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Abstract. In a multiprocessor with distributed storage the data structures have a
significant impact on the communication complexity. In this paper we present a few
algorithms for performing matrix transposition on a Boolean n-cube. One algorithm
performs the transpose in a time proportional to the lower bound both with respect
to communication start-ups and element transfer times. We present algorithms for
transposing a matrix embedded in the cube by a binary encoding, a binary-reflected
Gray code encoding of rows and columns, or combinations of these two encodings. The
transposition of a matrix when several matrix elements are identified to a node by
consecutive or cyclic partitioning is also considered and lower bound algorithms given.
Experimental data are provided for the Intel iPSC and the Connection Machine.
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1 Introduction

Matrix transposition is a permutation frequently performed in linear algebra. It is useful
in the solution of systems of linear equations by a variety of techniques. For instance, the
solution of partial differential equations by the Alternating Direction Method (ADM)
is typically carried out by transposing the data between the solution phases in the
different directions. Such data transposition may also be beneficial with respect to
performance for the ADM on Boolean n-cube configured architectures, even though
multi-dimensional arrays can be embedded in Boolean cubes preserving proximity [13,
14]. Another example where data transposition may be advantageous is in the solution
of Poisson’s problem by the Fourier Analysis Cyclic Reduction (FACR) method. Matrix
transposition can also be used to realize arbitrary permutations [21,20].

In this paper we focus on matrix transposition on Boolean n-cube architectures. The
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transpose can be formed recursively as described in [19,1,9,15]. Stone describes a map-
ping to shuffle-exchange networks for the case with one matrix element per node. We
consider the case with multiple matrix elements per node and focus on the pipelining of
communication operations and the optimal use of the communication bandwidth of the
Boolean n-cube. In [9,10] we described and analyzed the complexity of a transpose algo-
rithm for a two-dimensional mesh and presented a few algorithms for the transposition
of matrices embedded in the cube by binary or Gray code encoding of the row and col-
umn indices. In this paper we present a transpose algorithm that is of lower complexity

in the case of concurrent communication on multiple ports, and present experimental
data for the Intel iPSC and the Connection Machine {3].

We first introduce the notation and data structures used in this study, then present
algorithms for the transpose operation for one-dimensional and two-dimensional parti-
tionings. Implementation issues particular to the actual machines used, but important
for the interpretation of the experimental results presented, are addressed after the
description of the algorithms. A summary and conclusion follows.

2 Preliminaries

Let A be a P x @ matrix. Throughout the paper, we assume that P = 2 and Q = 29.
The number of bits required for the encoding of the matrix elements is m = p+ ¢q. The
transpose AT of A is defined by the relation a” (u,v) = a(v,u), where a”(u,v) is the
element in row u and column v of AT, and a(u,v) is the element of A in row u and
column v. Let the binary encoding of u be (up—1up—2...uo) and the binary encoding
of v be (vg—1Yg—2...v0). Then the address of element a(u,v) is naturally defined to be
(Up—1Up—2 - .- UgVq_1Vg—2 ... V) = (Wm—1Wm—z...Wo), OF (u||v) = w for short, where ||'
is the concatenation operator for binary numbers.

Definition 1 The matriz transposition operation is the permutation loc(up—1tp—3 ... %o
Vg—1Vq—3 + .. Vo) + L0c(Vg_1Vq—2 ... VoUp_1Up_3 ... Uug) where loc(w) is the memory location
of element w.

Note that we arbitrarily assumed that the p highest order dimensions are used for
the encoding of row indices. We use this assumption throughout this paper, but any
other subset of p dimensions could have been used.

With the assumption above the p highest order dimensions encode row indices be-
fore the transposition and the g highest order dimensions encode column indices after
the transposition. A vector transposition requires no data movement. For the ma-
trix transposition it is sometimes appropriate to consider a square array of 2 max(p, q)
dimensions.



Definition 2 A P X Q matriz with P > Q is extended to a square matriz by introducing

virtual elements corresponding to P — Q columns. The extension is made ssimilarly if
P<Q.

The extension can be made by adding columns corresponding to high or low order
dimensions of the column address space, or by mixing columns of virtual elements with
columns of real elements. Whichever alternative is preferable depends on the particular
transposition algorithm, and data assignment scheme (described later).

Definition 3 A shuffle operation, sh' on a set of elements W with addresses

w, w € {0,1,...,2™ — 1} encoded in binary representation (Wm—1Wm—z...Wo) 5
a permutation defined by a one step left cyclic shift, loc(wp—1Wm—z...wo) <+
10c(Wpm— W3 - . WoWp—1), w € {0,1,...,2™ — 1}. An unshuffle operation, sh™! is

defined by a one step right cyclic shift. sh® = sh sh*! 1s a k step left cyclic shift.
Clearly, sh'sh™! = I, where I is the identity operator. Also, sh¥(w) = sh™(™~%)(w).
Lemma 1 Let A be a 2° x 29 matriz. AT « shPA, or AT «— sh™?A.

Corollary 1 On a shuffle-ezchange network of N = 2" nodes, n = p + ¢, and bi-
directional communication links, the matriz transposition requires at most min(p,q)
communication steps.

A shuffle-exchange network has all the connections corresponding to the sh! opera-
tion, and connections from every even node to the succeeding odd node.

Definition 4 Let w = (Wp-1Wm-2...Wo) and z = (Zm-1Zm-2...20). Then
Hamming(w, z) = S70  (w; @ 2), where © is the ezclusive or operation.

Lemma 2 For m even there ezist at least one w such that Hamming(w, sh'w) = m,
and for m odd Hamming(w,sh'w) = m — 1. In general, for k shuffles

. k m, ——_gcdzr:n,k) 15 even;
max Hamming(w, sh*w) = m — ged(m, k), ———gcdz’:n P 1s odd.

Proof: For m even, let w = (0101 ...01). Then Hamming(w, sh'w) = m. For m odd, let
w = (0101...010). Then Hamming(w,sh*w) = m — 1. Note that w and sh'w contain
the same numbers of 0’s and 1’s. Since one of them is odd, the Hamming distance
between w and sh'w is at most m — 1. For k shuffles, the bits can be divided into
ged(m, k) groups of bit strings of length Wr’;&,k)" The lemma follows. |



Corollary 2 For m even max,, Hamming(w, sh%w) =m.

Lemma 3 For 0 < k < m, max,, Hamming(w, sh*w) > k.

. Q; k k .
Proof: Since m > k we have gcd?:n,k) > dmm °F gcd(nm,k) >1+ e g This means
m — gcd(m, k) > k. Lemma 2 completes the proof. 1

Definition 5 Let z = (zp—1Zn-2..-Z0), zi € {0,1}, V2 € {0,1,...,n — 1} be the ad-
dress of a node in a Boolean n-cube. Then node = is connected to nodes in the set
{(zn-1Zn-2..-Zi...20)[Vi € {0,1,...,n — 1}}.

A Boolean n-cube has N = 2" nodes, and each node n neighbors. The diameter is n
and the number of links is %nN . There exist n paths between any pair of nodes (z,y). Of
these paths Hamming(z,y) paths are of length Hamming(z,y) and n — Hamming(z, y)
paths are of length Hamming(z,y) + 2 [18]. We will use this property in devising
transposition algorithms with multiple paths between source and destination processors
for minimization of the data transfer time.

Lemma 4 Matriz transposition on a Boolean n-cube requires at least as many commu-
nication steps as the transposition on a shuffie-exzchange network.

Lemma 4 is immediate from lemma 3.

In general, the number of matrix elements may be larger than the number of proces-
sors, and several matrix elements must be allocated to the storage of individual proces-
sors. We assume that the matrix elements are distributed evenly among the processors.
For n < max(p, q) there is a choice between one- and two-dimensional partitioning. For
either kind of partitioning the matrix elements can be assigned to processors cyclicly,
or consecutively [9,10], or by a combined assignment scheme.

Definition 6 In a one-dimensional cyclic partitioning on N processors, row u (column
v) is assigned to processor w mod N (v mod N) and in a one-dimensional consecutive

partitioning row u (column v) is assigned to processor [%]—J (LT}%?TJ)

Corollary 3 In an n-cube the n lowest order bits of the binary encoded row (column)
indez determines the processor to which a row (column) ts assigned in the cyclic part:-
tioning. In the consecutive assignment the n highest order bits determines the processor
assignment, if the number of rows (columns) is a power of two.
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Figure 1: Cyclic and Consecutive one-dimensional partitioning.

The dimensions that are of higher (lower) order than the real processor address
field are used for cyclic (consecutive) assignment. The notions of cyclic and consecutive
assignment are relative to a given real processor address field.

In the two-dimensional partitioning we let N, = 2" < P denote the number of
partitions in the row direction and N, = 2" < @ the number of partitions in the
column direction. The total number of partitions is N, X N, < N (n, + n, <n). In the
cyclic partitioning matrix element (u,v) is assigned to partition (u mod N,,v mod N,)
and in the consecutive partitioning it is assigned to partition (|_[—N£—T 1, [ﬁ 1), Figure 2.
For a matrix partitioned by cyclic assignment the n, lowest order bits of?he matrix row
index determines the processor row index. Analogously, the n. lowest order bits of the
matrix column index determines the processor column index. In consecutive storage,
the n, highest order bits in the matrix row index determines the processor row index
and the n, highest order bits of the column index determines the processor column
index, since P and @ are powers of two.

The cyclic and consecutive assignment schemes are illustrated in Figures 1 and 2
with respect to the matrix elements.

Definition 7 The part of the address field that does not correspond to real processors
defines virtual processors.

The cyclic and consecutive assignment schemes with respect to the address space is
as follows:
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Figure 2: Cyclic and Consecutive two-dimensional partitioning.

One-dimensional cyclic column partitioning

(Up—1Up—2 ... UQ Vg—1Vg=2 +++ Un, Upy—1 ... V).

J/

vp ' rp

One-dimensional consecutive column partitioning

(:up_lup_g [ UQ Pq_lvq_g ces ‘Uq_ncl?q_nc_]_ ree 'vo).

