Principal Component Analysis for Place Recognition
Jonathan Wang, Zachary Dodds, Willard Miranker

Yale Technical Report #tr1113
June 1996

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

Principal Component Analysis for Place
Recognition

Jonathan Wang, Zachary Dodds, Willard Miranker

Abstract

We present a hybrid neural network model to solve a place recog-
nition problem. The front end is a self-organizing net equivalent to a
principal component analyzer; the back end is a feed-forward net with
backpropagation, i.e. supervised learning. A confidence level greater
than 0.9 was reported as the net correctly recognized a repertoire of
pictures it had not seen before.

1 Introduction

At the Yale Vision and Robotics Lab there is a Nomad robot that roams
around the building taking pictures. It is desirable that the Nomad can
recognize where it is by comparing a new scene with previously taken pictures.
Formally, suppose we have images of M distinctive scenes. (We will use the
terms “picture” and “scene” as synonyms for “image” throughout.) We seek
an algorithm that will take a new image as input and determine which one
of the M scenes the new image most resembles.

Here, we propose a neural network solution which combines stages of un-
supervised learning and supervised learning. The network is composed of
two independent subnetworks. The first subnet, which we call the “Prin-
cipal Component Analyzer” (PCA) is self-organizing. It receives an image
(the “input image,” possibly preprocessed) and outputs a set of real numbers.
The latter express the most “important components” in the image. These
“components” are the longest axes of the ellipse which bounds all of the
images considered as data points in an appropriate, high-dimensional space.
The second subnet, which undergoes supervised learning, is a feed-forward

Figure 1: Diagram of the PCA net. The nodes on the left, z;, receive the
gray-level values of the input image pixels. They are connected to output
nodes, y; by weights w;;. The output nodes yield coefficients of the principal
components for the given input image.

backpropagation network. It takes as input the output coefficients from the
first subnet. It outputs, in its M output nodes, a confidence measure ([0,1])
indicating the extent to which the input image corresponds to each of the M
distinctive scenes.

In Section 2 we discuss the PCA net, its theory and algorithm. Section 3
deals with the backprop net. We conclude in Section 4 with some observations
and comment on possible improvements.

2 PCA Net

The PCA net is a single layered network of n inputs X = [zy,z2,...,z,]7
and m outputs Y = [y1,y1,...,ym]7. (See Figure 1.)
Each input z; corresponds to an image pixel. Here,

n = (# of image rows)(# of image columns).

2

In our experiment (64x48)-pixel images are used, so that n = 3072. We
can view the input “vector” by “stacking” columns of an image to form a
3072-component column vector. Since our camera and framegrabber return
integral gray-level values between 0 and 255, those are the minimum and
maximum values for each z;.

The strength of the connection between the input z; and the output y;
is given by a weight w;;. In particular, we have

Y; = Z WjiZs.
i

We use the “Generalized Hebbian Algorithm” (GHA) as the training
algorithm. The dynamics specifies the weight of a connection after update
(written wt): ([5])

wh = wi; +y(yiz; — i D WkiYk)-
k<i

Setting W = (wj;), we express this in matrix form as:
AW = y(YXT — LT[YYTIW),

where LT[] sets all elements above the diagonal of its matrix argument to
zero, thereby making it lower triangular. The learning parameter, v, specifies
the rate of learning and influences how quickly the weights converge and if
they converge at all.

We first state, without proof, a convergence theorem. (See [7], Appendix
B for the proof). In the following sections, we explain the related concepts.

Theorem Let the components of W be assigned random values at time
zero. Then, with probability 1, W will converge to the matrix whose rows
are the first m eigenvectors of the input correlation matrix Q = E[XXT],
ordered by decreasing eigenvalue. (Note that @ is a symmetric matrix.)

2.1 Principal Component Analysis

The motivation behind the GHA algorithm is to compress data and to pre-
serve as much of the information in the input as possible. For example, in

3

our implementation we reduce a 3072-pixel (i.e., 3072-dimension) image into
a 4-dimensional vector. Principal Component Analysis allows us to find the
four dimensional vector which captures the most variance (which we may
view as a measure of information) in the original data.

