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Exact Learning of u-DNF Formulas
with Malicious Membership Queries

Dana Angluin

Abstract

We consider exact learning of concepts using two types of query: extended
equivalence queries, and malicious membership queries, that is, membership
queries that are permitted to make errors on some arbitrarily chosen set of
examples of a bounded cardinality. We present a randomized algorithm to
learn p-DNF formulas using these queries. The expected running time of the
algorithm is polynomial in the number of variables and the maximum number
of strings on which the membership oracle is allowed to make errors.

1 Introduction

We continue the investigation begun by Angluin and Krikis [2] concerning the effects
of errors in the answers to membership queries in the model of equivalence queries
and malicious membership queries. We are interested in the question of whether
polynomial-time learnability of a concept class using equivalence queries and (error-
free) membership queries implies polynomial-time learnability in the error model of
equivalence queries and malicious membership queries, perhaps under some natu-
ral restrictions on the concept class. Angluin and Krikis present some encouraging
positive evidence: any concept class that is polynomially closed under finite excep-
tions and learnable in polynomial time using equivalence queries and (error-free)
membership queries can be learned in polynomial time using equivalence queries and
malicious membership queries. Corollaries of this include polynomial-time learning
algorithms for DFAs and boolean decision trees using equivalence queries and mali-
cious membership queries. They also present a polynomial-time learning algorithm to
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learn monotone DNF formulas using equivalence queries and malicious membership
queries.

There have been a number of ingenious algorithms to learn read-once or y-formulas
over various bases using equivalence queries and membership queries (or substitutions)
[3, 4, 5]. These concept classes are typically not closed under finite exceptions, and
therefore are not covered by the general transformation found by Angluin and Krikis.
Thus, classes of concepts defined by read-once formulas are a particularly interest-
ing case for the model of polynomial-time learnability using equivalence queries and
malicious membership queries.

In this paper, we present a randomized algorithm that learns in expected polyno-
mial time the class of y-DNF formulas using equivalence and malicious membership
queries. The intuitive idea behind the algorithm is simple. Define a boundary point
of a concept to be a point in the concept that is adjacent to a point not in the con-
cept. Then the local neighborhood of any boundary point of a concept represented
by a p-DNF formula provides direct information about a term of the formula. More-
over, either there are “very few” points in the concept or its complement, or the
set of its boundary points is “fairly large.” In the first two cases, we can afford to
learn the concept counterexample by counterexample, and in the last case, the mali-
cious membership queries cannot hope to corrupt the answers in the neighborhoods
of enough points of the boundary to fool the algorithm. We expect to be able to
generalize this algorithm to learn the class of y-DNF formulas with exceptions (see
[2] for definitions.)

2 Preliminaries

Let n be any natural number. We denote by B, the set {0,1}" of boolean n-vectors.
The i-th coordinate of a vector y € B, is denoted y[i]. The Hamming distance d(y, z)
of two elements y,z € B, is the number of coordinates i such that y[i] # z[i]. If
Y,z € By, then z is a neighbor of y if and only if d(y, 2) = 1. Clearly, every element
of B, has n neighbors.

The set of all boolean formulas over the variables X; for ¢ = 1,...,n is denoted by
F,. For each formula f € F, and vector y € B,, we denote by f(y) the value of the
formula f under the truth assignment X; = y[i] for ¢ = 1,...,n. For each formula

[ € F,,, we define the concept represented by f as the set of boolean n-vectors y € B,
such that f(y) = 1.

A p-DNF formula is a boolean formula in disjunctive normal form in which each




variable occurs at most once. For example, the following formula is a u-DNF formula.
(X2 A —‘X4 A Xe) \% "'(Xs A -'Xl).

Note that the number of terms of a u-DNF formula cannot exceed the number of
variables that occur in it.

The subset of F,, consisting of u-DNF formulas is denoted by T; it is the set of
target formulas of n variables. We assume that some f € T, is chosen, the target
formula, and the task of the learning algorithm is to find a formula g € F, that
represents the same concept as f, in other words, such that g is logically equivalent
to f. Note that we do not require the result to be in the form of a u-DNF formula.