S

-

vp rp vp
For the cyclic two-dimensional assignment the address field is partitioned as

(Up—1Up—z . Uy, Up,—1 ... Ug Vg-1Vg-2 - -+ Vn, Un,—1 - - ),

up rp up rp

and for the consecutive assignment the address field is partitioned as

(Zzp_lup_g o Up—p, Up—n,—1++ U0 Vg—1Vg—2 - --Vgn, Vg—n,—1- - %),

rp vp rp vp

where vp denotes the dimensions of the address space used for virtual processor ad-
dresses and rp denotes the dimensions used for real processor addresses. The number
of dimensions used for the consecutive, or cyclic mapping is m — n, (or m — n,) in
the one-dimensional case and m — n, — n, in the two-dimensional case. For column

partitioning, n, = 0, 0 < n, < n. For row partitioning, n, =0, 0 < n, < n.
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The cyclic and consecutive storage forms are two extreme cases of real processor
assignment. We refer to the general case as combined assignment. Any subset of di-
mensions of the address space can be used for real processor addresses. As an example
of combined assignment we consider the storage of a banded matrix for the equation
solvers in [8,12]. The non-zero elements of the matrix, the right hand sides, and the so-
lution vectors can be stored in a rectangular array by conventional row/column storage
of the matrix, or by row/diagonal organization. We do not here discuss the techniques
for band matrix storage, and their consequences for the solution procedure. For the
illustration here we simply assume that the relevant elements are stored in an array of
P = 2P rows and @ = 27 columns. Then, for a two-dimensional partitioning with 2"
processors in both the row and column directions, blocks of size 277" x 29~ "< elements
may be stored in the same processor, and blocks assigned cyclically with respect to the
row addresses i.e., the address field is partitioned as

(yp_lup_g ceeUgUg—1 . Ug—n, Ug—n,—1 -+ U0 Vg—1-.Vg—n, Vgono—1 - Vo).

/'

e " o ——

vp rp vp rp vp

The total number of real processor dimensions is 2n.. For the row assignment the
n. contiguous dimensions of the address field used for real processor addresses divides
the address space into two parts: one part of ¢ — n, dimensions used for consecutive
assignment and p — ¢ dimensions used for cyclic assignment. For the concurrent elimi-
nation of multiple vertices the matrix is partitioned into S block rows. With S = 2° the
s highest order bits of the matrix row addresses are used for real processor addresses.
With the previous assignment for each such block the address field is partitioned as

(yp_lup_g e Up—s Up—s—1Up~2 -+ - Ug Ug—1 - .+ Ug—n Ugno—1+--UD Vg—1 ... Vg—n, Vg—n,~1: .- vq).

rp up rp up rp vp

Hence, in this case the dimensions used for real processor addresses forms two fields.
The number of dimensions for real processors in the row direction is s + n,, and the
total number of real processor dimensions s+ 2n.. The notions of cyclic and consecutive
partitioning are now conditioned on the part of the real processor address fields.

We now turn to the communication required for matrix transposition. Consider
a one-dimensional partitioning such that p = ¢ > n, = n and cyclic partitioning by
columns before the transposition. Then every processor sends 2™~ 2" elements to every
other processor. All-to-all personalized communication [5,7] is required. To see this fact
note that there are 2™~ " virtual processors per real processor, and that the address field
prior to the transposition is partitioned as

(Up—1Up—z ... Up Vge1Vg—2...Vp Up_1...Vp).

up rp

After the transposition the partitioning is

(Vg—1Vg-2++ - V0 Up_1Up_2... Uy, Up_g... Uo),

/

up rp



which in the original address field is

(Up—1%p—2...Up Up—1... U0 Vg-1Vg-2... Vo).

'

-

vp rp up

Hence, the row address field in the initial allocation is partitioned into 2" partitions
for each column, and each such partition sent to a unique processor for the matrix
transposition. The address fields for real processors before the transposition and after
the transposition are disjoint.

If ¢ < n < p and the initial assignment is by columns, then only 27 processors are
used before the transposition, but all 2" processors used after the transposition. The
number of virtual processors per real processor before the transposition is 27, and after
the transposition 2™~ ™. The row address field is divided into 2" partitions. The address
fields for real processors before and after the transposition are disjoint. The transpo-
sition is accomplished by all 27 processors holding matrix elements sending a unique
set of data to each of the 2" processors. The communication is some-to-all personalized
communication. The reverse operation is all-to-some personalized communication. In
the extreme case such as transposing a vector, it is one-to-all or all-to-one personalized
communication. In a two-dimensional partitioning with the same number of processors
assigned to rows and columns, and the same assignment scheme (cyclic or consecu-
tive) for rows and columns, the address fields for real processors before and after the
transposition are the same. The communication is between distinct pairs of processors.

One of the reasons for not using all processors before or after a transposition is
that the number of dimensions for the row or column address field is smaller than the
number of processors dimensions assigned to that address field. Virtual elements can be
introduced to simplify the analysis. Virtual processors define local storage addresses.

Let R be the set of dimensions used for real processors, and V the set of dimensions
used for virtual processors: R = {d;|i =0,1,...,rp—1}and V = {d}|t = 0,1,...,vp—1},
where d;,d} € {0,1,...,m}. Furthermore RNV =¢ and RUYV = {0,1,...m —1}. The
number of dimensions used for real processor addresses is |R| = rp, and the number of
dimensions used for virtual processors is |V| = vp (rp + vp = m). Denote the set of
dimensions of the matrix encoding assigned to real processors before the transposition

by R and the set of matrix dimensions used for real processors after the transposition
by R,. Let I = R, N R,.

Clearly, for any one-dimensional partitioning I = ¢.

We have so far assumed that the matrix elements are embedded in the set of pro-
cessors by a binary encoding. Such an embedding does not preserve proximity. A
binary-reflected Gray code [16] encoding of row and column indices preserves adjacency.
This code is referred to as Gray code in the following and the encoding of w is G(w).
The conversion from one kind of encoding to the other can be accomplished in n — 1
routing steps with additional local data rearrangement. The paths in the routing can



Enc./Part. Consecutive Cyclic

Binary, Row (Up—1Upez.eUp_y) (Up—1Up—2...Up)
Binary, Column (Vg—1Vg—2+.-Vg—n) (Vn—1Vp—2...V0)

Gray, Row (G(up-1Up—2.-Up_p)) | (G(¥n—1%n_2...%0))
Gray, Column | (G(vg—1v4-2...4-n)) | (G(Vn-1Vn—2...v0))

Table 1: The processor address for matrix element (uy—1%p—3 .. .%o, Vg—1Vq—2 . . . Vo) With
consecutive and cyclic encodings.

Enc./Part. Combined
Contiguous Non-contiguous
Binary, Row (Up—iUpi—1-Up—i—nt1) (Up—1-Up—sUp—s—1...%0)
Binary, Column (VgmiVgmi-1.--Vg—i—nt1) (Vge1e0sVgms¥p—s—1.--Vo)
Gray, Row (G(up—itp—i—1--Up—i—nt1)) | (G(tp—1---Up_g) G(tn—g—1.--0))
Gray, Column | (G(vy—iVg—i-1-+Vg—i—nt1)) | (G(Vg_1...v4—s)G(Vn-s—1..-00))

Table 2: The processor address for matrix element (up—1up—3 . ..U, Vg—1Vg-2 . . . Vo) With
two examples of combined encoding.

be made to be edge-disjoint [9].

Adjacency is of no concern for virtual processor addresses in a storage with uniform
access time, but may be of significance for interprocessor communication, in particular
for Boolean cube configured multiprocessors. It is possible to restrict the Gray code
encoding to the real processor address field. For instance, in the consecutive assignment
the stripes/blocks can be assigned to processors by a Gray code encoding, while the
elements within the stripes/blocks are ordered in the binary order.

Considering binary and Gray code encoding of the processor address field, and con-
secutive, cyclic, or combined assignment with a consecutive or split address field a total
of 16 matrix embeddings result for a one-dimensional partitioning. The conversions be-
" tween any two of the 16 assignment schemes are equivalent, i.e., all-to-all personalized
communication, in terms of the global communication, if I = ¢ and |R.| = |Rs| = |R|.
Table 1 shows the real address fields and their encoding in terms of the matrix di-
mensions for consecutive and cyclic assignments. Table 2 shows the encodings for two
examples of combined assignment. The general case for which n arbitrarily chosen
dimensions are used for real processor addresses is treated in [4].



For the architecture we assume that the communication is packet oriented with a
communications overhead 7, a transmission time per element ¢, and a maximum packet
size of B,, elements. A communications overhead is incurred for each communications
link traversed. For a bit-serial architecture, such as the Connection Machine, the over-
head is only incurred once through pipelining. With the operating system for the Intel
iPSC on which our experiments were carried out 7 = 5 msec, ¢, ~ 1 usec/byte and
B,, = 1 kbytes. For the algorithm description and analysis we consider two cases with
respect to communication capabilities: communication restricted to one port at a time,
one-port communication, and concurrent communication on all ports, n-port commu-
nication. One-port communication is a good approximation of the capabilities of the
Intel iPSC. Furthermore, we assume bi-directional communication, i.e., that a processor
can send and receive data concurrently on the same port. Therefore, one send or one
receive operation takes the same time as one exchange operation of two adjacent nodes
through the same link for both one-port and n-port communications.

3 Generic Algorithms

3.1 One-to-All Personalized Communication

In [7] we devised and analyzed algorithms for one-to-all and all-to-all personalized
communication. One-to-all personalized communication can be performed in a time
within a factor of two of the lower bound by routing according to a Spanning B:-
nomial Tree (SBT) with one-port communication [17,2,5|. Before the communica-
tion the source node holds all PQ data elements. After the communication, every
processor holds % data elements. The communication time for SBT routing and
scheduling all data for a subtree at once [5] is T = (1 — #)PQt. + T [2,3 17,

which is minimized for B,, > %. Tmin = (1 — %)Pth + nr. The lower bound
Ti » > max((1 — &) PQtc,n7) > 2((1 — ) PQtc + nr).

With n-port communication routing according to a SBT results in a time complexity
of an order higher than the lower bound. Half of the nodes of a SBT are in one of the sub-
trees of the root node, and the minimum transmission time is %Pth. The lower bound
for n-port communication is T} 5 > max( (1——-)Pth, nr) > %(%(l—ﬁ)Pth—{—nr). One
routing strategy optimal within a small constant factor is to use a Spanning Balanced n-

Tree (SBnT) [5,7,6]. The communication time for SBnT routing and scheduling data for
each subtree in a reverse breadth-first order is T' ~ > ( ( )—q-tc+f ( ) I:n <17) =

L1-1)PQt.+X, (2 () 2-17), which has a minimum of Tpn = 1(1— ) PQt.+n7

for B,, > maxy (') \/— ~z- Lhe speedup of ‘the transmission time of the SBnT

. routing over the SBT routing is a factor of 1 37 The maximum packet size is reduced
approximately by a factor of n.
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In the SBnT routing the node set is divided into n approximately equal sets. An
alternative routing for n-port communication, is to divide the data set (%) for each
node into n equal parts and route the parts according to SBT’s rotated with respect to
each other, if % mod n = 0.

