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Abstract

We describe a new, convergent, primal-feasible algorithm for linearly constrained optimization.
It is capable of rapid asymptotic behavior and has relatively low storage requirements. Its
application to large-scale nonlinear network optimization is discussed and computational results
on problems of over 2,000 variables and 1,000 constraints are presented. Indications are that it
could prove to be significantly better than known methods for this class of problems.

Keywords: Nonlinear Optimization, Nonlinear Network Optimization, Primal Methods,
Truncated Newton Methods.



1. Introduction

The canonical linearly-constrained nonlinear programming problem (LCNLP) has the form:

LCNLP Minimize fz) | (1)

subject to Az ==} (2)
I€z<u (3)

where f: R® — R, A is a given matrix of dimension mxn and b € R™ and u, [ € R" are given

vectors.

A very rich class of applications that may be modeled as problems of the form LCNLP arises
in computing economic equilibria in spatially separated markets [58], the study of
telecommunications networks, the estimation of input-output matrices [35, 36], water distribution
[7] and hydroelectric power management [8, 9, 10}, resistive electrical network analysis [11] and
the analysis of urban traffic networks {12, 13]. All these models have one thing in common, that
is, the constraints Az == b are flow conservation constraints on some network. We refer to such
problems as nonlinear network optimisation problems.

In practice, these problems tend to be large with many thousands of arcs (variables) and nodes
{equality constraints). They are certainly an order of magnitude larger than problems that can
be handled routinely by off-the-shelf, state-of-the-art software for linearly-constrained nonlinear
optimization [2, 3]. Furthermore, even in cases where off-the-shelf software may be used, the
efficiencies that can be gained by working with algorithms and codes that are specialized to such
problems may make the difference between software that is practical for use by
managers/engineers and software that is useful for research purposes only. Typically, one can
expect something between one and two orders-of-magnitude improvement when using the
network specializations of algorithms described in this paper. Furthermore, for a given amount
of storage, specialized codes are capable of handling much larger problems.

Much of the motivation for this work comes from the exceptional success story of linear-
network optimization where specialized algorithms and software permit the practical solution of
extremely large problems (millions of variables, see [1] for example). It is also not unusual to
obtain solution times that are one hundredth of the time general-purpose LP software would take
to solve the same problem. There is, however, a significant difference when attempting to
emulate the linear network success story. Whereas large-scale LP software was commercially



available and was well studied and understood at the time specialized linear network codes were
first developed (starting in the early 1970’s), this is not the case for nonlinear programming
(NLP). Both the theory and practical implementations are rare for large-scale NLP. It is not
even the case that one knows which algorithm to specialize. Unlike in LP there are many
possibilities, each of which appears to suit a particular combination of problem attributes.

At the time this research first began, in the late 1970's, many theoretical issues pertaining to
the solution of LCNLP remained largely unanswered. What should be done in the presence of
degeneracy (a perennial problem in networks)? What could be done to achieve rapid convergence
when storage was limited? Would traditional active-set strategies prove to be effective for
treating very large problems? What data structures were required for efficient implementations!?
Could practical implementations also be shown to fit within a sound theoretical framework?

The study of algorithms for large-scale nonlinear network optimization has proved to be a
convenient vehicle for generating new, appropriate theoretical results for devising practical
algorithms for LCNLP and for analyzing their convergence properties. This is primarily because
of the ability to experiment with a limited budget on very large nonlinear optimization problems.
A number of important breakthroughs have resulted:

(a) the maximal basis approach to handling degeneracy (in Dembo and
Klincewicz [14, 16]);

(b)  the Inexact Newton rate-of-convergence characterization (in Dembo, Eisenstat
and Steihaug [15));

(c)  the Truncated-Newton algorithm (in Dembo and Steihaug [17]) which describes
a cost- and storage-effective way to achieve gradient-related descent directions
with rapid convergence characteristics;

(d)  the global convergence framework and analysis (Dembo and Sahi {18]), in which
a practical convergent framework for large-scale optimization is developed.

In all of the above results there is a common theme, which is an outcome of the discipline
imposed by having to deal with large problems. They all present theoretical results that are

expressed in terms of measurable quantities and assumptions that can be verified. It

is my firm belief that this should be a major goal to strive for in computational mathematics.
All too often one sees computational theory that purports to be useful, yet is expressed in terms
of quantities that are not measurable or based on assumptions that cannot be verified.

This paper synthesizes the ideas presented in (a), (b), (¢) and (d) above into a particular primal
feasible algorithm for large problems of the form LCNLP. The PTN algorithm described in
Section 2 is a theoretically sound, (convergent) algorithm that is able to trade off overhead per



¢

iteration with asymptotic convergence rate. It has mechanisms for rapidly identifying an optimal
set of active constraints, which is essential for large problems. It also can cope efficiently with
the massive degeneracy characteristic of network optimization problems.

Section 2 begins with a presentation of the PTN algorithm. To place it in context and to
highlight possible modifications to the algorithm that will preserve its theoretical properties, the
algorithm is described in terms of the Dembo-Sahi framework [18]. Section 3 describes the data
structures required to implement PTN efficiently and Section 4 outlines computational
experiments with the NLPNET code [4], an implementation of PTN for nonlinear network
optimization.

In some sense the order of presentation in this paper is counter-chronological. The PTN
algorithm was coded and operating in the NLPNET system long before the Dembo-Sahi
framework and global convergence analysis was completed. In fact, it was experiments with
NLPNET that motivated the analysis in [18] and not vice versa.

2. Overview of the Primal Truncated-Newton (PTN) Algorithm

The PTN algorithm is a feasible direction method for LCNLP that fits into the convergent
framework as outlined in Dembo and Sahi {18]. Their framework involves two types of feasible
directions:

1. restricted directions, which are defined as feasible descent directions restricted to

lie in a subspace containing the current active set (the set of constraints that
currently hold as equalities); and

2. relaxing directions, which are defined as feasible descent directions along which one
or more constraints may be relaxed.

For the restricted directions, PTN uses a primal feasible truncated-Newton direction from
whence the name “Primal Truncated Newton” method is derived. Details are given in subsection
2.2.

For relaxing directions a (scaled) projected gradient direction is used. It is not practical to
compute the projection of the gradient onto a general polyhedral set. However, it is relatively.
easy if projection is done on a particular restriction of the problem. Details are given in
subsection 2.2 .

In order to present the Dembo-Sahi framework we need to introduce some terminology.



Definition 2.1 (Acceptable points)

Let p be a descent direction computed at a feassble point, z. We refer to a point
zt = z + ap as acceptable if z? is feasible and the step ap satisfics either

(a) both Goldstein-Armijo conditions

(GA1): fz*) < f(z) +a9(z)Tp ; 1€(0,1)

(GA2): g(z*)Tpla) > Boag(z)Tp ; BE( 1)
or

() o =@ and z* satisfies GAL only; where @ is the mazimum feasible
steplength along p.

Remark 2.1

For the purposes of proving convergence, GA1 and GA2 may be replaced by a backtracking
Armijo-type linesearch procedure [19] or alternatively GA2 may be replaced by any of the
standard conditions (see Fletcher {20], for example) that bound the stepsize away from zero at
points that are not optimal.