Let X be a random variable each component of which has zero mean. (A
change of variables ensures this in the general case.) Consider the collection
of all possible images as the sample space of the random variable. The
autocorrelation matrix @ of the input signal distribution is defined by

Q = E[XXT],

where E is the expectation operator. Let u; and \; (i = 1,2,...,n) be the or-
thonormal eigenvectors and the corresponding eigenvalues of Q, respectively,
the latter taken in decreasing order. Define the corresponding matrices

U= [u1,uzg,...,uy)

and
M
A= < . |

An

Eigenvectors u; of () are called “principal components” in signal process-
ing (hence the name of the net). If the eigenvalues are distinct,

Q = UAUT.

By using u; as basis vectors, a given image, X, can be expressed as linear
combinations of those basis vectors, as follows.

n
X = Zu,’yi =UY.
i=1
So that, for the coefficient vector, we have

Y=UTXx.

Since U is unitary, U~! = UT. The coefficient y; is thus the magnitude of
component u; contained in X.

Put another way, typically there is much redundant information in a raw
image. Except for rare cases (e.g., the noise of a “snowy” television channel),
the pixels in the image vector, X = [z, 24,...,2,]7 are “correlated”. By this
we mean informally that the gray-level values at some points in a picture are
predictable from these values at other points in the same picture - all of
the pixels in a full moon, for example, will be close to white. To obtain
a more compact representation of the information in the image, we seek
the above transformation UT. The latter ensures that Y = [y1,¥2,...,¥a]T
has uncorrelated components. By a theorem of Karhunen and Loeve [3]
the transform matrix UT consists of the eigenvectors of the autocorrelation
matrix (). The weights of the PCA net converge to these eigenvectors, so
that the net’s output is uncorrelated. Since the redundancies in the inputs
are removed, the output variance will be maximized. The outputs represent
the largest possible amount of information which a fixed, small number of
dimensions (four, in our case) can convey. It might be easier to understand
the geometry of principal components through Figure 2.

In the figure zy-space is a n-dimensional vector space. Each point in zy
space represents an image (that is, represents the n-dimensional vector which
corresponds to the gray-level values of the pixels in an image). The basis for
zy-space is orthogonal, but might not represent the information contained
in the images as efficiently as possible. As we noted, the projection of each
image-as-a-vector onto those basis vectors will be correlated (with redundant
information). We seek a new set of basis vectors that are mutually orthogonal
and which better represent the variance of the data vectors. We proceed as
follows: We find a best-fit n-dimensional ellipse (or ellipsoid) around the
vectors. The largest axis of the ellipsoid is the first principal component, the
second largest is the second principal component, and so on until the nth
largest axis is the nth principal component. We can see that the new basis
vectors, as semiaxes of an ellipse, are indeed orthogonal to each other. As it
turns out, the new basis vectors are the principal components of the images,
which are the same thing as the eigenvectors of the correlation matrix. ([3])

2.2 Advantages and Disadvantages

From these considerations we see the significance of the GHA algorithm. The
dynamics defining AW define the principal component vectors in question.
Moreover, the vectors need not be computed, as the net itself instantiates

Figure 2: Principal Components. The principal components are the semi-
axes, u and v, of an ellipse which contains the data points.

the dynamics and the appropriate subsequent pixel processing. For n = 3000
input nodes, @ = E[XXT] has 9 million components. If the number of
outputs is much smaller than the number of inputs, as in our case, GHA
finds the most important eigenvectors - that is, the eigenvectors with largest
eigenvalues without having to decompose the huge matrix). In addition,
GHA is a neural net algorithm with the potential for high-speed, special-
purpose hardware.

A disadvantage is that GHA provides only an approximation to the eigen-
vectors. Furthermore, as in all such numerical methods, errors in the first few
eigenvectors will magnify the errors in the subsequent eigenvectors, so that
the algorithm has poor numerical accuracy for all but the first few eigenvec-
tors. For our images, the number of samples, NV, is very small compared with
n, the dimensionality of the space where the samples are drawn. Therefore,
we require only the first few eigenvectors (the principal components). Note,
too, that the algorithm only involves local operations. Hence, it is possible
to implement GHA on a parallel machine, though the communication of data
will require an overhead of time.