Definition 8 A graph is rotated with respect to another graph, if all its addresses are
obtained through the same number of shuffle operations, sh¥ for some k, of the addresses
of the other graph.

Definition 9 A graph is a reflection of another graph, if all its addresses are obtained
through a bit-reversal of the addresses of the other graph.

Note that in the case of the SBT a reflected SBT can be obtained by complementing
trailing zeroes, instead of leading zeroes. The minimum time for one-to-all personalized
communication using n distinctly rotated spanning binomial trees and scheduling data
for each subtree in a reverse breadth-first order is Tpnin = (1 — —JIV)Pth + nr [5].

n
This complexity is of the same order as that of the lower bound. The minimum time is

achieved for B,, > \/g %. A similar algorithm of the same complexity was also derived
independently by Stout et al. [21,20].

For PTVQ = k < n the SBnT routing has a lower time complexity for element transfers.
For k SBT’s the transfer time for optimally rotated spanning binomial trees is (2" —
1) 2%_1 PQ

TN t. and for optimally reflected and rotated spanning binomial trees the mini-

-1
mum transfer time with concurrent communication on all ports is (2" — 1)%%&.
2% -1

For k = 2 reflection yields a maximum of %N + 1 element transfers over any edge (and

a minimum of v/2N). Rotation yields a maximum of 1N + /2N element transfers over
any edge. For k = 2 the optimum rotation is by %n steps. In general, the optimum
rotation is by % steps for %Q =k < n, if n is a multiple of k.

3.2 All-to-All Personalized Communication

For all-to-all personalized communication a simple exchange algorithm scanning through
the dimensions of the cube for one-port communication requires a time T = n%tg +
n[B—f;%]r, which has the minimum T, = n(%‘%tc + 7) for B, > %@, [17,9,15,7,2].
In each communication % elements are exchanged. The exchange algorithm routes
elements from a node to all other nodes according to a SBT. The SBT’s rooted at
different nodes are translations of each other. A tree rooted at node s is a translation
of the tree rooted at node 0, if the addresses of the nodes in the tree rooted at node
s are obtained through a bit-wise exculsive-or operation, z & s, for every node z of

the tree rooted at node 0. In the exchange algorithm the dimensions of the cube can
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be scanned in an arbitrary order. Starting with the highest order dimension of the
real processor address and virtual processor address before the communication, a single
block is communicated in the first transfer. The number of blocks doubles for each step
of the exchange algorithm, and the block size is reduced by a factor of 2.

This exchange algorithm can be explained in terms of the address space of the data
set subject to all-to-all personalized communication. Let the data assignment before
and after the communication be

Before: (Wm-1Wm—2--.Wrp Wrp_1-..Wo),
vp o
After 1 (Wmo1Wm—2. .. Ws Wem1Ws—2 + .+ Womyp Werrp1 - - - WrpWrp—1 + + - W)
vp rp vp

Then, in the ¢** exchange step real processor dimension rp—i—1 and virtual processor
dimension s —¢—1, ¢ € {0,1,...,rp — 1} are involved in the exchange.

Ezchange step 1:

(Zum—lwm—Z vee wslzua—l LR ws—i+ll Wof Wo—i—1++Wrp—it1 Wrp—i Wrp—i—1--- wO)-

J

" —~ -~

up rp vp rp

The data volume in each exchange remains constant, since the number of virtual pro-
cessor dimensions remain constant. But, the exchange dimension partitions the virtual
address space into an increasing number of smaller blocks for increasing ¢. A shuffle
operation on the virtual addresses between each exchange operation would allow the
exchange operation to always work with single block exchanges. The shuffle operation
implies extensive local data movement. ‘

As an alternative to a local shuffle operation in order to minimize the number of
communication start-ups blocks can be moved to a buffer, and a number of blocks sent
in the same communication. For the Intel iPSC moving data to a buffer requires a
significant time, and there exists a block size less than the buffer size for which the copy
time is greater than the start-up time. We devised an optimal buffer scheme that is
presented in connection with the discussion of our experiments on the Intel iPSC.

Definition 10 The “Standard Ezchange Algorithm” on 2l dimensions performs an ez-
change of data between dimensions g(i) and f(i), where the sequences {g(¢)} and {f(¢)},
:€{0,1,...,1 — 1}, are disjoint, and both monotonically increasing, or decreasing, as a
function of i. The ezchange is made on data such that wy;) ® wyi) = 1.

For instance, g(¢) = s—¢ —1 and f(:) = rp — 1 — 1 for the above example. If p = g,
g(?) =m—1—14, f(i) = ¢—1—1, and 2/ = m, then the standard exchange algorithm
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realizes a matrix transposition. There is no particular need to restrict the exchanges
to proceed from higher to lower order dimensions, or lower to higher order dimensions
on both virtual and real processor dimensions. By allowing exchanges on arbitrarily
paired real and virtual processor dimensions various forms of data conversions can be
accomplished. We will give a few examples later. For a general discussion see [4].

Definition 11 The “General Ezchange Algorithm” on 2l dimensions performs an ez-
change between dimensions g(i) and f(1), where (g(2), f(2)) ts an arbitrary pair of di-
mensions such that g(2) # g(5), f(2) # f(9), ¢t # 3, V2,5 € {0,1,...,l—1}. An ezchange
ts made on data such that wy;) © wye) = 1.

Note that the sets {g(z)} and {f(¢)} are not necessarily disjoint and the sequences
9(0),9(1),...,9({ — 1) and f(0), f(1),...,f(! — 1) are not necessarily increasing or de-
creasing. The general exchange algorithm can be applied to the bit-reversal permutation
as described in section 7 and the k shuffle operation described in [4].

With n-port communication pipelining can be employed in the exchange algorithm,
but the algorithm so modified is suboptimal. However, routing based on spanning
balanced n-trees, or rotated spanning binomial trees, and scheduling of data for subtrees
in either postorder, or reverse breadth-first order, only requires a time of T, = %%tc +
nt [7]. A similar algorithm of the same complexity was also derived independently by
Stout et al. [21,20]. This complexity is again within a factor of 2 of the lower bound

Ty > ma.x(;—aj%tc,nr) > %(%%tc + nr).

3.3 All-to-Some Personalized Communication

We only consider the case where I = ¢ and |Ry| # |Ra]. If |Rs| = |Ra| = |R|, then

the communication is all-to-all personalized communication. The general case for which
I # ¢ is treated in [4]. If the number of real processor dimensions used before the
transposition is greater than the number used after the transposition, i.e., |R;| — |Ra| =
k > 0, then the transposition implies k steps of all-to-one personalized communication
and |R,| steps of all-to-all personalized communication. Data accumulation takes place
during the k steps of all-to-one personalized communication. If |R,| — [Ry] = k£ > 0,
then there are k steps of one-to-all personalized communication and |R;| steps of all-to-
all personalized communication. The k steps of one-to-all personalized communication
implies data splitting.

Theorem 1 The steps of all-to-one and all-to-all personalized communication used to
realize all-to-some personalized communication can be performed in any order. Perform-
ing the all-to-all personalized communication first minimizes the data transfer ttme. For
some-to-all personalized communication performing the one-to-all personalized commu-
nication first minimizes the data transfer time.
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Comm. capab. Time
oneport | T = (Igkde + Limg grien)te + ([ gyt | + S [ grgrem=s )7
n-port T = (&% + 1 S50 )t + ([ e | + Sise gt )T

Table 3: Estimated communication time for Some-to-all personalized communication.

The theorem simply states that data accumulation shall be performed last and data
splitting first. The theorem can be proved by considering the communication complexity
of inserting the k steps all-to-one (one-to-all) personalized communication among the
all-to-all personalized communication.

Let &k = ||Rs| — |R4]| and | = min(|Rs],|Ral). If the minimized algorithm is exe-
cuted, for the k steps of all-to-one or one-to-all personalized communication there are 2!
distinct subcubes in which the operation takes place concurrently. Each such subcube
is of dimension k. Also, the all-to-all personalized communication takes place within
subcubes of dimension I, and there are 2* such subcubes.

The complexity estimates for k = ||Rs|—|Ra|| steps of accumulation/splitting and I =
min(|Rs|, |Ra|) steps of all-to-all personalized communication are given in Table 3. Note
that | = n, k = 0 yields the complexity of the all-to-all personalized communication,
and | = 0, k = n yields the complexity of the one-to-all or all-to-one personalized
communication. In general, it is a 2'-to-21** (or 2!7¥-t0-2!) personalized communication.

4 Matrix Transposition

We have defined matrix transposition as a set of shuffle operations. This definition
is convenient on certain processor networks, and for parts of the analysis. Matrix
transposition implies an exchange of the row and column address fields. This exchange
can clearly be accomplished by the standard ezchange algorithm, if p = ¢. If this is not
the case, then virtual elements can be introduced to square up the matrix. A standard
exchange algorithm can be formulated as follows:

For ¢ := ¢ — 1 downto 0
forall u; ®v; =1
exchange elements {(u||v)} and {(v||v)};
endforall
endfor
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Lemma 5 Let p = q, u; = v;, Vj € {0,1,...,i — 1,0+ 1,...,q — 1}, u; = ;, then
Hamming((u]|v), (v]|u)) = 2.

Corollary 4 If the number of processors is equal to the number of matriz elements,
2™ then matriz transposition performed through a sequence of exrchanges requires im

2
exchanges, each requiring communication over a distance of two.

Corollary 4 gives an upper bound equal to the lower bound of Corollary 2.

With a one-dimensional partitioning of the matrix, I = ¢ regardless of the assign-
ment schemes before and after the transposition. In the two-dimensional partitioning I
may be empty, but it can also be equal to the full processor set R.

Lemma 6 If the exchange algorithm is used for transposition and g(1), f(i) € R,, then
the communication is between real processors at distance 2. If g(¢) € Ry, f(2) &€ Ry, or
g(?) & Rs, f(i) € Ry, then the communication is between real processors at distance 1.
Otherwise, the exchange operation ts a local data movement.