-



The Dembo-Sahi framework is then:

Algorithmic Framework
START with z feasible
(Major Iteration; Index = k)
IF  optimal at z, THEN exit.
(Minor Iteration)

ELSE compute a relaxing direction, p,

and an acceptable point z{ =z, + a,p, ,

sety«-zt;

WHILE a constraint relaxation condition is not satisfied at y,
compute a restricted direction p
and an acceptable point y* =y + ap,

set y = y* and repeat.

ELSE k«—k+1
T, =y

start a new major iteration.



In order to completely specify an algorithm within this framework it is necessary to describe
precisely
1. how relaxing and restricted directions are to be computed, and
2. the rule for terminating a minor iteration (i.e., the constraint relaxation condition).

This is done in subsections 2.2, 2.3 and 2.4 below.

Convergence may then be established simply by verifying that the search directions,
steplengths and constraint relaxation conditions satisfy certain properties [18], which is done in
subsection 2.5.

2.1 Computing feasible descent directions for LCNLP

In the discussion below it is assumed that a feasible point, Z°, is available or has been
calculated by solving a linear programming problem (Phase 1). Thus, given 7', computing a
feasible descent direction, p, amounts to finding a vector p satisfying:

#(z)Tp < 0 (4)
Ap = 0 ()
-7 £ p < u-% ()

Reduced gradient methods (sometimes referred to as variable-reduction methods [21]) provide a
convenient method for generating feasible descent directions for LCNLP. The principal idea
behind such methods is that by considering only directions restricted to the tangent plane
Ap = 0, the general linearly-constrained problem becomes locally equivalent! to one with box

constraints.

A convenient way of doing this® is to eliminate certain (basic) variables by expressing them in
terms of other (nonbasic) variables using the constraints Az = .

1This terminology will be made precise later on in the presentation

%For other approaches see Chapter 2 of Gill and Murray [22].



Assume A is of full row rank and partition it as follows: A = [B B}, where B is a square
nonsingular basis matrix. Similarly, partition z, p, u and I. Then

zg = B‘l(b-l_BzB) = ¥(zg) (7

where the z; and zp are referred to as basic and out-of-basis variables respectively. The
problem LCNLP is therefore equivalent to the reduced 5 - m dimensional problem:

RCNLP  Minimize ffzp) = A¥(zp), zp) (8)
subject to Iy < &(zp) < up (9)
Iy < 25 < up (10)

The function f R is referred to as the reduced objective function, and its gradient
g(zg) = -(B'1B)Tgy + gyis called the reduced gradient.

At any given feasible point, if the problem is nondegenerate, there exists a basis such that
the linear inequality constraints (9) introduced by this transformation hold with strict inequality,
in which case the problem is locally equivalent to the box-constrained problem

BNLP  Minimize ff(zp) (11)

subject to Iy < 2z < up (12)

that is, RCNLP with constraints (9) ignored.

By locally equivalent we mean that any direction computed at a feasible point that is
feasible in BNLP will also be feasible for the original problem LCNLP. Thus the
simplified problem BNLP may be used to generate feasible descent directions for LCNLP.

Difficulties arise when degeneracy is present, which is typically the case in network
'optimization. In degenerate problems, some of the constraints (9) may be active in every possible
basis and then there is no assurance that a direction that is feasible for BNLP will also be
feasible in LCNLP (i.e., the two problems are no longer locally equivalent). ‘

This difficulty may be circumvented by working with a particular restriction of LCNLP.
The key idea is to affect the reduction of LCNLP to RCNLP using a maximal basis® in the

3A maximal basis is one that contains as many columns as possible corresponding to free variables. The concept of
a maximal basis was first introduced by Dembo and Klincewics {14, 16]. For details on how to compute and maintain
s maximal basis we refer resders to [14, 16]. It suffices to say that such a basis is easy to compute and update.



transformation in (7). It can then be shown that a particular restriction of BNLP is locally
equivalent to the corresponding restricted version of LCNLP. Some new terminology is needed
to facilitate the description of the locally-equivalent problem.

Definition (Blocked Variables)

A variable that is not basic and is currently at one of its bounds is said to be blocked if an
arbitrarsly small move off its bound will induce in feasibilitics in some basic variables.

Remark 2.2

In nondegenerate problems a maximal basis ensures that no variables are blocked.

.Remark 2.3

To determine whether or not a variable is blocked, one simply generates a column of B'(B)
and then examines the signs of the nonzero elements. The basic variables affected by a change in
a variable out of the basis are said to form a circuit with this variable. If the constraints
Az == b are the conservation of flow constraints in a network, then the nonzero elements of BB
are the cycles that nonbasic arcs form with arcs in the basis tree. The locally equivalent
(restricted) reduced problem is then

BRNLP Minimize ff(zp) (13)
subject to Iy < z3 < up (14)
(zﬂj == ("ﬂ, or (IE)J. if (29)’. is blocked. (15)

To see that this is locally equivalent to the restriction of LCNLP given by (15), note that:

1. any free nonbasics will only induce changes in free basics (a property of the maximal
basis, see Dembo and Klincewicz [14, 16]), and .

2. the only nonbasics at a bound that are allowed to move are those that induce
feasible changes in basic variables (by construction of BRNLP).

Thus any feasible direction computed for BRNLP will also be feasible for the restriction of
LCNLP with the blocked variables held fixed. We are now in a position to describe the restricted
and relaxing steps in PTN.
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2.2 Computing a search direction for the relaxing step

The relaxing step plays an extremely important role in the PTN algorithm. Its primary
function is to facilitate rapid identification of the active set. This is an essential property of any
algorithm for large-scale optimization, since even if an algorithm has fast asymptotic behavior on
the optimal active set, its overall performance will depend heavily on how quickly it is able to

identify an optimal set of active constraints.

Thaus for large problems it is crucial for the relaxing step to be capable of making radical
changes to the active set. One way to do so economically is to move in the direction of a
negative projected gradient [—gR]"' for the box constrained (reduced) problem, where the
components of [-aR]"' are given by:

~
(eB); i (p; < (zp; < (up);

A max {0, -f} i (zp; = (; (10)

[
e —

min {0, -,5?} if (2p); = (up); -

.

Remark 2.4

lg®*ll = 0 is a first-order necessary condition for optimality at a feasible point.

In degenerate problems [-gR]"' might not yield a feasible direction for LCNLP. However, a
restriction of [-gf]t to the space of blocked nonbasics will generate feasible directions. This is
precisely the projection of the reduced gradient, -yR, onto the constraint set of BRNLP and is
given by:

(pg); = ) [gi1* if (2p);is not blocked (17)

0 otherwise .
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The relaxing direction used by PTN is* T

p = [pg] = [-BlBprg) (18)
P3 P

which satisfies (4), (5), and (8) (i.e., is primal feasible).

Since |lp}| = 0 in (18) is a first-order optimality condition only if no blocked variables are
present, the following special case arises.

Consider the situation where [|pg || == 0 and there are blocked variables with corresponding
projected gradient elements that are nonzero (i.e., the current point is not optimal). This then
resembles the situation in linear programming when a degenerate pivot is required. Just as in
linear programming, using a pivoting rule such as the one described by Bland [24], after a finite
number of pivots one will either prove optimality or pg will have a nonzero component and a
relaxing step may be taken.

Thus, if the current point is not optimal, the above procedure always produces a nonzero
relaxing direction which is gradient-related (see [18]).

Alternatives to the r‘eli.xing direction used in PTN

The relaxing direction we use is cheap to compute and has the added benefit that it may result
in a radical change in the active set. One could always use relaxing directions such as those used
in MINOS [3], GRG2 [2], or CONOPT [24], that drop one constraint at a time.®> We have ruled
these out for large problems since the overhead per iteration is such that it might take an
inordinate amount of time to identify an optimal active set.

