#u

On Some Generalizations of Binary Search
David Dobkin and R. J. Lipton

Research Report #25

This paper will be presented at the Sixth Annual ACM Symposium on Theory

Computing, to be helg in Seattle, Washington, April 1974

February 1974

On Some Generalizations of Binary Search

David Dobkin and R.J. Lipton
Department of Computer Science
Yale University
New Haven, Connecticut 06520

Abstract

Classic binary search is extended to
multidimensional search problems. These
new search methods can efficiently solve
several important problems of computer
science. Applications of these results
to an open problem in the theory of
computation are discussed yielding new
insight into the Lba problem.

TI. Introduction

One of the most basic operations
performed on a computer is searching. A
search is used to decide whether or not
a given word is in a given collection
of words. Since many searches are
usually performed on a given collection,
it is generally worthwhile to organize
the collection so that searching is
efficient. The organization of the
collection into a more desirable form,
called preprocessing, can be assumed to
be done at no cost relative to the cost
of numerous searches. Thus, for
example, dictionaries are arranged in
alphabetical order; this organization
allows for fast location of a word's
definition.

One of the most popular methods
of searching is the binary search
method. 1In his encyclopediac work
on sorting and searching, Knuth {&]
gives to Inakibit-inu of Uruk for
discovering this method in 200 B.C.

For the purposes of this paper we
can view binary search as follows:

Data: A collection of m points

on a line.

Query: Given a point, does it

equal any of the m points?
Binary search can answer this query in
Llog mJ * + 1 steps where a step is a
comparison. MNote that the
preprocessing nceded is a sort which
requires O(m logym) steps. Tor the

algorithms under consideration here,
we will define a ctep in an algorithm

*Throuthout this paper all logarithms
arc taken base 2.

as a comparison of two scalars or the
determination of whether a point in
2-digensional Buclidean space lies on,
above or below a given line. For
notational simplicity we will define g(m)
as the number of steps necessary to
perform a search through a set of m
objects. Thus, g(m) = Llog ml1 + 1.
This paper generalizes binary search
to higher dimensional problems.,
Throughout it is assumed that data can
be organized in any manner desired at no
cost. Thus, our cost criterion for
evaluating the relative efficiencies of
searching algorithms will be the number
of steps reguired to make a single query
into the recorganized data.

. The scarch problems considered are
specified by a collection of data.and a
class of queries. These problems include:

Examnle 1: Data: A set of m 1lines
in the plane.

Query: Given a point, does
it lie on any line?

Txamnle 2: Data: A set of m regions

’ . in the plane.

Query: Given a point, in
which region does it
lie?

Ixample 3: Data: A set of m points
in the planes
Query: Given a new point,
to which of the
original points is
: it closest
Example L: Data: A set of m lines
in n-dimensional
space.
Query: Given a point, cdoes
' it lie on any line?
Dyvample 5: Data: A set of m k-
’ , dimensional objects
in n-dimensional
R SpaCC.

GQuery: Civen a point, does
it lie on any of the
objectz?

vamnle 5: Data: A set of m

i hyperplanes (n-=1-
airmencional objects)
in n-dinensional
5pacee

Query: Given a point does
it lie on any hyper-
planc?

These examples form the basis for
some important problems in diverse areas
of computer science. Examples 1, 2 and 3
are fundamental to certain operations in
computer graphics [5] and secondary
searching L4]. In' particular, example 3
is a reformulation of an important
problem discussed by Knuth L] concerning
information retrieval. Ixamples 4, 5
and 6 are generalizations of the widely
studied knapsack problem [2]. Ilore
exactly, the knapsack problem is a
special case of example 6: Given the
integers xl,....tha there are 0O-1

valued numbers al""’an such that

'n
S ax =0b
p:l PP-
X X

if and only if the point T%”"” T?

lies on one of the hyperplanes Hi(v)=l
where if the binary expansion of i is

=1 9

with ey = 1 or 0, the jth hyperplane
is given by :

n
Hi(vl”"’vn) = 3 c.V,

j=133

Thus, for the knapsack problem a total

of 2P-1 such hyperplanes exist and we ask
if a given point in n-dimensional space
lies on any of these objects of dimension
n-1. By taking intersections of hyper-
planes, we can generate objects of
dimension n-N in n-dimensional space
such that the knapsack problem has N
(or more) solutions if and only if the

. *1 *n .
point \ 5% «eer [lies on one of

these objects. Examples 4 and 5
correspond to generalizations of the
knapsack problem where we ask for many
solutions rather than a single solution.