5 One-Dimensional Matrix Partitioning

If there are data elements for every real processor both before and after the data rear-
rangement, then the matrix transposition is all-to-all personalized communication. Each
node sends %@ elements to every other node. The communication is all-to-all personal-
1zed communication regardless of whether or not the scheme for assigning elements to
processors is the same before or after the transposition.

If the exchange algorithm is used for all-to-all personalized communication then the
exchange operations takes place either between a virtual processor and a real processor
or two virtual processors in the same real processor. With the same number of processors
being used before and after the transposition and one-port communication the exchange
algorithm is optimum within a factor of 2.

For matrix transposition by the exchange algorithm [10] presented next it is assumed
that the matrix is partitioned consecutively by rows and that processor ¢ initially holds
the elements of the #** block row. After the transpose operation it shall hold the elements
of the ** block column. Note that the number of rows in a block row is different from-
the number of columns in a block column, unless P = @. However, the number of
elements in a block row and a block column are the same. For the transpose operation
the block row of each processor is partitioned by columns into N same-sized blocks.
The transpose is formed by processor ¢ exchanging its 7% block with the ** block of
processor 7. The data array in each processor holding the elements of a block row is
two-dimensional, unless the number of rows is equal to the number of processors, and
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the local data array after the transposition is also two-dimensional, unless the number of
columns is less than or equal to the number of processors. To complete the transposition
after the interprocessor communication is completed, this two-dimensional data array
can be transposed further locally, explicitly, or implicitly by indirect addressing.

/* Transposition by the Standard Ezchange Algorithm: */
for 7 :=n—1 downto O
if (bit 7 of my-addr = 0) then
exchange blocks %N to N — 1 of my blocked array
with my neighbor in dimension 7

else
exchange blocks 0 to %N — 1 of my blocked array
with my neighbor in dimension j
endif;
shuffle my blocked array;
endfor

The loop can also be performed with the loop index running in the opposite order,
but then the first operation in the loop shall be an unshuffle operation, which replaces
the shuffle operation at the end of the loop.

For n-port communication the exchange algorithm is no longer optimal. A SBnT
algorithm as described below yields a communication complexity that is optimum within
a factor of 2.

/* Transposition by a SBnT Algorithm: */
/* Let the format of msg be (source-addr, relative-addr, data). */
/* base(s) = the minimum number of right rotation of j which yields */
/* the minimum value among all rotations of j. */
for all 7 # my-addr do
form msg for processor j = (my-addr, my-addr &3 @ 00..01,0..0, data)
and append to output-buf [b] where b is the base of my-addr @j.
loop n times
send concurrently for all n output ports.
receive concurrently for all n input ports.
for each ydo,0< j<n
for each msg of input-buf [j] do
if relative-addr = 0 then
put the data into the source-addr'® block
of the target array
else
form relative-addr := relative-addr & (0..01,0..0) in
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the msg and append to output-buf [p], where p is
the bit position of relative-addr which is the
nearest 1-bit to the left of the j** bit cyclically.
/* Note: j** bit is always 0 here. */
endif
endfor
endfor
endloop

In the case where only a few processing nodes contain data before or after the
transformation it is of the form some-to-all or all-to-some personalized communication.
In the extreme case it is one-to-all or all-to-one personalized communication. Virtual
elements can be introduced such that the same number of real processors are used before
and after the transposition. Real processors with virtual elements participate in the
exchange operations by receiving data. Virtual elements need not be communicated.
The number of real elements being communicated in an exchange operation is not
constant, in general, when virtual elements are introduced.

Corollary 5 In a one-dimensional partitioning such that |Ry| = |R,| there exist ele-
ments that must traverse |R,| dimensions.

The communication complexity for these cases are summarized in Table 3.

Lemma 7 One-dimensional transposition can be combined with change of data assign-
ment scheme in using the standard exchange algorithm.

Corollary 6 The conversion of the storage form of a matriz stored in 2/l < 2" pro-
cessors from any one of the following storage forms

e consecutive row

e consecutive column

e cyclic row

e cyclic column

e combined cyclic and consecutive row storage

o combined cyclic and consecutive column storage

17



to any other of these forms requires communication from each of the processors to 2[Ral —
1 other processors, if I = ¢.

Corollary 7 The conversion between the cyclic and consecutive storage forms implies
all-to-all personalized communication, if P > N? for partitioning by rows and @ > N?
for partitioning by columns.

For both the SBT and SBnT algorithms presented above it is assumed that the
partitions are embedded in the cube by a binary encoding. For Gray code encoding of
partitions and binary encoding of virtual processors, we can first perform a transfor-
mation locally such that block w is moved to block location G(w), then carry out the
above algorithms. The two operations can also be combined as described in section 6.2.

6 Two-Dimensional Partitioning

In the two-dimensional partitioning with cyclic assignment and the same number of
dimensions for rows and columns the address field is partitioned as follows:

(yp_lup_g ce Up, YUn,—1 e U0 Vg—1Ug—2 -+ VUn, Un,—1--- vq).

vp rp vp rp

For consecutive assignment the partitioning is

(:U,p_lup_z e up_nclyp_,,c_l N 'U,ol Z)q_l’vq_.z ‘e vq_ncl})q_nc_l ves ’vo).

S

=~ ~ n

rp vp rp vp

In either of these cases I = Ry = R,. This case is the basic two-dimensional
matrix transposition. The communication is between pairs of processors. In [9,10]
we show that the transposition of a matrix embedded in the cube by a binary code
or Gray code encoding implies the same communication. The algorithm in the above
references uses a single path from source to destination for every source/destination
pair. We will describe a simple extension using two paths for every source/destination
pair, and an algorithm using multiple paths. We refer to the three algorithms by the
names Single Path Transpose (SPT), Dual Path Transpose (DPT), and Multiple Path
Transpose (MPT).

Note that by corollary 2 the maximum distance matrix elements need to traverse is
n =2n..

With a mixed assignment before and after the transposition, such as consecutive for
rows and cyclic for columns

(Up-1Up-3 .+ Upop, Up—n,—1-- U0 Vg-1Vg—2+ - - VUn, Un,—1--- Vo),

=~ T

rp vp vp P
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the set J may no longer equal the entire processor set. In fact, if ¢ — n. > n, and
p —n, > n, then I = ¢ and it is an all-to-all personalized communication. Between
these two extremes the communication is discussed in [4].

6.1 Transposition with Communication Only between Distinct
Source/Destination Pairs of Processors

We consider the transpose operation for binary encoding first. Define tr(z) to be
the function which maps the address of partition (address of assigned processor) z =
(z,||z.) to the address of the transposed partition, ie., tr(z) = (z.|{z,). Let H(z) =
Hamming(z,,z.). Then Hamming(z,tr(z)) = 2H(z). In the following we assume that
n, = n. = 3 and n is even, i.e., that there are equally many row and column partitions.

The Single Path Transpose (SPT) algorithm [10,15] uses one path from processor =
to processor tr(z). Paths for different z's are edge-disjoint, and pipelining of commu-
nications can be employed to reduce the communication complexity. The Dual Paths
Transpose (DPT) algorithm is a straightforward improvement of the SPT algorithm
in that two directed edge-disjoint paths are established from each source processor to
its corresponding destination processor. In the Multiple Paths Transpose (MPT) al-
gorithm, we partition the processor addresses into sets such that all members of a set
have equivalent properties with respect to an relation operator (defined later). We show
that the paths associated with any two source processors belonging to different sets are
edge-disjoint. We then prove that all the paths of the processors in the same set share
the same set of edges, but use them during different cycles. An algorithm similar to the
MPT algorithm was also derived independently by Stout et al. [20,21].

6.1.1 The Single Path Transpose (SPT) Algorithm

With the same assignment scheme for rows and columns, and the same number of

processors assigned to rows and columns, n, = n, = (n must be even) the commu-
nication is restricted to distinct source/destination pairs. The Single Path Transpose

(SPT) algorithm [10,15] is a special case of the standard exchange algorithm.

Lemma 8 In a two-dimensional partitioning such that the same number of dimensions
are used for real processor addresses before and after the transposition and the same
assignment scheme used before and after the transposition there exist elements that
must traverse rp = 2n, dimensions.

In the SPT algorithm for the same number of real processors for rows and columns,
and the same assignment scheme for both rows and columns both before and after
the transposition, data is exchanged between processors with addresses that differ in
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dimensions g(z), g(¢) € R,4g(:) < g, and f(4), f(i) € R,q¢ < f(i) < m in the 1** exchange
step. The implied routing corresponds to directed edge-disjoint paths from each node
z to tr(z). For each source-destination pair there is a single path. This path only goes
through the appropriate dimensions of the real processor addresses corresponding to the
bits of z that need to be complemented to become the destination real address tr(z).
The routing order for the dimensions is the same for all nodes, for instance highest
to lowest order for both row and column encoding, i.e., g(% — 1), f(} — 1), (3 — 2),

2
f(2-2),...,9(0), £(0). The length of the path of node z is 2H(z). The first packet for

eaczh node on the anti-diagonal arrives after n routing steps and additional packets every
cycle thereafter. The total number of routing steps is [%%] + n — 1. The nodes which
are not on the anti-diagonal can either finish the transposition earlier in a “greedy”
manner, or synchronize with the anti-diagonal nodes, i.e., the packet with the same
ordinal number of all the nodes uses the same dimension (or idles) during the same

step. The total transposition time T is ([£%] +n — 1)(Bt, + 7). The optimal packet
size, Bopt, is \/Tv—({gﬁ and the minimum time, Ty, = (\/Eﬁtc + \/(n —1)7)2.

6.1.2 The Dual Paths Transpose (DPT) Algorithm

The SPT algorithm can be improved by establishing two directed edge-disjoint paths
between z and tr(z) for all z's. In addition to the paths used in the SPT algorithm,
a second path is defined by permuting processor row and column dimensions pairwise
to yield a routing order selected from f(5 —1), g(3 — 1), f(5 —2), 9(3 —2), ..., £(0),
g(0). The two directed paths for a particular z are edge-disjoint (as observed in [11]
for the solution of tridiagonal systems on Boolean cubes). Moreover, the two directed
paths for any z are edge-disjoint with respect to all paths for other z's. This second
path can be used to reduce the time for data transfer by splitting the set of data %
into two equal parts. The path lengths are already minimal in the SPT algorithm.