The chief objection to using the negative projected gradient (or a scaled projected gradient for
that mattér) is that it would lead to slow convergence since it is a direction of steepest descent.
This reasoning, however, overlooks the fact that relaxing steps are taken relatively rarely (see
Tables 4.2 and 4.12) and (for our purposes) are used only to help identify an optimal active set
quickly. The rate of convergence then depends primarily on the manner in which a restricted
direction is computed.

“In the NLPNET implementation [4], the user has an option of using either [4F]* in (17) or [-Dg®|* where D is s
diagonal scaling matrix with elements equal to the diagonal of the reduced Hessian.

*MINOS does have a “multiple price option” which allows for more than one variable to move off s bound in a
relaxing step. However, the design of the code explicitly attempts to keep the number of superbasics small and to
move no more than a few variables off their bounds in a relaxing step (see [3], page 89).
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There is an entire spectrum of possible algorithms that are theoretically convergent (see Dembo
and Sahi [18]) and that range in the use of relaxing steps from using them exclusively (such as in
Bertsekas [19]) to relatively infrequently as in PTN, depending on the amount of work that is
done on restricted subproblems. Naturally then, the direction choice in a relaxing step will
depend on how often (relative to restricting steps) one expects to relax constraints. In our case a
relaxing step is relatively infrequent and so it probably does not make much difference as to what
is used. So, one might as well choose the projected gradient direction {(or a scaled projected
gradient) as we have done. In cases where the relaxing step is relatively more frequent it is
probably better to use the projected reduced-Newton direction described in Dembo and
Tulowitzki [25], Bertsekas [26] or in Murtagh and Saunders [3].

2.3 Computing a search direction when taking restricted steps

In a restricted step, all variables currently at their bounds must remain there (their
corresponding components in the search direction vector are szero). Murtagh and Saunders [3]
have provided a framework and new terminology for describing this process in the context of
reduced gradient methods.

Following [3], let B be partitioned into B==[S N] where the columns in S correspond to
superbasic variables, zg, and the columns in N correspond to nonbasic variables, zy The
idea is that one computes a descent direction for the reduced problem in which py =0, that is,
the nonbasic variables are held fixed. This direction then induces a direction in the basic
variables given by pg = -B‘lSpS.

Murtagh and Saunders’ framework is perfectly adequate for both degenerate and
nondegenerate problems provided the partition is chosen as follows®:

1. the basis is maximal and

2. superbasics are strictly between bounds (free).

This follows since free superbasics affect only free basics and so, implicitly, all basic variables
that are currently at their bound remain so. In this way one knows a priors that a descent
direction, pﬁT == (p;r ,0), in the reduced problem RCNLP will induce a feasible restricted

®Murtagh and Saunders do not use this partition in their code MINOS [3] and hence, strictly speaking, they are
never sure at the start of a minor iteration whether or not the direction given by pg == -F'Sps, Py ™= O lies on the
correct manifold, since some components of py might be required to be sero in a reduced step.
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direction, p in LCNLP, with all components of p corresponding to variables currently at a bound
equal to zero. Thus, in the terminology introduced at the start of this section, the restricted
problems LCNLP and RCNLP are locally equivalent provided the basis is chosen
appropriately.

| Define Z by
-B’ls
Z = I such that AZ = 0 (19)
0

where the columns of Z span the nullspace of A. The restricted search direction is then given
by p = Zpg and the (reduced) gradient and Hessian of the restricted problem are then (Z7 g) and
ZTHZ respectively.

The reduced problem is (locally) unconstrained and therefore any gradient-related
descent direction on this unconstrained problem would suffice for convergence. In
PTN we have chosen to use the truncated-Newton search direction (see Dembo and Steihaug [17])
which gives us the name Primal Truncated Newton (PTN) algorithm. The computation of pgis
exactly the same as in the unconstrained case in which (27 H2) and (Z7g) play the roles of the
Hessian and the gradient, respectively. '

For PTN, pg is a descent direction satisfying

(ZTHZ)pg = -(ZTg) + r - | (20)
" el < o
wit St S 9

127l

where 9 == max {¢,, min (¢,, 12T gl19)}.

In NLPNET [4], ¢; = /machine precision and ¢,, which must be less than 1 [17], has a default
value of ¢, = 0.01 . The value of g € (0, 1), which determines the asymptotic convergence rate,
has a default value of 1 which corresponds to a quadratic rate [15], if the active set settles down.

The solution pg to the above system is computed either using a conjugate gradient or
conjugate residual method (for details see Dembo and Steihaug [17}, page 194).

There are some drawbacks to the use of a conjugate gradient or conjugate residual method for
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solving the Newton equations. For one thing, if ZTHZ is very poorly conditioned7, the
convergence of a conjugate gradient method might be inordinately slow (see Table 4.12 for an
example). We have found that the use of diagonal scaling, coupled with a heuristic for choosing
a “well scaled basis” (see [14]) improves the performance of the conjugate gradient method. In
NLPNET [4] the user has an option to use a preconditioned conjugate gradient method with
diag(ZT HZ) as the preconditioner.

Essentially, any other iterative method could be used to solve the (reduced) Newton equations
provided it met the criteria necessary for global convergence 17, 18]. However, there are many
advantages to the use of a conjugate gradient inner iteration. Firstly, the above method does not
require one to form the product ZT HZ (which may be dense and exacerbates the problem of
round-off errors). Secondly, the above PTN method generates gradient-related descent directions
whether or not ZTHZ is positive definite or singular and is thus appropriate for
nonconvex problems [17]. It is also able to take advantage of the sparsity of Z and H and
can, in cases where the Hessian is not available, dispense with ZT HZ altogether by computing
the product (ZTHZ)d using sparse finite differences [17] along the reduced gradient ZTg. This
requires one extra (reduced) gradient evaluation per CG iteration.

Without the use of a maximal basis and free superbasics, a situation which exists in MINOS
[3], GRG [2] and CONOPT [24], it is likely, particularly in degenerate problems, that a direction
computed using (20) and (21) will have to be discarded when py == -B lSps proves to be
infeasible. This could make a truncated-Newton direction a very costly one for these codes (some
experiments using a truncated-Newton direction in MINOS as reported in Section 4 seem to
confirm this).

2.4 Terminating a minor iteration

The decision to permit constraints to be relaxed (f.c., to start a new major iteration) is a
crucial one since if affects the convergence properties of the algorithm. If done too soon,
zigzagging between different constraints sets might result, thereby slowing the convergence rate
or, more seriously, resulting in convergence to points that do not satisfy the Kuhn-Tucker
conditions. (For a more detailed discussion see Dembo and Sahi [18].)

There are a number of practical rules for deciding when to relax constraints, some of which are

"The condition number of 2T HZ is the ratio of the largest to the smallest eigenvalue,
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known to be convergent [18].8 We have found the following “forcing sequence strategy” to be
easy and cheap to implement and effective in practice.

The forcing sequence strategy for terminating a minor iteration:
“Relax constraints when |g%(z)] < n, lolz )l ™

where n, — 0 is some preassigned sequence and z is the current value of the minor iterate.

In NLPNET [4] for example, we choose 5, such that, after NDECR major iterations, the
tolerance required on a subspace is equal to the final optimality tolerance required of the reduced
gradient. The parameter NDECR has a default value of § and can also be specified upon input.