The information available to the learning algorithm about the target function f
is the value of n, the value of another parameter ¢, (the bound on the number of lies
permitted) and the answers to two types of queries: extended equivalence queries and
malicious membership queries.

In an ertended equivalence query, the learning algorithm specifies as input some
boolean formula g € F;,, and the response depends on whether g is logically equivalent
to f. If they are equivalent, then the answer is “yes.” Otherwise, the answer is a
counterezample, that is, a vector y € B, such that f(y) # g(y). Note that we permit
equivalence queries with general boolean formulas; in fact, equivalence queries with
general DNF formulas suffice for our algorithm.

In a malicious membership query, the learning algorithm specifies as input a
boolean vector y € B,, and the response is either 1 or 0. If the response is not
equal to f(y), then we say that there has been an error on the vector y. We abbre-
viate malicious membership query by MMQ.

Note that for extended equivalence queries, there is a choice of which counterex-
ample to return in the case of inequivalence, and for malicious membership queries,
there is a choice of which vectors are answered with errors and which are answered
correctly. We assume that these choices are made by an adversary, subject to the
following constraints. '

The adversary is on-line, that is, when a query is made, the choice of the answer
may depend on knowledge of the learning algorithm and the queries it has made
and the responses it has received so far. Moreover, the parameter £ is an upper
bound on the number of distinct vectors that may be answered with errors in the
malicious membership queries. We assume also that the adversary answers malicious
membership queries consistently, that is, the replies to subsequent queries made to
a given vector are the same as the first one. Errors with this property are called
persistent. (If the adversary does not have this property, the learning algorithm




could enforce it by keeping a table of “first answers” and consulting this table instead
of the adversary for any vector queried more than once.)

A randomized learning algorithm learns the class of u-DNF formulas in expected
polynomial time using extended equivalence and malicious membership queries pro-
vided that there is a polynomial p(n, £) such that for any positive integers n and ¢, for
any target function f € T, and any adversary as described above, the algorithm with
input n and £ and access to extended equivalence queries and malicious membership
queries about f answered by the adversary, has an expected running time of at most
p(n, £) steps (counting each query as one step) and, when it halts, outputs a boolean
formula g equivalent to f.

Remark: It was useful during the development of this algorithm to consider a
somewhat more limited adversary, replacing errors in malicious membership queries
by omissions. That is, the adversary is permitted to answer “I don’t know” on up
to £ arbitrarily chosen different vectors - the rest of the membership queries must be
answered correctly. This model might be termed “malicious don’t knows.” This is a
more limited adversary because the learning algorithm knows that it can depend on
the correctness of the answers that it does get, whereas with malicious membership
queries, each answer is possibly suspect. Clearly, a learning algorithm that can cope
with malicious membership queries can cope as well with malicious don’t knows by
assigning an arbitrary answer to the vectors answered with “I don’t know”, but the
converse is not necessarily true. '

3 Warm-up

There is a polynomial-time algorithm for learning general boolean yu-formulas using
equivalence queries and (error-free) membership queries [1]. In the special case of
#-DNF formulas the algorithm can be considerably simplified. We review the simpler
version here, since it is the basis of the algorithm we present.

Let f be the target u-DNF formula. The basic idea is that if we can find a pair
of assignments y and y’ that differ on a single variable such that f(y) # f(y'), then
we can use membership queries to determine a term of f.

Suppose y and y’ are such that f(y) =1 and f(y') =0, and y and y’ differ only in
the value assigned to the variable X;. Then because of the y restriction, X; occurs
in a unique term T of f and the assignment y makes just the term T true. We can
find all the literals that occur in T' by making membership queries f(y") for all n
neighbors y” of y. A variable X} occurs in T if and only if f(y") = 0 for y” obtained




from y by changing just the value assigned to Xj. Moreover, if X; occurs in T, it
occurs positively if y assigns 1 to X and negatively otherwise.