The communication complexity is ([ 5% | + n — 1)(Bt. + 1), which is minimized for

B = B, = /ﬁ and Tiin = (\/%tc—{—\/(n — 1)7)2. The speedup is approximately

2 for Eﬁtc > nr, i.e., for Boolean cubes small relative to the problem size. Note that
for the SPT algorithm it suffices that each node supports a total of n concurrent send
or receive operations, whereas for the DPT algorithm n send operations concurrently
with n receive operations are required for each node. Uni-directional communication

suffices for the SPT algorithm, but bi-directional communication is required for the
DPT algorithm.

6.1.3 The Multiple Paths Transpose (MPT) Algorithm

For the Multiple Paths Transpose (MPT) algorithm we define 2H (z) paths, labeled
0,1,...,2H(z)—1, between nodes z and tr(z). The paths differ in the order in which the
dimensions are routed. All paths originated from the same node have the same length.
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Let ag(z)-1, CH(z)-25 - - » @0y BH(z)-15 BH(z)-25 -+ +» Bo be the sequence of dimensions that
need to be routed in descending order. We describe a path as a sequence of dimensions.

O p-+H (2)~ 1) modH (2} B(p+H (2) — 1) modH (z) ¥ (p+H (2)~2) modH (2} B(p+ H (2)~2) modH (2} -+ ¥py Pp-
vpe{0,1,...,H(z) — 1}

ﬁ(j+H(z)—1) modH (z) X(j+ H(z)—1)modH (z) IB(J'+H(z)—2)modH(z)u C(5+H(z)—2)modH (z} *=*» .3_1'7 aj.
j=p—H(z),Vpe{H(z),H(z) +1,...,2H(z) — 1}

path p =

For example, if z = (1001||0100), then z, = 1001, z, = 0100, H (z) = 3 and tr(z) =
(z.||z,) = (0100|]1001). The distance between z and tr(z) is 6. The 6 paths are defined
as follows:

path 0 =17,3,6,2,4,0. path 3 =3,7,2,6,0,4.
path 1 =4,0,7,3,6,2. path 4 =0,4,3,7,2,6.
path 2 =6,2,4,0,7,3. path 5 =2,6,0,4,3,7.

Path O starts from the source node (10010100) and goes through nodes (00010100),
(00011100), (01011100), (01011000), (01001000) and reaches the destination node
(01001001). Path p can be derived by a right rotation of two steps of path (p —
1) mod H(z), if 0 < p < H(z). For H(z) < p < 2H(z), path p can be derived by
a right rotation of two steps of path ((p — 1) mod H(z)) + H(z) and also by permuting
row and column dimensions pairwise of path p mod H(z). Note that path O is the same
as the path defined in the SPT algorithm. Paths 0 and H(z) are the two paths defined
for node z in the DPT algorithm.

Definition 12 Let z',z" be two nodes with =’ = (zl||z) and =" = (z}'||z!). Define a
relation ~.; between z' and z" such that ' ~ 3 2" iff . + 2. =z + 2", 1.e., ' and 2"
ad ad r ¢ r ) ’

c
are on the same anti-diagonal. Note that if ' ~,4 2" and 2" ~,q 2" then ' ~,q4 z".
ad ad ad

Definition 13 Define edge(z, p,€) to be the function which returns the et directed edge
of path p of node x, with e > 1. We also define Edges, OddEdges, EvenEdges and Paths
~as follows.
Edges(z,e) = {edge(z,p,€)|Vp € {0,1,...,2H(z) — 1}},
OddEdges(z) = |J Edges(z,¢),
v odd e

EvenEdges(z) = |J Edges(z,e),
v even e

Paths(z) = OddEdges(z)| | EvenEdges(z).

Definition 14 Define Nodes(z,e) to be the function which returns the set of nodes
upon which the directed edges in Edges(z,e) terminate. Define OddNodes(z) and
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EvenNodes(z) to be the set of nodes on which the set of directed edges OddEdges(z)
and EvenEdges(z) terminate, respectively.

OddNodes(z) = |J Nodes(z,e)
v odd e

EvenNodes(z) = |J Nodes(z,e)

v even €

Definition 15 Let z',z" be two nodes. Define a relation ~, such that ©' ~, z" iff
T ~gq 2 and ' D tr(2) = 2" @ tr(2"). Note that if ' ~, =" and z" ~, z" then

! H
z ~, z".

r ©tr(z') = 2" @ tr(z") implies H(z') = H(z"), but H(z') = H(z") does not imply
T @ tr(z') = 2" @ tr(z"). There exists z',z" such that z' ~,4 2" and z' @ tr(z') #
z" @ tr(z"), for instance (001||111) and (010{|110). Also there exists z',z" such that
T fog 2" and ' @ tr(z') = =" @ tr(z"), for instance (001||111) and (000}|110).

Definition 16 A set of paths defined upon a set of nodes X is said to be (t,n)-disjoint,
t < n, if a packet that can be transmitted in unit ttme can be sent out on every path
from every node z € X during cyclesi*xn+1,1%sn+2, ..., 1xn+t, V>0, without
routing conflicts, t.e., messages originating from different nodes will not be routed over
the same edge during the same cycle.

Note that the (¢,n)-disjoint definition does not imply that the paths from the dif-
ferent source nodes are edge-disjoint, unless t = n.

To describe the MPT algorithm we first prove the following properties.

1. Paths p; and p, of node z are edge-disjoint, Vp;, p, € {0,1,...,2H(z)—1}, p1 # ps.
2. If ' #, =" then Paths(z') N Paths(z") = ¢.

3. The set of all paths for the nodes in the set induced by the relation ~, is (2,2H (z))-
disjoint where z is in the node set.

Lemma 9 Paths p; and p; of node z are edge-disjoint, Vpy,p; € {0,1,...,2H(z) — 1},
p1 # P2

Proof: It follows from the facts that all the paths are pointing away from the source
node and no two paths traverse the same dimension during the same step. I
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Lemma 10 If H(z') > 0, then the set of nodes OddNodes(z') and EvenNodes(z') have
the following properties:

o 2! £,y 2", H(z") = H(z') — 1, V 2" € OddNodes(z'),

oz ~y 2, ' @ tr(z') = 2" @ tr(2") (which implies H(z") = H(z')), V 2" €
EvenNodes(z').

Proof: In traversing an edge in OddEdges(z), we complement one of the H(z) bits of
the 2 high (low) order bits which differ from the corresponding low (high) order bit.
In traversing an edge in EvenEdges(z), we complement the low (high) order bit of the
corresponding high (low) order bit that was complemented in traversing the preceding
odd edge. Let z', 2", and 2z be nodes along the same path such that =’ = (y'||2') €
Nodes(z,2h), =" = (y"||2") € Nodes(z,2h + 1) and =" = (y"||2") € Nodes(z,2h + 2),
Vh € {0,1,...,H(z) — 1}. From the definition of paths either y" = y' + 2¥,2" = 2'
or y" = y',2" = 2' — 2% for some k satisfying y, =0, 2, = L; or y" = y' — 2%, 2" =2
or y" =y, 2" = 2' + 2F for some k satisfying y}, = 1,2, = 0. These conditions imply
Yy + 2 # y"+ 2" e, ' #oq 2", and Hamming(y",2") = Hamming(y',2') — 1, i.e.,
H(z") = H(z') — 1. Furthermore, y" = y' + 2%,2" = 2’ — 2* for some k satisfying
Y, = 0,2, = 1 or y" =y — 2%, 2" = 2' + 2*, for some k satisfying y} = 1,2} = 0. Hence,
Y+ 2 = y" + 2" e, 2! ~gg 2. Also, ¥ @2 = y" @ 2", ie., (ylel) @ (zIHy:) —
(v"||2") & (2""||y") which implies z' @ tr(z') = 2" S tr(z"). 1

Corollary 8 z' ~, 2", V 2" € EvenNodes(z').
Lemma 11 If z' #£,4 2", then Paths(z') N Paths(z") = ¢.

Proof: Tt is sufficient to prove Paths(z') N Paths(z") = ¢ by proving EvenNodes(z') N
EvenNodes(z") = ¢ and FEvenNodes(z') N OddNodes(z") = ¢. From lemma
10, EvenNodes(z') ~s ', EvenNodes(z") ~z z". Since z' o, z", we have
EvenNodes(z') #44 EvenNodes(z"), which implies EvenNodes(z') N EvenNodes(z") = ¢.

To prove EvenNodes(z') N OddNodes(z") = ¢, we consider three cases.

1. If H(z') = H(z"), then by lemma 10 H(y') = H(y")+1 where y' € EvenNodes(z'),
y" € OddNodes(z"). So, EvenNodes(z') N OddNodes(z") = ¢.

2. If H(z') > H(z"), then H(y') > H(y") where y' € EvenNodes(z'), y" €
OddNodes(z"). So, EvenNodes(z') N OddNodes(z") = ¢.

3. If H(z') < H(z"), we show EvenNodes(z") N OddNodes(z') = ¢ instead by a
similar argument as in case 2. |
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Lemma 12 If ' ~,4 2" and z' £, 2", then Paths(z') N Paths(z") = ¢.

Proof: Assume FvenNodes(z') N EvenNodes(z") # ¢, then there exists one node y such
that y € EvenNodes(z') and y € EvenNodes(z"). By corollary 8, y ~, z',y ~, ",
i.e., ' ~, " which is a contradiction. So, EvenNodes(z') N EvenNodes(z") = ¢. Also
by lemma 10, y' #.4 ¥", Vy' € EvenNodes(z') and y" € OddNodes(z"), which means
FEvenNodes(z') N OddNodes(z") = ¢. Hence, Paths(z') N Paths(z") = ¢. I

Lemma 13 If «' £, 2" then Paths(z') N Paths(z") = ¢.

Proof: It follows from lemmas 11 and 12. 1

Lemma 14 The set of paths defined for the nodes tn the same set tnduced by the relation
~s 15 (2,2H(z))-disjoint.