ITI. The Algorithm

A1l of. our first algorithms are
extensions of a fast algorithm that
computes the predicate:

d1<i<nl(xy) is on L;]

where Ll""?Lm are lines and (x,y) a

po%nt # 2-dimensional Tuclidean space
(n°) . Therefore, we will sketch the

proof that this predicate can be
computed in 0(log m) steps.

Theorem 1: Tor any set of lines
Ll.....Em in the plane, there is an
algorithm that computes

J1<i<nl(xy) is on L]

in 3g(m) steps.

Proof: Let p; (1 <1< n) be the

projections of the intersection points

formed by Ll,...,Lm; moreover, assunme

that Py <...<P,. Define the relation
< (1 <1i<n) as follows:

Lj-<i L, if and only if

‘Vx c El [if Py -<_- X f: pi+l. then
' L,j(x) § Lk(x)]-

(Note, L(x) is equal to the y such
that (x,y) € L). By a simple continuity
argument it follows that each <i is a

linear ordering on the line Ll”"’Lm

(see fig. 1). Let w(i,1)s...,m(i,m)
be such that ‘

.

Le(i, 1) <581, 2)S 00 <t Dn(d,m)

The complete algorithm (see figure 1),
then operates on the point (x,y) € E
as follows: .

(A) Find an i such that pj <x gl’i+l

(B) Do a binary search on the m objects

Lﬂ'(l’l) 3 eev e Lﬁ(i,m)'
Since this algorithm consists of a . (.)
binary search into a set of at most —»x—

objects (the points of intersection of the
lines, i.e. ip;) and a binary search

into a set of m objects (the lines
Ln(i,l)’ eves Ln(i,m))’ it is clear the

total number of steps is at most

Eig:ll and since g 1is a

glm) + g
nonotonically increasing function and
g(mz) < 2 g(m), this quantity is at most
3 g(m).

Before studying applications of this
algorithm to the problemc mentioned above,

"4t 1is worthwhile to examine 1its structure

in more detail. Baszically, the algorithm
works on two sets of objects which have
beecn renerated from the original set of
lines Auring preprocessing. These sets
are the set of projections of the
intersection points (i.c. {p;}), and
the set of permutations giving™ the order

of the lines between Py

ecach i, 0 < i <n, The sct of points can
be ordered and Therefore binary secarch
can be used to determine where a new
point lies with respect to these points
and, since the lines are non-intersecting
in the interval being considered, binary
search can be applied to determine if
the given point lies on any of the

lines. lloreover, it :.s clear that the
algorithm not only determines whether

the point lies on one of the given

lines, but also determines in which
region of the plane the point lies.

Thus, we have,

Corollary: Given a set of regions

Tormed by m line5 in the plane, we can
determine in 3g(m) steps in which
region a given point lies.

Although it may be possible to find
other algorithms which compute the given
predicate in less than linear time, it
seems reasonable to conjecture that no
algorithm which does not generate
different objects from the original set
can compute the predicate in less than a
linear number of steps.

Je study next some applications of
the algorithm given above to examples
L and 6 of section 1.

and Py for

Theorem 2: Suppose that Lys...,L, are

m lines in n-dimensional EBuclidean
space (n > 2). Then it is possible to
determine if a point is on one of the
lines in (n+1l)g(m) steps.

Proof: The proof is by induction on n.
For n = 2, the theorem reduces to
theorem 1. Now suppose that n > 2.

Let x be the given point and project
the lines and x onto a hyperplane of
dimension n-l. Since n > 2, the
result of this operation is m lines

1 '
Lyseessly (or points in degenerate

cases) and a point x'. Furthermore,
if x lies on Ly, then x! lies

on L;. By the induction hypothesis,
we can decide if x' 1lies on any
. line L; in ng(m) steps. If x!
doesn't lie on any L; then x does
not lie on any Ls. And, if x' 1lies

' t
on lines {Li,....Li }, then in a binary
search of {Li,.o.,Li } ordered with

k

respect to the projected parameter
we can determine if x lies on any
of the lines. Since this search
requires at most g(m) steps, the
theorem is proved.