We can get such a pair y and y' by interpolating between a positive and a negative
counterexample and asking membership queries, as follows. We first make equivalence
queries with the constant functions TRUE and FALSE. If either equivalence query
is answered “yes”, we are done. Otherwise, f(z) is a non-constant function and the
equivalence queries are answered with counterexamples z¢ and z; such that f(zo) =0

and f(z;) = 1.

We now interpolate between z; and o any sequence of assignments Y1, Yz, ..., Ym
such that y; = =1, ym = 2o and d(y;,yi31) = 1 for each s = 1,...,m — 1. Since
f(y1) = 1 and f(ym) = 0, there must be a value of ¢ such that f(y;) = 1 and
f(yi+1) = 0. We can find such a pair by asking a sequence of membership queries
with the vectors y,,ys,.. ..

Thus, we can find one term of f. To continue, we would like to “remove” the
~ variables that occur in the term(s) we have found so far and find a new term of fyif
any remain. This is also not difficult, as follows.

Suppose we have found terms T,y ..., T, of f, and terms Ti,...,T, remain to be
found. By renumbering the variables, if necessary, we may assume that the terms that
we have found contain the variables X,,,1,..., X,. Then we can simulate membership
and extended equivalence oracles for the formula f' = Ty V...V T. over the variables
X1,...,Xm as follows.

In a membership query to f’ the input is an assignment to the variables X1, X,
which we extend to an assignment to Xj,...,X, in such a way that the terms
Trt1,...,Ts are all rendered false. Then we make a membership query to f with
this assignment. The result will be true if and only if the original assignment to
X1,...,Xm makes one of the remaining terms of f true, that is, makes f' true.

For an extended equivalence query to f’ we are given a boolean formula % over the
variables X1, ..., X;,. We then make an extended equivalence query with the formula

VT V...V T

Clearly, if h is equivalent to f’, this formula will be equivalent to f, and the reply
to the query will be “yes”. If, conversely, this formula is equivalent to f, then by
considering assignments that make all of T},4,...,T, false, we can establish that A
must be equivalent to f’. (In the original algorithm, the equivalence queries can
be taken to be proper, that is, asked only about u-DNF formulas, but we need the
generality of extended equivalence queries for our new algorithm.)




Thus, putting it all together, we use two equivalence queries and O(n) membership
queries to find a term of f. We can then “remove” the variables in that term, and
find another term of f, and so on, until we have found all the terms of f. Because we
can re-use the negative counterexample from the first iteration, we can find all the
terms of f using at most n + 1 equivalence queries and O(n?) membership queries.

It is clear that this procedure relies strongly on the correctness of the membership
queries it makes. To adapt this method to the setting of malicious membership
queries, we attempt to repeat the basic procedure to construct a term in enough
different places in the space of examples that a vote of the results will give us at least
one correct term of the target function.

4 The Term-Finding Algorithm

Assume the target concept is represented by the u-DNF formula f over n variables.
Assume that an upper bound / is given on the number of points on which the MMQ
oracle may make errors. Our algorithm is randomized; it is open whether there exists
a deterministic polynomial-time algorithm for this problem.

The idea of the term-finding algorithm is to determine a value b such that f(z) = b
for at least 1/4 of all points z, and then to use equivalence queries to collect a large
set of points z; such that f(z;) = 1 —b. From each of these points z; we take a
random walk of length O(nlnn), making queries to the MMQ oracle along the walk.
With high probability, a large fraction of the endpoints of these walks will be points
where f has value b. For each walk, if we find a change in the replies of MMQ along
the walk, we use the neighborhood procedure with queries to MMQ to determine a
candidate term T; for the walk. If a candidate term T receives at least £ + 1 “votes”
with non-intersecting support sets, then it is a correct term of the target function.
We show that this happens with reasonable probability. The details of the algorithm
and its analysis follow.