Proof: We first prove that the paths of the nodes defined by the relation ~;, are
(1,2H (z))-disjoint. The proof is by induction on the routing cycles. During cycles
1 and 2, the routed edges are clearly disjoint by Lemma 10. Assume that during cycles
2n — 1 and 2n, n > 0, the routing is also edge-disjoint. If n = H(z), then all the
routing is complete. During the next two cycles the routing is restarted and there is
no edge conflict. If n # H(z), then consider the 2H(z) edges directed into some node
y at distance 2n from z as well as the 2H(z) edges directed out from node y. Let
QH(z)-1> CH(z)—25 -+ @03 BH(z)-1, BH(2)~25 ---» Bo be the corresponding 2H(z) dimensions in
descending order. If an edge used during cycle 2n — 1 is in dimension oy (i.e., the edge
used during cycle 2n is in dimension §;) then the edges used during the following two
cycles are in dimensions @(x_1)modr(z) aNd B(r—1)modH(z) Tespectively. If the edge used
during cycle 2n — 1 is in dimension B then the edges used during the following two
cycles are in dimensions B(x-1)moar(z) and (k-1)moan(z) Tespectively. Hence, the edges
used during the following two cycles are all distinct and it follows that the paths are
(1,2H (z)) disjoint.

To show that the paths are (2,2H(z))-disjoint it suffices to show that the set of
edges used during odd cycles (odd edges) are disjoint from the set of edges used during
even cycles (even edges). Let z be any node in the set defined by the relation ~,. That
the set of edges used during odd cycles are disjoint from the set of edges used during
even cycles follows from the property that odd edges are directed from node z' to node
y' and even edges directed from node y” to node z" where z ~, z' ~, =", z 4, ¥ and

z 4y 1

Figure 3 shows an instance of a set induced by the relation ~, on a 6-cube. Note that
H(z) = 3 for z in this set. The nodes in the same set form a logical H (z)-dimensional
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Figure 3: The logical H(z)-cube formed by nodes in the same induced set of the relation

~3'

cube where each logical link represents an exchange operation of two dimensions. Hence,
a logical link contains two disjoint paths of length two. By lemma 13, the corresponding
physical edges of the logical link will only be shared by nodes in this set. Notice
that z and tr(z) are at maximum distance from each other in the logical H(z)-cube.
Figure 4 shows the 6 (2H(z)) edge-disjoint paths from node z = (000111) to node
tr(z) = (111000). The labels on the edges are dimensions of the edges.

For the routing, the data from node z is split into 4H (z) packets of size [ZT\I%IQGS]
each. The packets are sent during the first two cycles. The first 2H(z) packets will
arrive at the destination node, tr(z), after 2H(z) cycles, and the second set during the
next cycle. The total transpose time is

8N~

n+ 1)7 + (2£1) 29, if ¢ > EQte,
2n / N 2
3r + i—%te otherwise.

The transpose time decreases as a function of H(z) for 1 < H(z) < {/£2 and

increases for /2% < H(z). The transpose time for H(z) = 1 and H(z) = Bl are

the same. The maximal packet size is %VQ. The maximal packet size can be reduced
either without affecting the total transpose time (if § > %) or the total transpose
time reduced by splitting the data into LTI?GGTJ * 4H (z) packets. In fact, the data sent
from node z can be split into 4kH (z) packets instead of 4H(z) packets. The whole

routing completes in 2kH (z) +1 cycles. Hence, T = (2kH (z) +1)(r + ﬁ—%—ﬁ), H(z) €

{1,2,...,3n}. The optimal k is 2H1(:c) % and T = (/7 + \/%)2. Notice that

Tonir is valid only when k > 1, which implies \/% > n.
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Figure 4: 6 (2H(z)) edge-disjoint paths from node z = (000111) to node tr(z) =
(111000).
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" Theorem 2 The total matriz transpose time by the MPT algorithm is

+1)r + 2t %Qt ifn > ,/P PQt. approzimately;
+ 3)7 En;ifsTth if 2NT POt: < t” P9t upprozimately and 5 1s even;
+2

)7 ﬁ%?-t if P t” POte « p < \/ te gapprozimately and 2 1s odd;

VT HVER) fns o

and the optimum packet size ts

ISTE R CYE B

(
Tpin = 4 ¢
(
(

[%E2-] for even 2 and n > /23,

(n+4) 2Nr
Byt = [N—%?_T)] for odd 2 and n > \/5%e;

PQr PQt.
N, Jor n <o
Theorem 3 The matriz transposition time ts at least max(nr, 2—th ).

Proof: The minimum number of start-ups is determined by the longest distance, which
is n. Nodes on the main anti-diagonal are at distance n. For a lower bound on the
required time for data transfer consider the upper right 3@’—: X 3@’—: submatrix. There are
%’— nodes. Each node has to send % data to some node outside the submatrix. There
are two links per node that connects to nodes outside of the submatrix, i.e., a total of
%V— links. Hence, the data transfer requires a time of at least %tc. |

For Gray code encoding on both row and column indices, we can apply exactly the
same transpose algorithm. For a binary encoding of row and column indices, matrix
element (u,v) is stored in processor w = (ul|v) and matrix element (v,u) is stored in
processor tr(w) = (v||u). For Gray code encoding of row and column indices, matrix
element (u,v) is stored in processor (G(u)||G(v)) and matrix element (v, u) is stored in
processor (G(v)||G(v)). The two-dimensional transpose algorithms described above are
indeed permutation algorithms defined by (u||v) « (v||u),Vu € {0,1,...,P —1},Vv €
{0,1,...,Q — 1}. It follows that the permutation will transpose the matrix. In general,
if row and column indices are encoded in the same way, the transpose algorithm only
depends on the processor addresses, not on the row and column indices of the matrix
elements in the processors. For N < PQ, the argument applies to matrix blocks instead
of matrix elements.

6.2 Transposition with Change of Assignment Scheme

If the number of processors in the row and column direction are not the same, or if a
different assignment strategy is used for rows and columns, or if the assignment scheme
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after the transpose is different from that before the transpose, then the communication
is no longer confined to distinct pairs. If |Ry] = |Ra| = |R| and I = ¢, then the
communication is all-to-all personalized communication. In general, for I # ¢ the
transposition/rearrangement is composed of different types of operations. This case is
treated further in [4].

For a non-square matrix virtual elements can be introduced. Virtual elements need
not be communicated, and the complexity of the transposition is reduced accordingly,
but the basic algorithms apply.

To illustrate a two-dimensional transposition with change of assignment scheme, such
that J = ¢, we consider the transposition of a matrix stored consecutively with respect
to both rows and columns before the transposition, and stored cyclically with respect
to both rows and columns after the transposition. We also assume that n, = n, and
that p,q > 2n,. The partitioning of the address field before and after the transposition
and change of assignment scheme are

Before :  (up—1Up—2...Up—n, Up—n,—1---U0 Vg—1Vg—3 -+ - Vg—n, Vg=ne—1- - Vo),

~ "~ o

rp vp P vp

After : (Vg—1Vg—2...Vp, Un,—1++:V0 Up_1Up_z .. Up, Un,1... Ug).

-

vp rp up »

We consider three exchange algorithms that differ only in the way dimensions are
paired, and the order in which the exchanges are performed. Let ezchange-row (M, s, N,)
denote the sequence of exchange operations between N, block rows (within a col-
umn subcube of N, processors) as defined by the standard exchange algorithm de-
scribed in pseudo code before, except for a minor modification. The initial local ar-
ray of length M is partitioned into 2°N, blocks. The j** block is sent to proces-
sor ymod N,, V5 € {0,1,...,2°N, — 1} during the execution of the exchange algo-
rithm. Each processor sends 2° blocks to every other processor. For the exchange algo-
rithm for the transposition of a one-dimensionally partitioned matrix described earlier,
M = %, s =0, N, = N. Each processor sends only one block to every other proces-
sor. Ezchange-row (M, s, N,) operates within each column subcube. Ezchange-column
(M, s, N,) is defined analogously.

The parameter s defines the offset from the high order dimension of the virtual
processor address field for the first exchange in the standard exchange algorithm. From
the discussion of the standard exchange algorithm it is clear that an offset of s divides
the local array into 2°*! blocks for the first exchange. The blocks are of size % for

a P x Q matrix partioned evenly among N real processors.

For the transposition with change of assignment scheme we consider the following
three algorithms:

1. Convert from consecutive-row partitioning to cyclic-row partitioning, i.e., exchange-
row (%, p—2n,, N,); then convert from consecutive-column partitioning to cyclic-
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column partitioning, by employing ezchange-column (%,m — n — ng, N,); then
transpose the matrix globally and locally.

2. Transpose the local matrices concurrently; then convert from consecutive-row
partitioning to cyclic-row partitioning, i.e., ezchange-row (%Q,p — 2n,,N,); then
convert from consecutive-column partitioning to cyclic-column partitioning, i.e.,
ezxchange-column (%,m — n — ng, N,.); then transpose N local matrices each of

size 2P~%"r x 29727 concurrently in all N real processors.

3. Convert from consecutive-column to cyclic-column partitioning between rows
(within each column subcube), i.e., ezchange-row (%Q, m—n—n,, N,); then convert
from consecutive-row to cyclic-row partitioning between columns (within each row
subcube), i.e., ezchange-column (%,p —n, N,). A local p — 2n, shuffle operation

is necessary if p > 2n,.

The algorithms can be illustrated in terms of operations on the address field. For
simplicity let it be partitioned as (ujususvivavs), where uy,us, vy, and vs all define
subfields of n, dimensions. u; and v; are the real processor address fields before the
transposition, us and vs the real fields after transposition and change of assignment
scheme.

Algorithm 1:

(u1uousV1v203) — (U1UaUgV1V2V3) — (ViUuausV1Va¥3) — (V1V2V3U UL U3).
Algorithm 2:
(uuausV1VaV3) — (U1VaV3V1U2U3) — (U1V2VsV UgUs) — (U1VaV3V Uz Us) —> (V1V2V3U UsUg).
Algorithm 8:

(u1u2u3V1V2V3) — (VsUzugviVauy) — (VsuaviUgvaty) — (VsU1v2usU1U2).

The underline denotes the real processor address field. Note that the last form in
algorithm 3, (vsvivausujuz), denotes the same assignment scheme as (vyvav3u1usu3).
The steps of the three different algorithms are illustrated in Figure 5 in terms of the
matrix. The number in the Figure denotes (row-index||column-index).