2.6 Convergence of the PTN algorithm

Since the PTN algorithm fits into the Dembo-Sahi framework, to prove convergence one has to
simply show that {18]:

(a) the restricted and relaxing directions are gradient related;’
(b) the constraint relaxation test is acceptable;!? and

(c) the relaxing steps are “sufficiently-long” R

The relaxing direction is gradient related since it is a projection of the reduced gradient onto

814 is interesting to note that other constraint relaxation rules that have been found to work well in practice and
are used in state-of-the-art codes such as MINOS {3} and GRG2 [2] are not known to produce convergent algorithms.
They use the rule [¢%(2)ll < o Hg'R(zk)ﬂ with n € (0, 1).

A sequence of search directions {p,} is said to be gradieat related at points {z,} il along any convergent
subsequence {z,} — % with X not a first-order optimum of LCNLP, we have lim g(zk)TO.. < 0,
] {zt.} - z L] L]
’

104 constraint relaxation test is said to be acceptable if the limit point of every convergent subsequence on some
active set is a first order minimum for LCNLP restricted to the active set {18].

11A relaxing step is said to be “sufficiently long® if for every subsequence {3.‘} converging to s nonoptimal critical
point, Z, of some restricted problem lim ‘-’t, %0 .
{‘g..} -3z
where & is defined as in Definition 2.1 (for further details see Dembo and Sahi [18]).
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the “box” constraints (12) with the property that p, == 0 if and only if z, is a first order
optimum. The restricted directions are shown to be (reduced) gradient-related in Dembo and
Steihaug [17].

Dropping constraints is done according to the “forcing sequence strategy” and thus the

constraint relaxation test is acceptable.

The most difficult aspect of the convergence proof lies in showing that the relaxing steps are
“sufficiently long”. This would be automatically true if PTN were to be applied to
nondegenerate problems [18]. However, assuming nondegeneracy is unreasonable in large-scale
programming, particularly in network optimization.

Fortunately, there is a simple and practical way of ensuring sufficiently-long relaxing steps.
The Dembo-Sahi multiplier dropping rule states that if one drops only inequality constraints
“whose multiplier estimates are within a fixed fraction of the most negative multiplier estimate”
then relaxing steps will be sufficiently long. It is not obvious how this rule may be applied in
practice in PTN. It is first necessary to specify what the multiplier estimates are. Then, in order
for the rule to be practical for large problems, it must be capable of being implemented without
identifying the most negative multiplier. This appears to be a contradiction in terms since
the dropping rule is expressed in terms of the “most negative multiplier”.

Multiplier est,imatee:s,12 evaluated at some known point Z', are some approximation to the
solution of the Kuhn-Tucker system!3

AT)+ AT\ +j-p =0 (22)
E20, u>0 ’ (23)
ﬁj(zj-uj) = 0 all 5 (24)
i(z;-1) =0  allj (25)

where )\ represents the multiplier estimates corresponding to the equality constraints Az == b, and .
p and p are multiplier estimates for the upper and lower bounding constraints respectively.

2For a detailed discussion of the properties of various multiplier estimates see Gill and Murray [27).

13There exist &, 4 and ) satisfying (22) to (25) if A is of full rank and 2 is a first order optimum. The system is
inconsistent for all points z that are not critical.
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Assume now that we restrict ourselves to multiplier estimates that always satisfy (24) and (25)
exactly and deviations from satisfying the Kuhn-Tucker conditions above occur only in (22) and
(23). Now consider partitioning (22) as follows:

9p(T) + BTx + Bg - g =0 (26)

o) + BTN + fig- pg =0 . (27)

One convenient and cheap multiplier estimate is the following:

A=-B"Tgy (28)
Bg=upg=0
which solves (26) exactly.
If, in addition, we let
By; =) -F@) # @Fp;=(up; - (20)

0 otherwise

~

and

ep; =) F£&) # @p;= Uy, (30)

0  otherwise

then there are only two possible sources of error in the Kuhn-Tucker condition;; namely

(8 1EE) + (eg;- P % o
(s.c., (27) is not satisfied) or |

(b) ch or g; <0 for some j.

If all the components of % and g computed using (29) and (30) are nonnegative and (27) is
satisfied, then Z” is optimal (to first order). Otherwise the multiplier dropping rule requires
identification of the most negative component of s and g . This might be expensive, particularly
if candidate list strategies are used wherein only a subset of the negative multipliers is computed.
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An easy and eminently practical way to obviate the need for the most negative multiplier is to
ignore all elements of the reduced gradient that are less than some fixed small
tolerance, ¢ > 0. This amounts to considering (23) to be satisfied if 5 ; > -cor p ; > ¢
for all 5 and (22) to be satisfied if ll[gR]"'II o < €. In any computer implementation, such an ¢
must be supplied, since it is only possible to satisfly the Kuhn-Tucker conditions to within some
specified tolerance. In NLPNET [4] this ¢ is fixed a priors at /machine precision .

This requires a slight modification to the relaxing direction in (17) in which pgis replaced by:

[.g:?]"' if (zgj is not blocked

jp— 31
(Pp) 0 if (zp); isblocked or |[-¢f]*] < . e

Notice that this choice of py will result in dropping only those constraints whose multiplier
estimates are within some fixed (implicit) fraction of the most negative multiplier. This is
precisely what is implemented in NLPNET [4]. Similar devices are used in all reduced gradient
and simplex codes, which seems to indicate that in practice it is not difficult to satisfy the
“sufficiently long step” requirement in the Dembo-Sahi framework.

Definition 2.2 (e-optimality)
Given some fixed scalar ¢ > 0, let z%(c), \*(c), B*(c), u¥(e) be a point with the following
properties:
(a) z*(c)is feasible [satisfics (2)and (3)] ;
(4) the multiplier cstimates \*(e), fi*(c), p*(c) satisfy (24), (25) and (26);

(c) B*c), B*(e) satisfy a mods fication of (23) given by

GYe)); 2 -¢  allj (32)
(w*e); > -¢ allj. (33)
and a modification of (27) given by:

1B @)+ (e - (pllo < €- | (34)

Then z%c) is said to be an e-optimal Kuhn-Tucker point.
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Proposition 2.1

Suppose f(z) is continuously differentiable and bounded below and that g(z) is Lipschitz
continuous on the feasible region of LCNLP. Further suppose that in the PTN algorithm

{a) & modi fied direction with fized parameter ¢ > 0in (31) is used on relazing steps;
(%) a truncated-Newton direction ss used on restricted steps;
(c) a “forcing sequence strategy” 18 used to terminate the minor steration; and

(d) the steplength is always acceptable.

Then, starting at an arbitrary feasible point, any limit point x*(c), of sequence of major
iterates {zk} generated by the PTN algorithm ss an ¢-optimal point.

The proof of this proposition follows directly from the global convergence theorem in Dembo
and Sahi [18] due to the fact that the restricted and relaxing directions are gradient related, the
steps are acceptable and a multiplier dropping rule is used.

Remark 2.5

An alternative to the multiplier dropping rule for guaranteeing sufficiently-long relaxing steps
is the use of e-active constraint sets [26, 30]. However in practice, (except perhaps for problems
with box constraints [26]), computing such an ¢ might be expensive. The advantage of the
modified multiplier dropping rule used above is that ¢ may be fixed a priors (it is a final
tolerance on the reduced gradient at optimality which is standard input to any reduced gradient
software).