4.1 The Neighborhood Procedure

We first generalize the neighborhood procedure of the preceding section for finding a
candidate term using an oracle @ that returns 0 or 1 for each point z.

The input is a point y such that Q(y) = 1 and for at least one neighbor y' of ¥,
Q(y') = 0. We construct a candidate term T' as follows. For each neighbor y” of y
such that Q(y") = 0, let X; be the variable on which y and y” differ, and if X; is




assigned 1 by y then add the literal X; to T, otherwise add the complement of X; to
T. Return the candidate term T'.

The support set for the candidate term T is the point y and its n neighbors; these
are the points where queries are made to @ to construct the candidate term. Note
that if the oracle ) agrees with f on the support set of T, then T is in fact a term of

f.

4.2 Finding a Popular Value

We wish to choose a value b such that f(z) = b for at least 1/4 of all points z. To do
so, we choose a large odd number of n-bit vectors x uniformly at random and query
the MMQ oracle on these points; b is chosen as the majority reply. We bound the
probability of the event that we choose b incorrectly, that is, f(z) = b for fewer than
1/4 of all the points.

If we choose R samples, then with probability at least

the sample points are all distinct. Suppose the sample points are all distinct and
MMQ replies b to at least R/2 of them. Then for at least R/2 — £ samples z, we
really do have f(z) = b. Suppose f(z) = b for fewer than 1/4 of all vectors z. Then
the probability that in R samples we draw at least R/2 — ¢ with f(z) = bis bounded
above by

Thus, the probability that we choose a value b such that f(z) = b for fewer than 1/4
of all vectors is bounded above by

4.3 Finding the Starting Points

Having chosen b, we use equivalence queries to elicit M distinct counterexamples z
with the property that 1 — b= f(z) = MMQ(z). These may not be easy to acquire
by sampling if there are relatively few of them. Let these counterexamples be denoted

S= {II)],...,IIIM}.




We briefly describe the procedure to generate them.

If 1 —b =1, then the successive conjectures are the constant FALSE function, the
function true on just the first counterexample, the function true on just the first two
counterexamples, and so on. It is clear how to construct a general DNF formula of
m terms true on just m arbitrary given vectors.

If 1 — b =0, then the successive conjectures are the constant TRUE function, the
function false on just the first counterexample, the function false on just the first two
counterexamples, and so on. (Given m arbitrary points, we can construct a decision
tree with O(mn) leaves that classifies just these m points as false, and then convert
this to a general DNF formula with O(mn) terms.)

In either case, if an equivalence query returns “yes” before M points with the spec-
ified properties have been collected, the target function has been exactly identified,
and the procedure returns. When a counterexample is returned by an equivalence
query, we make a query to the MMQ oracle to check whether the answer is 1 —b. It is
clear that this procedure will either identify the target function with at most M + £
equivalence queries, or it will return the required set of M points.

4.4 Constructing the Random Walks

Assume that the procedure above generates M points with the required properties.
Then, for each z; € S, we construct a random walk starting at z; of length L =
[2n1nn] as follows. Let w(i,0) = z;. Assuming w(z,0),...,w(s,t) have been defined
for 0 <t < L, we select uniformly and independently one of the n dimensions and
then flip an unbiased coin to decide whether to stay at the current point (w(z,t+1) =
w(7,t)) or to move to the neighbor of the current point along the selected dimension
(w(z,t 4 1) is the neighbor of w(i,t) along the selected dimension.) Also denote the
final endpoint of the walk by z, that is, z} = w(7, L). Note that two successive points
along the walk are at distance 0 or 1 from each other.

Let W; be the set of walks in which each dimension is selected at least once,
regardless of whether the walk has moved along that dimension. The endpoints of
walks in W; are independently and uniformly distributed over the set of all n-bit
vectors. For each walk ¢, the probability that it is in W; is at least 1 — 1/n. The
probability that the endpoints of all the walks in W; are distinct is bounded below
by 1 — M?/2",

Let W, consist of all those walks ¢ from W such that f(z!) = b. That is, W, is
the set of walks in which every dimension is chosen at least once, and the value of f




at the endpoint of the walk differs from the value of f at the start of the walk.