The first algorithm requires 2n communication steps, the second only n steps. How-
ever, the second algorithm requires a complete local matrix transpose before the inter-
processor communication phase, and the transposition of a number of smaller matrices
after the communication. The third algorithm also requires n communication steps, but
no transposition is required prior to the communication. A local p—2n, shuffle operation
is required if p > 2n,. Note that the order between exchange-row and exchange-column
operations can be reversed.

29



[ |
- oi= = D 5 51T @
QL Q4 R o | o & R
& ® |, ™ N NG L 2 IZd =
= =t1=x =X|~ ' [ =1 T sl ==
(=) =)
g .21z =7 P g T e g2l =1~ = g
— \= I g ~— |~ ~ 3 ~— — |~ =
— — — — | R e — |73 WUV VU —
llllll +.l||lu|l.||| - — + l_. (A ]
—_ — — — N — — —_— —_
S T | = = 80 Q ” xR ] QI i X
] dala ald X o4 SR8 2i1g &<
— ~ — — —_— —_ —_ —_— —_—
— _— ~—— —— —
_ = e (=) = — o N — o
(=) = o b= o o =} o | e =]
T _ —_— o~ ]~ =
p— p— p— p— —— —— —— _—
o = | = o ™ N _ o o = o “ = @
ex al=Zw & AmACH A S = S =
NS IENGT| 2 |3, 512,33 S ST =
py = | H M & m o ! =] N = — T R —
|.I|I.I#|.lll 7] e e el e e |". ||||||
—_— —_— i —_ —_ — —_~ —_~ (4] —_— —_— —_— —
— | o [N — o
GRS &b et =27 4 0 a «la &
o N — G —_ — &= — o o
~ Nl ~— o] ~— ~— ~— — | ~— P
=N = | — | < = =l= =|< = =X = =
= | (=) ™ | — )
o o | © 4o g g ,83 &= S & 1o O
S |0 e e ale 2 c 21e =2
— — —— _—— —— ——
—— _— —~— —— —— —— _—
far) = | = o 3] o I = o nnu.. N % o
S N |~ o — — | ™» ) G >
= X1 X|« = = = |« = —~
o~ N ™ ™ N w | X )
I 24 & S S S 1@ A 2 S\ ~ o\ =
e e = o e = e — e [ SR w0 e R e T
=S E= R I Bl B —_ o~ —_ ~ ]« —_ N\ | — \ —
v i “ — —i &0 o = = v v0 % m ﬂ o
o N — 0 — — — o« ™ —_
— _ —_— — —_— —_— — —~ \OII \OII )1 )1
g %!9 8 g z!8 % g 218 =
(0 n(/u\ “ (1 IOHU\ R R R N’ N’ N’ j—— o
I
@ ™ “ w = NN B | ™ =
o
% 91‘u | & o (=) — & o (=] | &N o
N’ Ny S’ N’ g N’ g e — N’ N’ p g
o ™ N ™ a, N SN ™ a, [N S ™~
o =1 & Gl = — N & o o — N &
IIIIIIII 17 e e ]
llllll +|.||..||l|l|l w b e s +
— —_ — —_ — —_ —_ N —_ P —_
— — ! i — ) — — " — — ) — i I — —
= = |l ) — o — | — o ™~ o
- g _ ~ — A N (_ S’ A
s 218 B S VS8 '8 g S IB~8

Alg.3 final

30

Alg.3 step 2

Alg.3 step 1

Figure 5: Three different algorithms to transpose a matrix from two-dimensional con-

secutive partitioning to two-dimensional cyclic partitioning.



Conversion between cyclic and consecutive assignment in the row or column direc-
tion is equivalent to a number (N, or N,) of independent one-dimensional conversions.
Conversion in both dimensions is equivalent to all-to-all personalized communication if
Q > NZ2and P> N2.

6.3 Combining Transpose and Gray Code/Binary Code Con-
version

For the transpose of a matrix with the row index encoded in binary code and the column
index in Gray code, a binary-to-Gray-code conversion can first be done for each column
subcube concurrently in Z — 1 steps [10], then the Gray-to-binary-code conversion for
each row subcube concurrently in another 3 — 1 steps followed by the n-step transpose
algorithm. The two conversions and the transposition commute. The total number of
routing steps is 2n — 2. However, the number of routing steps can be reduced to n, if
the SPT algorithm is used for the transposition by combining it with the conversion
operations. Pipelining can be applied. For simplicity, we describe the non-pipelined
version. As for the SPT algorithm, the combined algorithm is composed of % iterations.
Each iteration contains two routing steps. In iteration s € {0,1,...,2 -1}, bits § —¢—1
of the row and column indices are changed by sending data through the corresponding
dimensions. With the rows encoded in binary code and the columns in Gray code,
matrix block (u,v) is stored in processor (u||G(v)) and matrix block (v,u) is stored
in processor (v||G(u)). The direct transpose permutation is defined by exchanging
data between processor (u||G(v)) and processor (G~}(G(v))||G(u)), where G™1() is the
inverse Gray code.

During the first iteration, the upper right block (0zp-2Zn-3... 17.'21]1113%_217%_3 ... Zo)
and the lower left block (1z,-2Zn-3.- .. 127%”017%_217% _3...Zp) are exchanged in two steps.
Neither row nor column conversions for the two encodings affects iteration 0, because
the Gray and binary codes have identical most significant bits. During the second
iteration, the Gray code encoding of the column indices forces a horizontal exchange
within the blocks for the second half of the block rows. The binary code encoding of
the row indices forces a vertical exchange for the second half of the block columns.
The transpose operation requires an anti-diagonal exchange within all four blocks. The
combined permutation pattern is shown in figure 6.

In general, the Gray code encoding of the columns causes a horizontal exchange
within all the odd block rows with block rows numbered from 0. The binary code
encoding causes a vertical exchange within all 7** block columns such that the parity of
the binary encoding of 7 is odd. This can be proved from the conversion from binary
code to Gray code proceeding from the most significant bit to the least significant bit
(instead of a “low order to high order bit” conversion sequence[10]). Figure 7 shows
the four iterations with n = 8, in which ¢ means clockwise rotation and cc means
counterclockwise rotation. The algorithm is presented below.
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Figure 6: Transpose of a matrix stored by binary code encoding of row index and Gray
code encoding of column index.

/* The second argument of “send” and “recv” represents the cube dimension ¥/
/* and ‘buf’ contains the data to be transposed initially. */

even-block-row := true;

even-parity-block-column := true;

for j := § — 1 downto 0 do
case (even-block-row, even-parity-block-column, bit j + %, bit 5) of

(T'T00), (TT11), (FFO1), (FF10):
recv (tmp, j + 2); send (tmp, j);
(TTo1), (TT10), (FF00), (FF11), (TFO1), (TF10), (FTO00), (FT11):
send (buf, 5+ 2); recv (buf, j);
(TF00), (TF11), (FTO1), (FT10):
send (buf, j); recv (buf, j + 2);
endcase
even-block-row := (bit j+ 2 = 0);
if (bit j = 1) then
even-parity-block-column := not even-parity-block-column;
endif
endfor
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Figure 7: Transpose of a matrix stored by mixed encoding of rows and columns in an
8-cube.
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The above algorithm was implemented on the Intel iPSC. The results are shown in
Figure 15 in section 8 discussing experiments. '

To transpose a matrix stored by binary encoding of row and column indices into a
transposed matrix with row and columns encoded in Gray code, a combined conversion—
transpose algorithm similar to the one above can be applied to accomplish the task in
n routing steps. The algorithm above needs only be modified such that the column
operations are controlled by even-block-columns (instead of even-parity-block-columns).
Similarly, to transpose a matrix with both row and columns encoded in Gray code into
a transposed matrix with rows and columns encoded in binary code, the control of the
row operations is changed from even-block-rows to even-parity-block-rows.

7 Using Matrix Transposition for Other Permuta-
tions

For I = ¢, and |Ry| = |Ra| = n, matrix transposition is an all-to-all personalized
communication. An arbitrary permutation on an n-cube can be realized by all-to-all
personalized communication twice, if the size of messages to be permuted is the same
for all processors and at least N (per processor) [21,20]. Since transposing a matrix with
two-dimensional partitioning and n, = n, is a permutation, one can also realize it by
performing all-to-all personalized communication twice. However, the communication
complexity is higher than that of the best transpose algorithm for the two-dimensional
partitioning either for one-port communication, or for n-port communication.

The correspondence between cube dimensions for the standard exchange algorithm
applied to matrix transposition is f(i) =7, g(¢) = ¢+ 5, Vi € {0,1,...,5 — 1}. By
changing the exchange dimensions such that f(i) = ¢, g(i) = n—1—1¢,¥i € {0,1,...,5 —
1}, a bit-reversal permutation is realized by the general exchange algorithm. A bit-
reversal permutation is defined by

(Zp-1Zn-2...T0) <« (ZoZ1... Tpn-1)-

Definition 17 Define dimension permutation to be a permutation such that proces-
50T (Tp—1Tn-2...%o) sends its data to processor (Tsn-1)Ton-2)---Ts)) where § is a
{0,1,...,n — 1} to {0,1,...,n — 1} permutation function.

Definition 18 Define parallel swapping to be a dimension permutation such that the

permutation function § satisfies §(6(1)) = 1, i.e., either §(1) = ¢ or 8(¢) = j, 6(3) =1,
i1 #73,¥1e€{0,1,...,n—1}

Lemma 15 Any dimension permutation can be realized by performing parallel swap-
ping [log, n] times (note that n is the number of dimensions).
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Figure 8: Realizing dimension permutation by performing logn steps parallel swapping.

Proof: Assuming n is a power of two first. Arbitrarily partition the set of dimensions
into two same-sized subsets, called S; and S, respectively. Let k be the cardinality of
the set {¢| € 5;,6(¢) € S;}. Clearly, the cardinality of the set {i|¢ € S;,6(7) € S}
is also k. Exchanging the k dimensions in S; with the corresponding k dimensions
in S; can be done in one parallel swapping step. After this parallel swapping, there
are two same-sized subsets which only require internal permutation. This permutation
can be performed concurrently for the two subsets. Therefore, logn steps of parallel
swapping suffice to realize the dimension permutation. For arbitrary n, we can add
virtual elements such that the number of dimensions in the address field becomes a
power of two. 1

Figure 8 shows an example of permuting 8 dimensions by 3 steps of parallel swap-
pings. Notice that k shuffie/unshuffle operations (left/right rotation k steps) fall in the
dimension permutation class. There are n! possible dimension permutations among N'!
arbitrary permutations.