Theorem 3: Suppose that Hyse..nl —are
(n-1)-dimensional hyperplanes in
£%(n > 2). Then, we can determinc which

b

region a point lies in or which hyperplane
a point lies on in less than

(3:2"% (n-2)) g(m)

Sketch of Proof: Let f(n,m) be the time
required to_do the search, It is clear
that f(2,m) = 3g(m) and,we will show
that f(n,m) < f(n-1, m?) + g(m). We
procecd by forming the projections onto
some fixed hypcrplane of all the
intersections H,nH, (1 <i<3< m) .

Steps .

T?ese hyperplanes form hyperplanes
1
Jsevesdy (k< m) which are (n-2)-

dimensional objects in an (n-1) dimension-
al space. If the point x projects onto
x!, we can by the inductive hypothesis

determine in f(n-1, n?) steps in which
region of n-1 dimensional space xt lies
Suppose that x' lies in region Re

Then, since no Hin Hj projects onto R,

the hyperplanes Hl""’Hm are linearly

ordered at that part. So in g(m) steps
we can determine if x 1lies on any
hyperplane. If x' lies on a hyperplane

1
Jy then by a search of hyperplanes

requiring less than g(m)_ steps, we can
determine on wnich hyperplane x lies.

This completes the proof that
f(n,m) < f(n—l,mz) + g(m). Applying the
recursion yields f(n,m) < £(n=k,m?") +

-2
kg(m) or f£(n,m< f(2,m2n)+(n-2) g(m)
= (3:2%% + (n-2))g(m). o

ITI. Relation to Comnlete Problems

In light of the work of Cook [1],
Karp [3], and Horowitz and Sahni [2], the
results of the previous section may be
surprising. Their research leads to
solid evidence that no polynomial time
algorithm can exist for solving the
knapsack problem, Uhile we have not
disproved this conjecture, the results of
the previous section yield contradictions
to some extensions of this conjecture.

Before proceeding it is of value to
reformulate the statement that there
exists a polynomial time algorithm for
solving the knapsack problem. This
statcment is clearly equivalent to

(1) 33;)3363 \/n [algorithm @ solves

the n-dimensional knapsack
problem in p(n) timel.

' Note, in order for (1) to be true, there

must be an algorithm that operates
unifor~ly for all n. Allowing
preprocensing leads to

(2) zap \/1xza C@ [2lgorithnm C@ solves

the n-dimensional knapsack

problem in p(n) timel.

Clearly, (1) implies (2); however, (2) may
not imply (1). '

Our interest in the two vercions (1)
and (2) is twofold: TFirst, the two
versions point out a perhaps unnoticed
difficulty in attempting to prove that
P ¥ KP. Second, the two versions
demonstrate a possibly unnoticed
difference among the complete problems,

One possible approach to proving
that P $ NP is based on (2): select
a polynomial p, then show that every
algorithm for the n-dimensional
knapsack must take at least p(n)+l
steps for some n. The results of the
previous sections show that this may be
false. lore exactly, let N be an
integer and consider the problem of the
knapsack problem with at least n-N
solutions. The analogs of (1) and
(2) are:

(l') 3p3 QVn > N [algorithm @

solves the n-dimensional
knapsack problem with at _least
N solutions in p(n) time]

and

(2‘) Eap k/n ?3 (Q_[algorithm (0 solves

the n—dimensional knapsack
problem with at least N
solutions in p(n) timel.

1
Then we can prove that (2) is true.

1
Theorem 4: (2.) 1is true.

Proof: A knapsack problem of dimension
n has a solution if the predicate

Hia < i< 2°[(xgsee0nxy) is on Lg]

where each Li is an n-l1 dimensional

hyperplane, Similarly, we can generate
n-k dimensional hyperplanes consisting of
thé interscction of k hyperplanes such
that the knapsack problem has k
solutions if and only if the point

XyseeesX) lies on one of these

n

hyperplanes. By a generalization of
Theorem 3, we can compute this predicate
in time exponential in n-~k and
polynomial in n. 0

Therefore, the outlined approach to
proving P § IP may be doomed to fail;
in any case it does fail when applied
to the N solution knapsack problcm.
This immediately leads to the question:

Is the Il knapsack problem, for some
i, a completn problen?