3. Data Structures for Implementing PTN
3.1 Use of Linear Programming Data Structures

There are many features common to both the primal simplex algorithm and reduced-gradient
methods. This is because they both operate on the reduced problem RCNLP. It therefore seems
natural to capitalize on the wealth of experience accumulated by designers of LP software. Good
examples of this are the reduced-gradient codes MINOS [3] and CONOPT [24] which use large-
scale LP data structures to create, store, maintain and update the basis.
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On the other hand there are many significant differences between the primal simplex method
for LP and a reduced-gradient method such as PTN for NLP. For one thing, basis changes are
far less frequent than in PTN. Also, there is no need to compute dual variables in minor
iterations. These two aspects alone make all the intricate structures that enable one to pivot,
retriagularize the basis and update the dual variables seem unwarranted for reduced-gradient
codes. The case for different data structures becomes even stronger when examining the relative
amount of work per iteration spent on calculating the search direction, linesearch, etc.

In most reduced gradient codes for LCNLP. it is likely that the initial feasible guess will be
calculated using LP, in which case LP data structures will be available for use in a reduced-
gradient code. This is almost surely going to be the case for network optimization software
because of the efficiencies of specialized primal simplex network codes.!* We will therefore
concentrate only on the additional data structures that are required to execute PTN efficiently.

3.2 Data Structures for the Efficient Computation of Search Directions

The single most expemsive part of a PTN algorithm is likely to be the computation of

restricted search directions. In solving for a truncated-Newton direction one has to either form

the reduced Hessian ZT HZ and use a direct solver to solve (20) or if an iterative method is used
on (20), many products of the form (ZT HZ)d will be needed per restricted direction calculation.

Forming ZT HZ is undesirable for two reasons: it is likely to be dense even if Z and H are
sparse, and it involves a loss of precision. Calculating products of the form (Z 7 H2Z)d require an
efficient means of multiplying by B'!S and (B'!S)T. There are two distinct cases to consider:

1. BIS is dense, as is likely to be the case for general systems of linear constraints;
and

2. B'!S is sparse which is the case when the constraints have special structure as in
networks.

If (B'1S) is dense then it might make sense to actually compute and store Z7 HZ, which could
require significantly less storage than Z. An alternative is to approximate 2T HZ using a Quasi-
Newton update (this will not save on storage) or, as in MINOS (3], by using a diagonal

415 the NLPNET implementation of PTN we use the specialized primal simplex data structures thread, reverse
thread, predecessor and depth arrays described by Bradley, Brown and Graves (28]
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approximation to Z1HZ when storage runs out. A third possibility is to use a nonlinear
conjugate gradient method on the reduced problem (another option in MINOS).

Limited computational experience on large unconstrained problems in Dembo and Steihaug [17)
appears to suggest that a truncated-Newton search direction is preferable to the MINOS strategy,
even when (ZT HZ)d has to be approximated by finite differences Naturally, such evidence is not
conclusive, or possibly not even indicative of the behavior in a constrained setting since the
relative cost of the matrix vector multiplication (2T HZ)d might be much higher. If B'IS is
sparse, as it is in network optimization, then it is possible to store it as a sparse matrix in such a
way as to make products of the form (B"!S)u and (B'!S) Ty cheap to compute.

In networks the columns of B’ 13 are cycles formed by joining a superbasic are to the basis
tree. The elements of B!S are +1, -1 or 0 and thus storage of B'IS can be accomplished by
storing two integer arrays, one of length equal to the number of nonzeros in B'!S and one of
length equal to the number of superbasics. This is done in NLPNET [4].

To place this in perspective, in a nonlinear network problem obtained from a matrix balancing
application, the number of nodes (constraints) was approximately 1200 and the number of
superbasics was approximately 900 (a large linearly constrained NLP by today's standards).
Thus B'!S was 1200x 900 but, on average, there were only seven nonzero elements per column in
B'!S and therefore B'!S was stored explicitly columnwise using two integer arrays, one of length
5600 and another of length 900.

There are some interesting new issues that crop up when B'lS is stored explicitly. For one,
when a basic variable hits its bound and is pivoted out!®, one would like to be able to update
B'!S cheaply without recomputing all columns. To do this, one first has to identify all the
nonzero intersections in a row of B!S (all the superbasics whose cycles/circuits contain the basic
variable that hit its bound). This can be done by searching through a row of B'!S or by solving

BTq = €;

where ¢ is the index of the basic variable that hit a bound and ¢; is a unit vector. The nonzero
elements of S1q correspond to the columns of BIS that change when the i** basic variable is
replaced.

In network optimization this may be done very efficiently using the THREAD and DEPTH

15To maintain a maximal basis, a basic variable that hits a bound is pivoted-out and is replaced by a free
superbasic, if possible. This resembles a “dual simplex” pivot where one knows which basic variable will leave and
searches for & superbasic to replace it with.
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data structures [28, 20]. Let ¢ be the index of the basic variable that hits a2 bound. Removing
arc ¢ from the basis tree results in the formation of two subtrees. To test whether a given
superbasic is in a cycle with arc ¢, one simply tests whether the ends of the superbasic arc are in
different subtrees.

Instead of updating B'lS each time a basic hits a bound, one could simply rearrange the
pointers in the sparse matrix representation of B'IS (effectively ignoring the columns that were to
be removed) and then add the new cycles that the incoming basic arc makes with the superbasic
set. Periodically, if storage becomes a problem, redundant columns could be flushed out of B’ls
and the sparse representation readjusted accordingly.

Thus, when it is possible to store B-!S (and provided it does mot require more storage than
{ZTHZ) the truncated-Newton direction can be computed efficiently. Otherwise, it does require
many operations involving B! and B~T which may prove to be costly. Still, there is no
conclusive evidence to indicate whether or not it is worthwhile.

In the matrix balancing problem cited earlier, a total of approximately 20,000 products of the
form (Z7 HZ)d were required to compute a solution. Thus without storing B'!S approximately

40,000 multiplications of the form B!Sy or (B1S)Tu were required. Now since |S| ~ 900 this ~ -

means that 36,000,000 cycle traces would have been required. Storing B'1S reduced this to
approximately 90,000 cycles that had to be traced at the meager cost of storing approximately
6,000 integer words.

3.3 Special features of the reduced Hessian (27 HZ) for future research

For a network!8, the reduced Hessian matrix ZT HZ has nonzero elements whenever the cycles
formed by two superbasic arcs intersect (s.c., they have at least one basic arc in common). This
leads to some intriguing possibilities. For example, if H is diagonal (as it almost always is in the
network applications we have encountered) and the superbasic arcs are chosen so that they do
not intersect (s.c., the columns of B'!S are mutually orthogonal) then ZTHZ is diagonal!
Therefore, for particular choices of the superbasic set the (reduced) Newton direction is no more
expensive to compute than a steepest descent (reduced gradient) direction.

In many applications (reservoir systems management is a good example) the physical structure
of the network makes it easy to identify non-intersecting cycles. Rosenthal (8] gives a heuristic
for identifying such cycles which he used in a reduced gradient code. The advantage for him was

18Ajthough the discussion here is in terms of networks it extends in a very natural way to general linear systems
with “circuit” replacing “cycle” and “variable” replacing “arc”.
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that his reduced gradient code could capitalize on the advantages of a convex simplex method
[29].