2.3 Experiment

The PCA net is trained with N = 25 images, five each of five distinctive
scenes from Yale’s Vision Lab. (See Figure 3). Each image is input to the
net 60 times.

GHA is used as the learning rule to adjust the weights of the network.
Although normalization of input does not affect the output of the net, it does
influence the choice of learning rate 4. (Experiments with power spectra of
Images as input, for instance, will require a different learning rate.) We take
an experimental approach to specifying a good value of . Too large a v will
drive the net to saturation, where the values of the connections are outside
of the representable range of the computer, and too small a 4 will make the
net take too long to converge. For our net with 256-level gray-scale images as
input, v was set to 1078, Several observations were made while tuning this
learning rate. First, v should decrease with time. Second, different output
nodes should use different v values, since each coefficient (node) converges

Figure 3: Training Images. We chose five different views of each of five
parts of the Vision Lab at Yale. The four most important principal compo-
nents are extracted and the backpropagation net is trained on the coefficients
of those components.

Figure 4: Test Images. These are four different views, one of the five views
above is omitted. We provided these as inputs to the system after it had
been trained on the images in Figure 3.

Principal Components

2000
0 -

-2000 =
] -0—1st
=
o —o—2nd
o 4000 -
'5 ——3rd
] —o—4th

6000 =

-8000 =

-10000 T T T T
0 5 10 15 20 25

picture #

Figure 5: Coefficients of the Principal Components. The values of the
coeflicients of the principal components obtained from the PCA net on the
twenty training images. They are grouped in fives: 1-5, 6-10, 11-15, 16-20,
and 21-25. Each such group contains five slightly different images of the same
scene.

with slightly different rates. We employed a purely empirical approach to
this tuning of the v values.

Once the net converges, we have found - to some accuracy - the principal
component vectors for our data set. Those vectors are stored as the weights
of our net. Next, we freeze the weights and input the training set again.
For each such input we obtain the coefficients of those principal components,
one coefficient at each output node. The coefficients from our images are
plotted in Figure 5. These coefficients are the values of the projection of the
N vectors (images) onto the first M (in our case M = 4) principal components
(the basis in uv-space).

In Figure 5 the first five picture numbers (labeled on the horizontal axis)
correspond to the same scene, as do the following five, the third set of five,
and the last five. The flatness of each of the five curves shows that images of
the same scene have similar coefficients. We represent, then, a location (in

the lab) by the coeflicients which are characteristic of images taken of that
location. Suppose now that an arbitrary set of coefficients is specified. We
need to decide how much that set of coefficients resembles the sets which have
been stored. If the coefficients of a new scene are sufficiently close to one of
the stored sets, we will conclude that the new scene is the same as the one
in our database, or “memory.” In this way we will be able to decide whether
or not we are at a location we’ve seen before, as well as which such location.
We decided that, in principle, any such decision (whether or not an image
represents something previously seen) requires a teacher. We chose to teach
a feedforward net the classifications we wanted; in a sense, the training of
that feedforward net will provide the idea of “sameness” that we intuitively

feel.

3 Backprop Net

We did not apply backpropagation directly to train the feedforward net to
identify scenes — the most salient reason being that backprop is slow to
converge. With a net of 3072 input nodes there would be

3072(number of hidden nodes) + (hidden nodes)(number of output nodes)

free parameters to tune, and we have no clear heuristic to guide the tuning.

In addition, human scene recognition involves considerable preprocessing
— edge detection, noise reduction, feature extraction, etc. It is therefore
not surprising that a stand-alone backprop net converges slowly, since the
complexity of that preprocessing must be expressed in the net’s weights.
Hence, it is desirable that we separate some preprocessing into a separate
system and reduce the number of the free parameters in the backprop net.
Biological results have shown that the equivalent of a principal component
analyzer exists in receptive fields. [4]

We take it that a place recognition system can not rely solely on the
unsupervised learning of the PCA net. Consider, for example, a Hopfield Net
acting as a memory, and which does not require supervision or other outside
Judgment of its performance. In Figure 6, we show that a trained Hopfield
net when stimulated by a slight variant of one of its training samples, does
not give a correct recall. Rather, it outputs an image that doesn’t resemble
any of the training samples, a so-called spurious state. It may be that the