8 Experiments and Implementation Issues

8.1 Omne-Dimensional Partitioning

The Intel iPSC effectively allows communication on only one port at a time. Hence, we
choose to implement the one-dimensional transpose using the exchange algorithm. In
our implementation we do not perform local shuffle operations in order to arrange the
data to be exchanged into one block for the sake of reducing the number of start-ups,
since the copying time on the Intel iPSC is significant. Copying 1024 single precision
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Figure 9: Measured times for copy of various data types on the Intel iPSC.

floating-point numbers (4k bytes) takes about 37 milliseconds according to our mea-
surements, Figure 9. The local array is partitioned into 27 same-sized blocks during
step 5 of the exchange algorithm. The odd or even blocks can either be sent directly
to minimize the copy time, or copied into a buffer to reduce the number of start-ups.
Figure 10 presents the measurements for unbuffered and buffered communication for
rearrangement of consecutive to cyclic partitioning.

The complexity of the unbuffered communication is easily found to be T = ng—thc +
(N + [%’fﬁ] min(n,log, [%QN—]) - 1—9%)7'. With buffered communication, messages may
initially be larger than the buffer size, in which case they are sent directly. Small
messages are buffered and the time for communication is T = n%tc + P# max(0,n —

l0g[ 5 157 1) teopy + (min(N, 5225) —min(N, £%)+[ ;5% (min(n, log[ £2;1)+max(0, n—

logl'ﬁc%qm])))r, where B,,,, is the array size beyond which it is preferable with respect
to performance to send without copying into a buffer. The complexity of the unbuffered
communication grows linearly in the number of processors, i.e., exponentially in the
number of cube dimensions, as shown in Figure 10. The buffered communication grows
linearly in the number of cube dimensions. For a low growth rate it is important to
have a large buffer, to reduce the number of start-ups, and fast copy. With the times for
copy of floating-point numbers and communication start-ups on the Intel iPSC the copy
of 64 single-precision floating-point numbers (256 bytes) takes approximately the same
time as one communication start-up. Hence, it is beneficial with respect to performance
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Figure 10: Measured times on the Intel iPSC for the transpose of a matrix, one-
dimensional partitioning (or for conversion of consecutive to cyclic one-dimensional
partitioning), encoded in binary code.

37



Optimal buffer size measurement

T I T ] T I T I i
800 .
©
@ _ -
B
5
=400 .
o
=]
@ " -
|
B
2 200 - =
B
=
0 N IR RIS R N
0 2 4 8 8 10

Log, (Buffer size)
PQ/N = 1024, cube dimension = 6
Measured optimal buffering length = 84

Figure 11: Performance measurements for optimum buffer size on the Intel iPSC.

to send blocks of length at least 64 floating-point numbers without buffering. Figure
11 illustrates the sensitivity of the performance to the choice of minimum unbuffered
message size. Figure 12 shows the improvement in performance with optimum buffering
compared to the unbuffered communication. Note that for sufficiently small cubes (or
large data sets) the time required by the two schemes coincide.

- On the iPSC, it is also possible to realize the all-to-all personalized communication
by calling the iPSC router 2(N — 1) times. However, the measured times of this are
always inferior to that of the optimum buffering algorithm. The difference is from a
factor of 5 to two orders of magnitude depending on the matrix size and cube size as
observed in [14].

8.2 Two-Dimensional Partitioning

8.2.1 The Intel iPSC

We have implemented algorithm SPT as a step by step procedure. Pipelining is not
possible. Moreover, on the Intel iPSC it is necessary to rearrange two-dimensional arrays
into one-dimensional arrays before sending. Since the copy time is significant we arrive
at an estimate for the time of a two-dimensional transpose of T = (£2¢, + [ ﬁ%]r)n +

Z%Qt,,opy. The growth rate is proportional to the number of matrix elements. There
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Figure 12: The effect of optimum buffering on performance for matrix transpose on the
Intel iPSC.

is an exponential decay as well as a linear increase in the number of cube dimensions.
Figure 13 shows measured values for the copy time, the communication time and the
total time for a 2-cube and a 6-cube. As expected, the copy time for the 6-cube is lower
than that for the 2-cube. Also, the communication time is essentially determined by
the number of start-ups, which for the 6-cube remains the same for PQ < 64 KBytes.

Figure 14(a) shows the total transpose time as a function of the number of cube
dimensions and matrix size. For small matrices the number of communication start-ups
dominates and the total time increases with the number of cube dimensions, but as the
matrix size increases the transpose time decreases with increased cube size.

On the Intel iPSC it is also possible to carry out the transpose operation by a direct
send to the final destination. Figure 14(b) gives the times measured for matrix transpose
using the routing logic alone. As the cube size increases the two-dimensional transpose
algorithm yields a significantly better performance than the transpose time offered by
the routing logic.

The time for matrix transposition with simultaneous conversion from Gray code to
binary code conversion is shown in Figure 15. It is assumed that rows and columns have
different encoding schemes. The Figure compares the 2n — 2 steps naive algorithm and
the n steps combined algorithm.
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Figure 13: Performance measurements for a two-dimensional matrix transpose on the
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Figure 14: Measured times for a two-dimensional matrix transpose on the Intel iPSC
using the SPT algorithm without pipelining (a) and using routing logic (b).
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Figure 15: Measured times of transposing a matrix stored by mixed encoding of rows
and columns by the naive and combined algorithms on the Intel iPSC.

8.2.2 The Connection Machine

We have also implemented the matrix transpose operation on the Connection Machine.
It has a bit-serial, pipelined communication system. The recursive algorithm does not
exploit this feature, but the routing logic does. Figure 16 shows the transpose time
using the routing logic. Each processor holds one matrix element (32-bits). Figure 17
shows the transpose times for various number of matrix elements per processor, and for
various number of processors. Figure 18 shows the transpose times for two fixed sized
maftrices on various sizes of the Connection Machine.

9 Comparison and Conclusion

It is of interest to compare the times for matrix transpose based on a one-dimensional
partitioning and a two-dimensional partitioning. We now compare the complexity esti-
mate for the two-dimensional transpose

PQ |. PQ PQ

Tzd:(th-l- —-——B N]T)n+2 N tcopy

41



Matrix transpose on the Connection Machine

w "~
] |

N
I

Time (in msec)
T

1 T ' 1 i T T I ' ¥ 1 T l

Transpose time

1 1 | 1 i i ] I I} 1 ] 1 I

Figure 16: Matrix transpose on the Connection Machine. One element per processor.
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5 Matrix transpose on the Connection Machine
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Figure 18: Matrix transpose on the Connection Machine as a function of the machine
size.

with that for the one-dimensional transpose

T = (min(n, log[ = ) [~ 2-] + min(N, =2 %) — min(N, £ 2)

B.N'"'2B.N B.opyN BN

+1 P
2B,.N
PQ. PQ

+n——=t, + ?]—V—max(o,n—log[

] max(0,n — IOg[BCI::jND)T

PQ
m])tcopu-

We have assumed that one exchange takes the same time as one send or one re-
ceive for one-port communication throughout the paper. With this model, the time for
data transfers for the one-dimensional transpose is half of that of the two-dimensional
transpose. If copy time is negligible, i.e., the time to copy B,, data is much less than a
start-up time, then the number of start-ups for one-dimensional transpose is a factor of
-;— to 1 of that for the two-dimensional transpose. The factor % applies for % > B,,. By
considering the copy time, we have two extreme cases. If fv—% > B,,, the number of start-
ups for the one-dimensional transpose is half of that for the two-dimensional transpose.
If % < B.opy, it can be shown that the number of start-ups for the one-dimensional
transpose is at most twice that for the two-dimensional transpose. In general, it can be
shown that the number of start-ups for the one-dimensional transpose is a factor of %
to 2—1%:;; + 1 (which is 2.5 for the Intel iPSC) of that for the two-dimensional transpose.
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Figure 19: Comparison of the matrix transpose operation of one- and two-dimensional
partitioned matrices on the Intel iPSC.

If the communication is restricted to one send or one receive at a time, the time
for data transfers and the number of start-ups increase by a factor of two for the one-
dimensional transpose. However, the complexity for the two-dimensional transpose
remains the same. Therefore, the complexity of the two-dimensional transpose will be
lower, or the same, as that of the one-dimensional transpose by a factor of 1 to B—f:; +1.

Figure 19 gives the experimental result on the Intel iPSC.

With concurrent communication on multiple ports the transfer time for the two-
dimensional partitioning decreases exponentially in the number of cube dimensions,
but for the optimum packet size the number of start-ups is higher than for the one-
dimensional partitioning. From the complexity estimates (one-dimensional partitioning)
u _ PQ

Tm"n —_ ‘Zwtc + nr

and

T+ BELEQy it > /B2 approximately;
2n N N7

+1
+3)7 + %%th if 1;—1?,% <n< \/%:—" approximately and % is even;
+ 2

)T+ ﬁ%gtc if \/%1%% <n< \/f—% approximately and £ is odd;

(
)
™

VLD L R VT

2Nt °
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The optimum packet size is

P PQt..
[F(%‘i)-l for even 2 and n > /52,

Bopt = [ﬁ'%] for odd 2 and n > {/5%%;

Nt
PQr PQt.
2Nt, for n < /55

For n > \/%f—”, the one-dimensional partitioning always yields a lower complexity
than the two-dimensional partitioning. The difference is about one start-up time unless

the cube is very small. For I;%:i <n< %3, the break even point (ignoring copy)

can be computed to be
N=c¢c r
log?r

where % <e¢<landr= I—D—?h. Forn < %, the one-dimensional partitioning always

yields a lower complexity than the two-dimensional partitioning.

In summary, if the copy time is ignored and communication is restricted to one port
at a time, then the one-dimensional partitioning always yields a lower complexity than
the two-dimensional partitioning. If the copy time is included then the two-dimensional
partitioning yields a lower complexity for a sufficiently large cube. With concurrent
communication on all ports the Spanning Balanced n-Tree (SBnT) routing can be used
for the one-dimensional partitioning, and the copy times for one and two-dimensional
partitioning should be comparable. The one-dimensional partitioning yields a lower

complexity for a cube dimension n satisfying n > 4/ %ﬁ orn < \/I—;%.

In comparing the Intel iPSC with the Connection Machine we conclude that the
latter performs a transpose about two orders of magnitude faster.
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