The choice of nonintersecting cycles, while appealing, might result in operating in too
restrictive a subspace. However, an extension of the idea allows one to work in as large a
subspace as desired.

Let the columns of S be partitioned into (S,, S, ... S;) with the property that the columns of
B‘ISE are mutually orthogonal to B'lSj for all j9&¢. Finding a partition in which the
cardinality of the S; are approximately equal and k is maximal is difficult but is analogous to
sparse finite difference approximation techniques for approximating Jacobian matrices. These
techniques have been the subject of much research recently and excellent software for sparse
finite differencing is now available [31]. The importance in optimization is that when H is
diagonal (or, in some cases, block diagonal) the reduced Hessian is block diagonal with blocks
corresponding to the S, . To our knowledge this fact has not yet been exploited in nonlinear
network optimization. It could prove to be very important in finding ways to solve for
truncated-Newton directions efficiently. For example, even if H is not diagonal, a block diagonal
reduced Hessian could be used as a preconditioner in a truncated-Newton direction calculation.

4. Numerical Experiments with the PTN Algorithm

The PTN algorithm described in Sections 2 and 3 has been implemented in a specialized
nonlinear optimization system called NLPNET [4]. It uses the depth, predecessor, thread and
reverse-thread data structures described in [28, 29] and in addition stores the cycles B'lS
generated by a superbasic set S explicitly in sparse matrix format. All test runs reported here
were conducted on a DEC 20/60 computer under the TOPS 20 operating system. The code is
written in FORTRAN and all test runs were conducted in double precision in a work space of
50,000 double precision words or less.
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4.1 Methodology

Since there is little in the way of data on the performance, on the above computer, of other
algorithms for nonlinear network problems or for large-scale NLP for that matter, I have chosen
to present the results relative to a number of benchmarks. This permits one to measure
efficiencies in a way that gives some (limited) measure of the performance of the PTN algorithm
relative to other algorithms for the same problem structure.

As benchmarks I have chosen to measure performance relative to:

. MINOS [3], an excellent state-of-the-art code for large-scale NLP;

. the reduced-Newton option in NLPNET;

. the specialized Convex Simplex [29] and Scaled-Reduced Gradient [16] methods;
. the time taken to solve a piecewise linear approximation to the problem;

v b W N

. the time taken to solve a linear program obtained by linearizing the objective
function; and

6. the work required to solve a single reduced-Newton system of equations to high
accuracy. :

These benchmarks give some idea of the efficiencies one can expect in a specialization of an
NLP algorithm that takes advantage of network structure (see 1. and 3. above).

This methodology also permits one to compare algorithms (albeit on a limited number of
test problems). The PTN algorithm is compared with the default algorithm used in MINOS
and an indication is given as to how PTN might compare with MINOS on linearly constrained
optimization problems that do not necessarily arise in networks.

Examining the behavior of PTN versus a reduced-Newton algorithm highlights the advantages
of the rate-of-convergence theory developed in [15]. These are two algorithms that possess the
same theoretical rates-of-convergence yet have vastly different overhead.

Finally, a comparison with solving an LP of the same structure and size using a specialized’
primal simplex method, gives some indication of the degree of efficiency of the NLPNET
software and PTN algorithm. I feel that any NLP code that can, on average, achieve one order
of magnitude CPU time difference when solving a comparable LP, is probably close to the limit
of efficiency. For separable problems, a comparison with the time taken to solve one piecewise
linearization of the problem gives some idea of the potential for a successive piecewise
linearization algorithm, such as the one described in (32], to be competitive with PTN.

Naturally, no absolute statements can be made, however indications of the potential of an



25

algorithm vis 4 vis another are possible to detect. In a large-scale setting, it is not going to be
possible to require researchers to conduct massive batch testing such as in [33]. Furthermore, I
am not convinced that such batch testing yields any more information than carefully thought out
experiments on a few test problems. The purpose of the tests conducted for this paper was to
examine various aspects of the behavior of the PTN algorithm and secondarily, to test the
efficiency of NLPNET.

Test problem characteristics and NLPNET’s performance

There were five test problems used in this study all of which were derived from real-world

nonlinear network models. Their characteristics are summarized in Table 4.1 . The first three,
W30, W150 and W668, are derived from real data from the water distribution system of Dallas,
Texas. They have been used in previous tests in the literature (see [16] for example) and provide
a benchmark for comparison with other reported computational results.

The last two test problems, MB64 and MB11186, were matrix balancing problems derived from
the input-output matrices for Thailand, as developed by the World Bank.

Problems W666 and MB1118 are not only very large by current NLP standards but also pose
numerical difficulties because of the eigenvalue structure of the reduced Hessian Z' HZ. There
are, however, biases in this test-problem set. Almost all out-of-basis variables are free at the
solution in every problem and the problems are all separable and convex with very flat objective
functions. The PTN algorithm does not require such characteristics nor does it take particular
advantage of them. Still, it could mean that the behavior of PTN might be quite different on
problem sets with different characteristics (e.g., solution almost at a vertex, nonconvex
nonseparable problems, etc.). Some experiments with variations of MB84 were run in which the
out-of-basis variables ranged from almost totally constrained to almost totally free. In all cases,
the additional constraints led to faster solution times.

A summary of NLPNET’s performance on these problems is given in Table 4.2.

For all problems except the largest, time taken to solve a linearized problem (Phase I) was
about one order of magnitude faster than the time taken to solve the nonlinear problem—almost
ideal performance. For the largest problem (MB1116) this time was about three orders of
magnitude slower. This can be explained by the fact that the PTN algorithm using a conjugate
gradient solver will be sensitive to conditioning of the problem. This large problem was very
poorly conditioned, as evidenced by the following benchmarks. -
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Table 4.1 Characteristics of the Test Problems
No. of No. of Lower Bound Dimension of
Problem | Description Nodes Arcs on Cond. No. Reduced Prob.
Name : (Equality (variables) of ZTHZ at at Optimality
Constraints) Solution (# of Superbasics)
W30 Water 30 46 10t 15
Distribution
Models 4
W150 Derived from 150 196 10 44
Dallas, TX
Water 6
W666 Distribution 666 906 10 240
System
Matrix 4
MB64 Balancing 64 117 10 54
Problems ‘
Derived from 8
MB1116 an Input- 1116 2230 10 946
Output
Matrix of
Thailand




Table 4.2
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Performance of NLPNET on the Test Problems

Phase I (Finding a Feasible Point)

W30 . 49 45 .32
W150 206 201 1.32
W666 925 9 6.8
MB64 65 64 .44
MB1116 NA NA 8.0
Phase II (Computing an Optimal Solution)
- CPU TIME, SECS. Phasel/Phasell
Minor cG Funct. | Line- Search Total TIME
. Problem |IRG||, Iters. Iters. Evals.| Search Dir. | RATIO
. W30 .04 12 62 24 1 .34 1.68 5
W150 .07 14 207 15 - 2.9 3.9 7.8 6
.00009 15 485 17 3.1 8.7 12.8 9
W666 .02 19 580 26 23 66 99 14
.00004 25 965 28 25 109 146 20
MB64 .02 16 125 37 1.3 3.0 5.1 12
MB1116 .05 48 13,997 51 55 7000 7560 940
(approx.)
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To solve one reduced-Newton system to within a relative error of 10°% required over 10,000
scaled-CG iterations for the MB1116 problem, which is of the same order as the total cumulative
CG iterations required to solve the original problem. This incidentally, was true throughout.
The observed number of CG iterations for all the problems was of the same order as
the number of CG iterations taken to solve one reduced-Newton system accurately.
This was also observed by Dembo and Steihaug [17] for unconstrained problems and is an
indication of the power of the truncated-Newton direction.