Assume that b has been chosen so that f(z) = b for at least 1/4 of all assignments
z. For each walk : independently the probability that walk 7 is in W, is at least
(1/4)(1 — 1/n). Thus the expected number of walks i in W5 is at least
M 1
T(l - ;)7
and the probability that fewer than half this many walks are in W, is bounded above
by

M M

e 32t ien .

Hence, the probability that W, does not contain at least

Y-

n

walks with distinct endpoints is bounded above by

2
M, M
— 4 e 2tien,

zn

4.5 Constructing Candidate Terms

For each walk ¢, for ¢ = 1,..., M, we use the MMQ oracle to query successive points
w(z,0),w(s,1),... along the walk until either we run out of points or we find a pair
of points w(z,t) and w(:,t + 1) such that the MMQ oracle returns different values.
If we find such a pair, we use the neighborhood procedure (defined above) with the
MMQ oracle to construct a candidate term, which we denote by T:. The support set
of the candidate term T; is denoted by S;.

By our choice of S, the MMQ oracle returns 1 — b on every point z; € S. Thus,
a walk will be assigned a candidate term T; if and only if the MMQ oracle returns
a value of b somewhere along the walk. In particular, if the MMQ oracle returns a
value of b for the endpoint of a walk, the walk will be assigned a candidate term. We
can give a lower bound on the number of walks assigned candidate terms as follows.

Each of the walks in the set W; has an endpoint z! with f(z!) = b. If all of
these endpoints are distinct, then the MMQ oracle can make errors on at most £ of
them. Thus, from the bound above on the number of elements of W, with distinct
endpoints, at least

M1 |
(1= =)=
8( n) ¢




walks will be assigned candidate terms, except with probability bounded above by

2
M, M
— 4 e 52t T6n,

211.

4.6 Counting the Votes

What we want to find is a term T such that some set of £ + 1 walks return T as a
candidate term, and the corresponding £ + 1 support sets are all pairwise disjoint.
A direct approach would lead to the clique problem, so we instead use a greedy
approach.

We process in some order all the random walks that are assigned candidate terms.
Each such walk ¢ has a candidate term T; and associated support set S;. We keep a
list of all the terms encountered so far, and for each term on the list, an associated
list of support sets for the term. To process walk i, we check to see if T} is already on
the list. If not, we add it, with an associated list of support sets containing just S;.
Otherwise, we add S; to the list of support sets associated with T}, provided that S;
is disjoint from each of the support sets already on the list for T;. If this operation
causes the list of support sets for T; to contain at least £+1 elements, the term-finding
algorithm returns with output T:.

It is clear from the construction that if the term-finding procedure returns a term
T, then T has at least £ + 1 pairwise disjoint support sets on its associated list.
Hence, the MMQ oracle must have answered all the queries in at least one support
set correctly (that is, in agreement with f), and the term T is a correct term of f.

We now show that there is a high probability that the term-finding algorithm
will find a term with at least £+ 1 disjoint support sets. Intuitively, we take M large
enough that there will be a large set of “well separated” walks, whose candidate terms
must have disjoint support sets.

4.7 Separating the Walks

Let the Hamming distance between two walks be the minimum Hamming distance
between any pair of points, one from each walk. If the Hamming distance of two
walks is at least 3, then no point is within distance 1 of both walks, which means
that if they are both assigned candidate terms, the corresponding support sets of the
terms are necessarily disjoint.

At this point we need an upper bound on the number of walks that come within
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distance 2 of a specified walk. A simplified version of a proof of Valiant and Brebner
[6] suffices. We analyze the situation in which a random walk 7 is constructed as
described above from every n-bit vector, so there are 2" walks. The upper bounds we
give hold also in the case that walks are constructed only from the points in S.