10

problem of spurious states does not stem from the architecture of a Hopfield
net, but rather from a fundamental lack of information. The ability to recall
a “noiseless” version of a “noisy” stimulus is attributed to a Hopfield net.
Just what is a “noisy” stimulus? How can it be distinguished from a new
“noiseless” stimulus or - even worse - from a new, but different, “noisy”
stimulus? The “spurious” state is actually a correct recall, in so far as the
Hopfield net is concerned. These questions motivated the conclusion that
wholly unsupervised learning is not appropriate for place recognition. We
want machines to perform a classification similar to the ones we, as sentient
agents, agree on. Some sentient intervention is thus required. We must
somehow impart the assumptions which we internalize to any system which
we want to act as we do. Simply put, we found it effective to introduce
supervised learning in the place recognition problem.

3.1 Experiment

The “art” of creating a backpropagation net lies in choosing how many free
parameters we permit the system to learn. If we have too few free parameters
(by having too few hidden nodes) then we will not be able to capture the
complexity of the classes. The XOR problem, as a fundamental example,
is not solvable by a backprop net without hidden nodes. If we have too
many free parameters, the learning will require longer to converge. Worse
yet, the net will “overfit” the sample data it receives in its epochs of input.
While it will learn the exact input-output mapping we teach it, that mapping
will not generalize well to other, unseen inputs. Empirically, we found that a
backprop net with 6 hidden nodes sandwiched between 4 inputs (one for each
of the four principal component coefficients) and 5 outputs (one for each of
the five places) worked well for our problem of recognizing lab scenes and, in
addition, converged quickly.

The net was initialized with small, random values for weights between
layers. The transfer function is the sigmoidal

_ 1
14 e’
v; = Z Wi,
where y; is the output of neuron j and u; is both the output of neuron ¢ and
the input to neuron j. wj; is the weight connecting the ith input to neuron

Y;

11

Figure 6: Hopfield Net. The middle column is the training set. The left
column is a noisy version of the last training sample. The right column is an
erroneous recall, i.e., a spurious state.

12

I
W\
J’%‘k‘“ﬂ.

MO A0
!93‘\(';1 %

4 LARA
AN ;m

Y2

Figure T: Backprop Net schematic. The left column of neurons receive
the inputs from the PCA net. The middle column comprise the hidden nodes.
The right column is the five output nodes, one per location.

13

j itself. The activation level of neuron j is v;, which is the weighted sum of
the inputs to that neuron.

The inputs are presented to the network in epochs, in each of which all
N inputs (N = 25 in our case) are processed. The five output nodes in each
case yield values in the interval (0,1). The “correct” value, i.e., the one we
want the network to yield is a five-tuple with a 0 in each of the components
which corresponds to an incorrect location and a 1 in the component which
corresponds to the correct location. Of course “correct” and “incorrect” are
determined by human observers. Note that the network can not output the
precise expected value, since the range of the sigmoidal transfer function does
not contain 0 or 1. Thus, the weights will diverge toward infinity, as they
drive the sigmoidal function toward its limiting values. We do not use a step
function, since we desire the continuum of output values. The range (0,1)
provides a value for interpretation as “confidence” in the recognition. Qur
network consisted of four inputs, taken from the four outputs of the PCA
net. It also contained six nodes in its middle layer and five outputs, one for
each of the five scenes the system was meant to recognize. We stopped the
training after 20,000 epochs, which required approximately 30 seconds on a
Sun Sparc IPX.

When the net outputs a vector, that output is compared to the desired
result, and the weights are adjusted in the direction of the local gradient
throughout the network — the standard backpropagation algorithm. The
learning rate and momentum parameter can be adjusted to speed the con-
vergence of the net and avoid sending the coefficients off to infinity. (We
found that a learning rate, n = 0.1 and a momentum parameter, & = 0.3
performed well through experimentation.) The weights w;; are frozen after
training to store the classifications the net has just learned. Finally, the un-
seen test images are input to the net, and the outputs are compared to the
desired outputs. The following table yields the results of the five input test
images.