Most of the time for solving MB1116 was therefore spent on computing search directions. The
overall time for solving this problem would decrease by orders of magnitude if sufficient storage
were available to solve the reduced-Newton system directly or if a potentially good
preconditioner, such as the one discussed in Section 3.3, were available to speed up the CG
iterations. This is an important area for future research.

A remarkable aspect of the PTN algorithm is the number of function gradient and Hessian

7 required to solve these test problems. It is amazing to think that one can solve a

evaluations
2230 variable constrained optimization problem (MB1116) from a “cold start” using omly 61
function evaluations! As is shown in Table 4.2, the number of function, gradient and Hessian

evaluations is very small in all cases.

All the objective functions were extremely flat (see Table 4.3).. For the 666 node problem the
relative error in the objective function in 10°® while the [jreduced gradient|| is approximately
equal to 30. Thus, optimality tolerances of the order of 102 to 10° on the reduced gradient are
very accurate stopping criteria. A characteristic of PTN algorithms is the ability to achieve a
high degree of accuracy.

The main purpose for introducing Table 4.3, however, was to provide a benchmark with
piecewise linear approximation algorithms such as [32, 34]. For these algorithms the stopping
criterion that is most often used is the relative error in the objective function. The stopping
criteria in in Table 4.2 imply an equivalent relative error criterion of less than 10715,

17For all the test problems the cost of obtaining function gradient and Hessian was the same as the cost of
obtaining the function alone.
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Table 4.3 Characteristics of the 660 Node Prob]em(]):
A Very Flat Objective Function

Relative Error 0BJective Function
lIRGI[,, lIRsll, |0BJ* - 0BJ] Value (0BJ)
| 0BJ™|

.00004 .0005 0 -.20610749706 (=0BJ*)

.02 .03 | | 0 -.20610749706 (=0BJ*)

Jd2 - .20 8.7D-14 -.206107479D6

1.9 4.1 5.3D-12 -.206106413D6

27 11 6.4D-9 | -.204791649D6

275 - 754 9.30-8 -.187005068D6

Benchmarks:
IIRG]| , after piecewise-linear LP approximation with 1 segment = 783,000
“ RG “ - L] i n 11} " " 4 Segments - 460

(1) A1l the test problems we used had objective functions that were similarly
flat.
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4.3 Comparison of PTN and MINOS

Although MINOS is a general purpose code and NLPNET is a code designed to exploit
network structure it is still possible and instructive to compare the behavior of the underlying
algorithms.

For thisrpurpose we implemented a truncated-Newton option in MINOS. Unfortunately, due
to the larger core requirements of MINOS, the largest problem that we could solve was W150.

The behavior of MINOS on W150 is shown in Tables 4.4 and 4.5. It is interesting to note that
the truncated-Newton option does worse than the variable metric option (which requires far more
storage and terminates at a less accurate solution) and is superior to the Polak-Ribiere conjugate
gradient option. Polak-Ribiere failed to reduce the reduced gradient below 2.54 . This might
cause one to conclude that such an option was not worthwhile. However, this would be
dangerous since many other aspects of the algorithms differ.

From the limited computational tests I have done, it appears as if the most significant
difference between PTN and the algorithm used in MINOS is in the manner in which the optimal
active set is identified and in the use of a maximal basis. If the results from the tests conducted
with NLPNET are at all indicative, it shown that PTN is far superior to MINOS in this regard.1®

Consider the comparison of PTN with MINOS with a truncated-Newton direction shown in
Table 4.5 . The PTN algorithm requires far fewer function evaluations (15 v.s 490 for MINOS on
W150) to achieve the same solution accuracy. However, the best measure of the overall work
involved is in the total number of CG iterations which is about five times greater for MINOS.

When evaluating the above experiment it is important to note that both algorithms MINOS-
TN and PTN use truncated-Newton directions. What differentiates them is the manner in which
relaxing and restricted steps are taken. It appears as if PTN strategy merits attention and
further experimentation in a general purpose setting. A general-purpose code using the PTN
algorithm and MINOS modules is now under development.

In all céxses, NLPNET was more than one order of magnitude faster than the best MINOS run.
This is reassuring but not surprising since NLPNET is a specialized code. However, the above
evidence strongly suggests that the gain in speed is not due solely to the specialization to
networks.

131n all tests the default pricing strategy was used. In newer versions of MINOS with multiple pricing, we expect
an improved performance in identifying the active set.
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Table 4.4 Behavior of MINOS'!) on the W150 Problem

Variable Metric Truncated Newton(z) Polak Ribiere(B)

Total Number of

Minor Iterations 328 278 530
Total Number
of Function 728 1536 1504
Evaluations
||Reduced Gradient]| 03 005 2 54
at Termination
. Total CPU Time 109 , 177 163

(Secs)

(1) Default settings.

(2) (2"HZ)d was obtained by finite differencing since the Hessian was assumed
to be unavailable. Cumulative CG iterations = 1046 which means this number of
function evaluations could have been saved if the Hessian were readily available.

(3)The Fletcher-Reeves option performed significantly worse.
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Table 4.5 PTN vs. MINOS with a Truncated-Newton Restricted Direction
W30 W150
PTN MINOS-TN PTN MINOS-TN

Total Minor Iterations 12 87 15 278
Total CG Iterations 62 280 247 1046
Total Function Evaluations 24 188 15 490
with Known Hessian
(with Finite Differencing) (86) (468) (262) (1536)

lIRGl .04 .002 .005 | .005
Total CPU Time (Secs)
--Cold Start




4.4 Comparison of PTN and Specialised Scale-Reduced, Convex Simplex
and Reduced-Newton Algorithms

Tables 4.6, 4.7 and 4.8 show how PTN behaves relative to the best (optimized) runtimes
reported in Dembo and Klincewicz [16] for specialized reduced gradient and convex simplex codes.
Also shown is the performance of PTN vs. a Reduced-Newton option in NLPNET [4].

It is clear that PTN requires far fewer function evaluations than either the SRG or CS
algorithms (compare 21 for PTN vs. 870 for SRG and over 10,000 for CS on the W686 problem).
Overall CPU time and final accuracy are also significantly better.

The reduced-Newton option in NLPNET is simply one FORTRAN statement that determines
when to terminate the CG iteration on the Newton equations. It allows one to compare
Newton’s Method to PTN. Both algorithms exhibit a quadratic convergence rate on the reduced
problem but at significantly different overhead (see Tables 4.7 and 4.8). For the large water
distribution problem (W668) the total number of CG iterations required to reduce the norm of
the final reduced gradient to 0.004 was an order of magnitude less for PTN than for reduced-
Newton; PTN was also almost eight times faster.

