |

Note that instead of using the circuits B, in the above construction, we could have
used By, for some d > 2. This would enable use to choose é as small as 1/(d +1) +e.
By adjusting d and §, it is possible to trade increases in depth for constant-factor
reductions in the exponents of wires and gates.

Corollary 20. Let § > 1/3 and let a be a positive integer. Let f be a symmet-
ric fgmction of n inputs. Then, thelre exists a circuit of depth 3a + 8 that uses
4n1=2%(1 + o(n=2%%)) gates and 8n'*2%" + o(n) wires to compute f.

Proof:  Combine Theorem 19 with Corollary 16. |

Corollary 21. Let § > 1/3. Let f be a symmetric function of n inputs. Then, there
exists a circuit of depth i@log logn + 8 that uses O(n) gates and O(n) wires to
compute f.

Proof:  Let a = log(;/4)logn in the preceding corollary. |

9. Concluding remarks

It is interesting to note that Paturi and Saks’s [PS90] lower bound for the number of
threshold gates needed to compute parity in a depth-2 threshold circuit agrees with
the bound obtained for most symmetric functions. Moreover, we do not know of any
non-trivial symmetric function that changes value t times yet which can be computed
by a depth-2 threshold circuit of size less than ¢/2. Any example of such a function,
or any improvement of Paturi and Saks’s lower bound would be very interesting.

To obtain threshold circuits that compute arbitrary symmetric functions with a
linear number of wires, we needed to use a linear number of gates. We conjecture
that there is a tradeoff between the number of gates and number of wires needed to
compute arbitrary symmetric functions, and that it is not possible to optimize both
simultaneously.

I would like to thank Ian Parberry and Nick Pippenger for pointers to many of the
results used in this paper, as well as Richard Beigel, my advisor, for encouragement,
support, proofreading and for prompting this line of research.
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Appendix A:

In Section 3, we presented the following construction of circuits from [SRK91] that
obtain the binary representation of a sum of inputs:

Let d be a natural number and let e be the least integer such that 2¢ > n'/¢, We
construct a family of circuits By where the circuit for inputs of length n has gates
gikfor1 <j<dand 1< k<2 —1. Gate gjx computes the predicate

d 2¢-1
X- Y oY (Z gj,,k,> > k2eU-1), (2)
J'=j+1 k'=1

We now provide a proof that these circuits actually do provide the binary represen-
tation of X.

Lemma 22. For1 <m <d,
a. Y23 g = (X mod 2°™) div 26"V (i.e., the mth digit base 2¢), and
b. X mod 2¢m=1) = X — 7 2:-D(T2 1 g k).

Proof: = We will prove the assertions together by induction, starting with m = d.

Base case. Since 2° > n!'/¢ X mod 2¢¢ = X. Observing that g4 computes the
predicate X > k2°(4-1) it becomes clear that

S gax = X div 299D = (X mod 2°¢) div 2541, )

This proves (a) for m = d. To prove part (b), we note that

X mod 26641 = X — 9e(d-1) ( X div 2e(d-1))

= X - 2e(d—l) EZ=11 8d ks by (3)

Induction. Assume that (a) and (b) are true for all levels greater than m. Part (a) for
level m follows from part (b) for level m + 1, since gate g, computes the predicate

d 261
X- > 2el'-1) (Z gj/,k,) > k2e(m-1) by (2), which is

J'=m+1 k'=1
X mod 26™ > k2e(m-1) by part (b)
So,
2¢-1
> G = (X mod 2°™) div 2¢~1),
k=1

To prove part (b), we note that for m < j <d,

14




2¢—1 . .
2l g = 2eli-1) ((X mod 2%) div 26(1-1)) by part (a)
k=1

= (X mod2%) — (X mod er) mod 2e(j'1))
X mod 2% X mod 2e(j—1))

Telescoping,

j=m

d 201
> 9¢li-1) (Z gj,k) = X- (X mod 26(""'1))
k=1

which implies that

2¢-1

d
X =3 2¢-n (Z gj,k> = X mod 2™
j=m k=1

Proof: (of Theorem 3) It is clear that By is a circuit of depth d with at
most 2dn'/? gates. To show that the binary representation of X is linearly com-
putable from Bg, we let by, ..., bnogn1-1 be the binary representation of X. (i.e.,
X = yfegm=t b,21)

Then b; = (X mod 2/+1) div 2/, for 0 < j < [logn] — 1. Let e be as in Lemma 22
and let m = j div e. Then

b; = (X mod2't!) div 2
= (((X mod 2¢"*1)) mod 2j+1) div 2‘"") div2~*™  sinceem < j < e(m+1)
= (((X mod 2¢(m+1)) div 2‘”") mod 2j+1'em) div 29—em

2e-1
= (( Z g(m+1),k) mod 2”1""") div 29—°m, by Lemma 22.

k=1

Since the gm41)x’s have the property that (Tic;' gm+1)k) < t if and only if
g(m+1),t = 1, and since ((Zz:il g(m+1),k) Mmod 2j+1‘em) div 27=°™ is a symmetric func-
tion of the g(m41)x’s, we can apply Lemma 2 to see that b; is linearly computable

from B,. |

This construction is pretty tight. Using the techniques of [PS90], [SRK92a] prove
that £2 (dnl/ 4/log? n) gates are necessary for a depth d 4 1 threshold circuit to com-
pute parity.
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Appendix B:

We provide a proof of Theorem 7 [SRK91].

Proof: Let X = %, 27z, Let {w1,...,w} = {z :fG)=0and fi +1) = 1}
and let u; < ujyq,Vi. Similarly, let {vq,...,v,} = {z :f(i)=1and fi +1) = 0}
and let v; < v;41,Vi. Note that ¢ < m/2. Assume, without loss of generality, that

f(0) =0, so that u; < v;. Let e = [/%]. The gates on the bottom level of our circuit
will be g; which, for 1 < j < e, compute the predicates

X Z Uej-

On the second level of our circuit, for 1 < k < m/2e, we have gates a; computing
the predicates

X > up+ Z(uej+k — Ue(j-1)+k)8;

i=1

and gates by computing the predicates
€
X 2> v+ Z(vej+k - 'Ue(j-1)+k)gj-
J=1

These sums telescope so that if j is such that u;_1)4+1 < X < uej, then a computes
the predicate 37— 2" @; > ue(j—1)+x and by computes Y7, 277 i > ve(j—1)+4. Thus,
the top gate of the circuit,
€ e
28— b;j>0

J=1 J=1

will compute f(X). |
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