No. || Output 1 Output 2 | Output 3 Output /4 Output 5

1 939 4.12x107* [1.10% 1072 [2.82 % 10~% | 7.18 * 1072
2 6.96 + 10=° | .946 1.91%107%2 | 6.67 1072 | 1.38 % 102
3 3.19% 1072 | 3.65 %1073 | .979 2.09 %1072 | 1.20 x 105
4 1.99%107* | 5.81 %1072 | 5.31 x 1072 | .921 5.34 x 102

14

4 Observations and Conclusions

It is well-known that the human vision system has a layered structure. There
have been attempts ([6], [2], [1]) to decompose the difficult problem of recog-
nition into subproblems and to use different neural networks to solve each
subproblem. Our PCA net and backprop net work in a similar fashion, i.e.,
the PCA net is a preprocessor (Principal Component Analyzer) for the back-
prop net, which is the classifier. We could also extend this a few more stages.
For example, we could have preprocessors to extract features, such as edges.
Then, instead of using raw images as input, the PCA net could work on an
“edge map,” for example, to increase efliciency. Here we show an example
where we introduce a Fourier Transform as a preprocessor:

. Fouri PCA . backprop .
raw images — Power Spectrum = coefficients - © locations

If an image rotates by a small angle, it becomes an entirely different
image, if considered as a point in 3072-dimensional Cartesian space. The
change is relatively small, however, in the Fourier domain. Figure 8 again
shows the PCA coefficients of our 25 training samples. In this case, the power
spectra of the images were used as input. It would be possible to train the
backprop net on the coeflicients in Figure 8, rather than those in Figure 5.
For this work, we restricted our attention to the simpler approach described
in Sections 2 and 3.

With this project we sought to solve a problem of general importance -
place recognition - with the use of neural nets in general and Hebbian Dy-
namics in particular. The PCA net, which used Hebbian dynamics to extract
the most salient components along which to represent the images, allowed
a very simple classifier to handle very complex images well. If we interpret
the output of the supervised, backpropagation net as a “confidence” in the
system’s recognition a certain place, the tests we did (see the table in Sec-
tion 3) showed that with a confidence greater than .9 the recognizer correctly
identified the four test scenes. On the same test scenes, the confidence in the
incorrect places (the off diagonal entries) was less than .25. Further work
could extend this proof of concept in several directions. For one, larger im-
ages would almost certainly need more preprocessing before the PCA net is
used to extract the salient features. Other work might investigate the per-
formance of the system as the backprop net is trained with more locations.

15

Principal Components

200000
o =
—o— 1st
—o—2nd
-200000 - ard
——
—o—4th
-400000 =
J
-600000 T

o] 10 20

Figure 8: Coefficients of Principal Components in the Fourier Do-
main. This figure is analogous to Figure 5. In this case, the data are the
coeflicients of PCs when images are described in the Fourier Domain

In our preliminary work presented here, we have shown that with Hebbian
dynamics a neural-network-based approach is a viable foundation for a basic
location-recognition system.

References

[1] J.Metcalfe G.W.Cottrell. Empath: Face, emdtion, and gender recognition
using holons. Advances in Neural Information Processing System 3, 564

—~ 571, 1991.

[2] G.A.Dumont J.Yang. Classification of acousitic emission signals via Heb-
bian feature extraction. International Joint Conference on Neural Net-

works, 113 — 118, 1991.

[3] A. Rosenfeld and A.C.Kak. Digital Picture Processing, volume 1. Aca-
demic Press, Inc., 2nd edition, 1981.

16

(4] Jeanne Rubner and K[laus] Schulten. Development of feature detectors

by self-organization: A network model. Biological Cybernetics, 62:193 —
199, 1990.

[5] Terence D. Sanger. Optimal unsupervised learning in a single-layer linear
feedforward neural network. Neural Networks, 2:459 — 473, 1989.

(6] D.Hammerstrom T.K.Leen, M.Rudnick. Hebbian feature discovery im-
proves classifier efliciency. International Joint Conference on Neural Net-
works, 4:158 — 164, 1992.

[7) Simon Haykin. Neural Networks: A Comprehensive Foundation. Macmil-
lan College Publishing Company, New York, 1994.

17