These encouraging results are similar to the observed behavior on analogous tests executed by
Dembo and Steihaug on unconstrained problems [17].
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Table 4.6 PTN vs. Scaled Reduced Gradient (SRG) and
Convex Simplex (CS) Methods

W150 W660
ern | sre{” | s PTN sra(?) | s

Total Minor 18 124 1735 20 728 10,087
Iterations (CG) (591)
Total Function 20 128 > 1735 21 870 > 10,087
Evaluations

RG] _ .03 . B .02 .1 .
Total CPU Time 8.9 12 119 113 390 1219

(Secs) _

(M The runs for SRG are the best reported in Dembo and Klincewicz [16]
using a tuned conditioning heuristic.
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Table 4.7 PTN vs. Reduced Newton (RN) on the W666 Problem
pr(1) ru(2)
Total Minor Iterations 21 17
Total CG Iterations 667 6479

(With Preconditioning
Total Function Evaluations 22 18

lIRG]| .004 .006

CPU Time (Secs)
(Feasible Starting Point) m 794

Terminate superbasic restricted-direction (ps) calculation when:
(1) [PTN]  |[Z'WZpg + Z7gl{ / [[Z7g]l = min (.01, [|Z7g)p

(2) [RN]  [|Z7HZpg + Z7g]l / l|Z7gll s 1.00 - 10




Table 4.8
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PTN vs. Reduced Newton (RN) on the W150 Problem

No Preconditioning

Preconditioned CG

in CG

PTN RN PTN RN
Total Minor Iterations 16 16 18 15
Total CG Iterations 435 1293 265 543
Total Function Evaluations 19 18 18 17
HRGH°° .0006 .006 .002 .0003
CPU Time (Secs) 12.9 26.5 8.8 13.6
(Feasible Start)

Terminate superbasic restricted-direction calculation (ps) when

(1) [PTN]

(2)  [RN] liz'wzpg + Z'gll/llz7all s 1.0 - 10

HZTHZpS + 2%l 7 1276l < min {0.01, lIZ7gll}
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4.5 PTN Benchmarked Against a Single Piecewise Linearisation

Since all the test problems are separable it is natural to test whether a piecewise linear
approximation algorithm could outperform PTN. To examine this, a number of experiments
were run in all cases solving a single piecewise linear approximation. This was then compared
with results using PTN on the same problem. Some interesting conclusions can be drawn for this
limited experiment.

1. Use of a single piecewise linearization for Phase I, with a limited number of
segments per variable, can sometimes yield a better starting point for Phase II and
lower overall solution times (see Table 4.10 for results on the W666 problem and
Table 4.11 for results on MB64).

2. To obtain and solve a piecewise linearization approximation that even approaches
the accuracy of PTN may cost more than one order of magnitude more work (see
Table 4.9).

3. The cost of solving one piecewise linearized problem with two segments is only one-
sixth the cost of solving the problem exactly using PTN. Thus to be competitive,
piecewise linearization algorithms would have to converge very rapidly. This is
unlikely, even for ingenious algorithms such as Meyer’s [32].

Details of PTN’s Behavior on MB1116

Table 4.12 shows details of an NLPNET run on the 2230 variable, 1116 equality constrained
matrix balancing problem. The results in this table are instructive since they highlight the power
of the various ideas embodied in PTN.

Starting at a vertex (a poor starting point for this problem given that almost all out-of-basis
variables are free at an optimum) the first relaxing direction frees 712 constraints!
Twenty restricted steps are taken in the first major iteration and 19 constraints are added to the
active set.

The second major iteration begins with a relaxing step in which 108 constraints are
dropped from the active set. Two restricted steps are then taken and one constraint is added to
the active set.

The third iteration starts with a restricted-projection relaxing step in which 25 constraints
are dropped. Eleven restricted steps then result in 10 more constraints being added to the
active set.
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Table 4.9 PTN vs. Piecewise Linearization (PL) on W31
(a Separable Problem)
Number of  Number of  Number of  Objective HRGHI CPU Time
Sections Pivots Minor Value (Secs)
Per Arc Iterations
30 3316 3819 -.32305 .14 22.5
20° 1620 1854 -.321D05 6.6 11.0
10 583 770 -.314D5 1.2 4.6
5 o 273 .10206 65 1.6
1 45 49 .130D08 201 .31
Benchmark (PTN on W31): -.324D5 .08 2.0
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Use of a Piecewise Linear Ap

(Computing

an Initial Feasible Point)
(Runs on W660)

proximation for Phase I

Number of Approximating 1 2 4
Segments per Arc

Total Phase 1 Iterations 925 2487 5270

(Pivots) (911) (2412) (4951)

[IrG]| at the End of .7706 .86D3 .86D3
Phase 1

Total Phase II Minor 28 12 12
Iterations

Total CG Iterations 721 255 178

Total Function Evaluations 46 22+2 19+4

Phase I CPU 6.6 16.1 37.5

Phase 1I CPU 140 63.2 48.9

Total CPU 146.6 79.3 86. 4



Table 4.11
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Use of a Piecewise Linear Approximation‘ for Phase I
(Computing an Initial Feasible Point)
(Tests on MB64) -

Number of Approximating
Segments per Arc

Total Phase I Iterations
(Pivots)

lIRG|}, at the End of
Phase 1

Total CG Iterations

Total Function Evaluation
||RG]|, at Solution
Phase I CPU Time (Secs)
Phase II CPU Time (Secs)

Total CPU Time (Secs)

1 2 4 8 16
GRS 3 Gy )
.19D3 .1103 .68D2 .43D2 .2502
125 115 118 135 105
37 32+2 36 +4 35+8 31+16
<.l
.44 .63 .84 1.5 2.8
5.11 3.87 4.40 5.31 3.95
5.55 4.50 5.24 6.81 6.75

1 The segments were spaced evenly. Improvements in Phase I time may be possible
with spacing that reflects the changes in curvature more closely. However, this
js at the cost of additional overhead in computing the piecewise linear approximation.
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Table 4.12 Behavior of PTN on MB1116
(1116 Equality Constraints, 2230 Variables)

Cumulative : For Final
Major Minor Function No. of Superbasics Restricted Direction
Iteration Iterations Evaluations : - T
—_— ey . +
(PCG Iters.) Initial Final liRall,, {lIZ HZpg*Z gl
Feasible 0 - 0 0 - -
Start
1 20 20 712 693 959 96
(141)
2 22 ’ 22 799 798 286 27
(400)
3 33 33 823 813 50.9 6.5
(4,121) ,
4 4 43 ' 940 936 1.72 .49
(11,673)
5 46 49 943 943 .031 .024
(13,987)
6 48 £ 946 946 .055 .138
(13,997) .
CPU Time: Feasible Flow 8.0 Secs.
Linesearch 55  Secs.

Total 7560 Secs (126 Minutes)

CG Iterations to solve Newton equations once with

lIz"hzpg + 2'gll 7 lIZ7gll < 1.0 - 8 > 10,000
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In this manner PTN is able to rapidly identify the optimal active set with very little overhead
(a total of 48 minor iterations). In particular it is worth noting how few major iterations (and
hence how few relaxing steps) were required. This reinforces the notion that using a cheap
gradient projection relaxing step will probably not affect the convergence rate for PTN
algorithms.

The forcing sequence strategy works in tandem with the truncated-Newton termination
condition. When the reduced gradient is large, not much work is done before releasing
constraints. Little work is also done in solving the reduced-Newton equations since the
termination criterion depends on the norm of the reduced gradient. In this way, major and
minor iterates are synchronized so that only when the reduced gradient is small (s.c., when one is
already confident that the correct active set has been identified by the forcing sequence) are the
reduced-Newton equations solved accurately (see the last two columns of Table 4.12). By only
solving for search directions and on various subspaces as accurately as is needed, overall effort is
kept to a minimum thereby permitting one to compute a solution to the problem with the effort
it takes CG to solve one reduced-Newton system exactly.
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