If this is true, then we would have a
complotﬁ problem which hns for cach n a

m

polynomial algorithi. Thercfore, any

) 11t
Theorem 5: (2)

atteupt to prove that this problém has no

polynomial algorithm must really cxploit
the nor s dlecss, it nuct attonpu
to pret 1) Tund ot ~(2).

The above diccussion also leads to a
difference between the known complete
problems. Consider instcad of the
knapsack problem the -chromatic number
problem. The analogies of (1) and (2)
are.now:

a") Jp A Vn [algorithm Q solves

the problem of chromatic number
on n node graphs in p(n) time]

(2") Eﬂp k/nzl(Q [algorithm () solves the

problem of chromatic number_on
n node graphs in p(n) timel.

While (1) is open and (2') is true but
nontrivial, (2") is easily seen to be
truec.”

is true.
2

Proof: There exist 2" graphs on n
noces, and for each graph a chromatic
number .can be found. Ve form a list of
all graphs arranged in some order with
their chromatic numbers, All of this
work can be done before considering
any data. Then, given a graph, in

one probe of this list we can determine
the graph's chromatic number and in one
comparison we can determine if it is
k—-colorable,

Therefore it seems possible that
there are two kinds of complete problems:
those that with preprocessing have
trivial polynomial time algorithm and
those that do not. Essentially the
infinite precision allowed in the knap-
sack problem has no counterpart in the
chromatic number problem. In Figure II,
we have classified the complete problems
presented by Karp according to this
distinction. It appears that we may be
able to extend Karp's notion of
reducibility to obtain a finer division
of this class of problems to reflect
these differences. A set A 1is said
to be polynomial reducible to a set B
(in the sense of Karp) if there exists
a polvnomial computible function £
such that f(x) € 3 <> x € A, By
adding conditions to this definition so
that A and B are of the same type
in the sense of Figure II, it appears
that a more realistic notion of
reducibility, in the sense of the

differences between statements (1)
_and (2) results.

Acknowledgements
e would like to thank Professor
Larry Snyder for some helpful
conversations and Iir. liichael Shamos

for

(1]

[2]

[3]

(4]

(5]

comnents on this manuscript.

References

S.A. Cook. The complexity of
theorem proving procedures,
Conference Record of the Third
ACl Symposium on the Theory of
Computing, Shaker Heights, Ohio
May 1971,

E. Horowitz and S. Sahni. Computing
partitions with applications to

the knapsack problem, Cornell
University Computer Science
Technical Report 72-13L, July 1972,
(To appear in JACHM.) :

R. Karp. Reducibility among
combinatorial problems. Complexit
of Computer Computations, edited by
R, Tailer and J. Tnatcher, Plenum
Press, 1972.

D. Knuth. The Art of Comnuter
Programming volume J: Sorting and
Searching, hddison-.esley, 1973,

w. Newman and R. Sproull.
Principles of Interactive Computer
Graphics, LcGraw-nill, 1973.

Figure I:

i)
ii)
iii)
iv)
v)
vi)
vii)

in
in
in
in
in
in
in

The
the
the
the
the
the
the
the

permutations we need to consider here are,

interval
interval
interval
interval
interval
interval
interval

(00 ’Pl)
(Pl’Pz)\
(Pz: PB)
(p3»Ph)
(ph» Ps)
(Pst Pé)
(Pévoo)

(1,2,3,4)
(1,352,4)
(3,1,2,4)
(3,1,4,2)
(3,4,1,2)
(3,4,2,1)
(453,2,1)

Knapsack Satisfinbility

Steiner Tree . Satisfiability with at most 3 literals
Job Sequencing per clause

Partition } Chromatic lumber

Max Cut ' Exact Cover

0-1 Integer Programming Clique Cover

3-dimensional matching
Hitting Set

Clique

Set Packing

Node Cover

Teedback Hode Set

Feedback Arc Set

Directed Hamiltonian Circuit
Undirected Hamiltonian Circuit
Set Covering

(a) . (b)

Figure IT: Qa) Infinite precision problems for which statement (2) is nontrivial
- (b) Graphical problems for which statement (2) is easily verified

(Note: All notation is as in Karp 3.