Let z be any fixed n-bit vector. H,(,t) is an indicator variable for the event that
w(i,t) = z, that is, walk 7 is at z at time ¢, for 0 <t < L. H,(%) is an indicator
variable for the event that w(i,t) = = for some t, that is, walk ¢ visits z at least once.
N is the number of different walks that ever visit x, that is,

N, = Y H,(i).

i=1

We bound the value of N, as follows:

and therefore

2" L
D Ne< 3 3D Hei0)
z€eB™ z€Bp, i=1 t=0

Summing over all walks, times, and vertices, there are exactly 2" (L+1) events H,(,t)
that are 1; therefore we have

Y N < 2M(L+1).

r€B,

This is true also of expected values, so

S E(N,) < 2°(L +1).
z€By,

By symmetry (independent walks from every n-bit vector), the value of E(N,) is the
same for all 2" values of z, so for each z we have

E(N,) < (L+1).

That is, in the situation where we construct a random walk from every n-bit vector,
the expected number of walks that ever visit z is bounded above by (L + 1).

Now N, is the sum of 2" independent random variables H(:) (which of course
will have different means) and we may bound the probability that it falls very far

11




from its expected value. The probability that more than 2(L + 1) different walks visit

z is bounded above by
e~ (IH)/3 < =203,

This is clearly also an upper bound in the case that we consider only those random
walks made from vertices in the set S.

If we fix any random walk ¢ and consider the set D of vertices within distance 2
of walk 1,

ID| < (L + 1)n.

Let
p(n) = 2(L + 1)*n?.

If more than p(n) different random walks visit nodes of D, then there is some node of
D visited by more than 2(L + 1) different random walks. Thus, the probability that
more than p(n) different walks visit nodes of D is bounded above by

|D|n—2n/3 < (L + 1)n2—2n/3‘
In other words, for each random walk 7, this is an upper bound on the probability
that more than p(n) walks come within distance 2 of walk ¢. Finally, the probability

that there exists a walk ¢ (for i = 1,..., M) such that more than p(n) random walks
come within within distance 2 of walk 7 is bounded above by

M(L + 1)n?=2/3,

If for each 2 = 1,..., M, there are at most p(n) walks that come within distance
2 of walk ¢, then considering all the support sets for all the walks assigned candidate
terms, each support set can intersect at most p(n) — 1 other support sets.

4.8 The Probability of Finding a Term

Let us suppose the following.

1. M is chosen sufficiently large that
-M 1

2. We choose b correctly, i.e., so that f(z) = b for at least 1/4 of all n-bit vectors.
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3. We find the required set S of M points.
4. At least (M/8)(1 — 1/n) — £ random walks are assigned candidate terms.

5. For each i =1,... M, at most p(n) walks come within distance 2 of walk <.

Then the term-finding algorithm must return a correct term of f.

To see this, we note that under the assumptions given, the number of walks
assigned candidate terms is at least p(n)((n + 1)+ 1), and each disjoint support set
found can eliminate at most p(n) — 1 other support sets, so at least ((n + 1)¢ + 1)
disjoint support sets are found. At most £ of them can contain errors, so there must
be at least nf + 1 support sets for correct terms of f. Since f has at most n terms, at
least one term will be assigned at least £ + 1 disjoint support sets. We have already
argued that any term that is assigned at least £ + 1 disjoint support sets is a correct
term of f.

Therefore, provided M is chosen to satisfy (1) above, the probability that the
term-finding algorithm will neither correctly identify f nor find a correct term of f is
bounded above by the sum of the probabilities of the following events.

1. b is incorrectly chosen.

2. Fewer than (M/8)(1 — 1/n) — ¢ walks are assigned candidate terms, given that
b is correctly chosen.

3. More than p(n) walks come within distance 2 of some walk i.

The upper bounds we have derived on these probabilities are as follows.
1. B 4 -5+,

2. M2 | o-F+ien,

3. M(L + 1)n?-%/3,

We in turn bound these as follows. There exists a function b(rn) = Q(2%/?) with
the property that if £ < b(n) and we choose R = [8( + 81n 10], then

13






