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Abstract

This paper addresses the problem of data distribution and communication synthesis
in generating parallel programs targeted for massively parallel, distributed-memory
machines from sequential programs, functional programs, or parallel programs based
on a shared-memory model. We present a novel compilation technique for synthesiz-
ing explicit communication commands. Our major contributions to the problem of
generating communication are: (1) the idea of analyzing source program references
and matching these syntactic patterns with aggregate communication routines which
can be implemented efficiently on the target machine, (2) the notion of communi-
cation metric and the optimizations performed to reduce communication overhead,
and (3) the development of a target program style for which the compiler-generated
communication are provably deadlock free.
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1 Introduction

Distributed memory machines are playing an increasingly more important role in high perfor-
mance computation as parallelism is exploited at an increasingly larger scale. By now it is widely
recognized that directly programming this class of machines using explicit communication com-
mands is not the way to go: it requires explicit control and microscopic management of parallel
resources; it is tedious, error-prone, and often unwieldy for producing and maintaining efficient
application code.

The Crystal approach to this problem is to begin with a machine-independent, high-level
problem specification. A sequence of transformations, either suggested by the programmer or
generated by the compiler, are then applied to this specification. These transformations are tuned
for each particular machine architecture so that efficient target code with explicit communication
can be generated.

To seek a balance between the automatable and the effort required of the programmer, Crystal
provides the programmer with language constructs for specifying high-level algorithmic strategies
and a suitably abstract model of the target architecture. We believe that such a balanced approach
will allow the programmer to explore and devise suitable mapping and communication strategies
that take advantage of the global characteristic of the underlying machine without dealing with
the error-prone micro-management of resource allocation and synchronization.

Our approach to automation consists of the following components:

Control Structure Synthesis: One major task of a parallelizing compiler is to derive a parallel con-
trol structure from a functional specification or a sequential program. After the control structure
is determined, the source program is transformed into an intermediate program in which parallel
schedule and flow of control are made explicit. One can think of this intermediate program as a
parallel program for multiple processors with a global shared memory. What remains to be done
is to distribute data and generate appropriate communication.

Data Distribution: We distribute data over the fragmented memory in two stages, first mapping
the program data structure to a virtual network and then embedding the virtual network into
the physical network. Specifically, we consider virtual networks which are multi-dimensional grids
and use the standard Gray code embedding of a grid into a hypercube.

The mapping from data structures to the virtual network consists of (1) partitioning the program
data structures into appropriate grain sizes in such a way that communication overhead is reduced
and workload is balanced, and (2) determining the relative locations of data structures so as to
minimize inter-processor communication (we call this process domain alignment).

Communication Synthesis: Finally, all references to data structures must be translated to local
memory accesses or inter-processor communication. The reference patterns of the intermediate
program are then matched with a library of aggregate communication routines and those which
minimize network congestion and overhead are chosen. The cost of inter-processor communication
is modeled by a communication metric on which optimizations are based.

This paper addresses the issues involved in generating explicit communication commands.

Although the techniques described here are developed within the context of Crystal (a functional
language) [5], they can be applied to Fortran-based parallelizing systems [1, 2, 13, 16] as well.




Issues in Synthesizing Communication We now discuss the issues involved in establishing
correct and efficient communication on a distributed-memory machine.

The primary issue is the intertwined relationship between data distribution and communica-
tion cost, since the locations of data determine the source, the destination and the pattern of a
communication, or whether a communication is necessary at all.

At any given time during execution, the global message pattern affects the communication
cost due to possible collisions of messages in the network. Note that given a fixed data distri-
bution, there are still many possible choices of communication patterns which result in different
communication costs.

Because of the fixed overhead incurred by sending a message, message granularity is an impor-
tant factor in determining the cost of communication. Aggregating a collection of small messages
into a single communication must be considered if the overhead per message is high.

On MIMD distributed-memory machines, synchronization between processors is achieved via
matched “send” and “receive” pairs. The generation of communication commands must ensure
that no deadlock is introduced.

Finally, the trade-off between efficient space consumption, data distribution, and message
granularity must be carefully considered because they are often conflicting demands.

An Example We now illustrate the main ideas of our synthesis approach with a simple example.
The following is a program segment (written in a pseudo, parallel C notation which will be
described in more detail in Section 2):

for (¢ : [0..n])
forall (i : [1..n],7 : [1..n])
ald](5][#] = S[1(3][¢] + ald] (][t — 1];

The interpretation of the for loop is that the iterations are executed in sequential order, while
that of a forall loop is that the iterations can be executed in parallel. We use the notation [{b..ub]
to denote the range of a loop index, with /b and ub being its lower and upper bounds, respectively.

Suppose that the iterations of the above nested forall loops are assigned to different processors.
Denote each processor by a pair (z,y), and let processor (z,y) be responsible for a range of
iterations specified by the intervals [I;(z,¥)..I.(, y)] and [Ji(z,y)..Ju(z,y)]. The mappings from
indices to processor ids are simple functions and can be computed on every processor. We use
idx_to_pid(é1, ..., ) to denote the processor id which corresponds to index tuple (i1,...,%,).

A straightforward approach is to generate a communication for each instance of an array
reference with an explicit communication statement:

Program for processor (z,y) :
for (t = 0;t <= n;t++)
for (i = Ii(z,y); i < Iy(z,y);i++)
for (j = Ji(z,9);7 < Ju(z,9);5 ++) {
if (idx_to_pid(7, 3,t) # (z,y))
(get b[4][3][t] from processor idx_to_pid(3,3,1));

a[][5][¢] = b[e](3](2] + a[e] (4]t — 1] }




The added statement checks, for each index pair (i, 7), if the referenced data b[:][3][t] happens
to be stored in the local memory of the same processor where computation associated with the
index pair (3, j) is assigned. If not, a two-way communication consisting of sending a request and
receiving the corresponding answer takes place.

This straightforward approach would generate correct, but quite inefficient communication
because the test is done for each reference, resulting in high runtime overhead. In addition, the
messages generated are fine-grained and they incur high startup overhead.

The approach we are about to present is based on matching program references with commu-
nication primitives. In this approach, messages are aggregated and organized globally. For this
example, a collection of broadcast communication will be issued for all instances of the reference
as defined in the broadcast statement below:

Program for processor (z,y) :
for (1 =0;t <=mn;t++) {
Column_Broadcast(idx_to_pid(x, 3, t), b[*][3][¢]);
for (i = Ii(z,y);i < Iu(z,y);i++)
for (j = Ji(z,9); 5 < Ju(®,9);5 ++)
ald][5]{e] = b[e][3][2] + ald](4][¢ — 1];
}

The broadcast routine spreads the third column of array b, i.e. b[¢][3][t], 1 < i < n to all other
columns. More specifically, broadcasting takes place concurrently and independently within all
the rows of the processor network, and the processors on which segments of that column reside
spread the segments to other processors in same row. Each processor will receive a segment of
the column b[¢][3][¢], Li(z,y) < ¢ < I,(z,y) in a single message.

Related Work The problem of automatically generating communication for distributed-memory
machines from program references is addressed by several research projects. In Callahan and
Kennedy’s system [4], a target program with explicit communication is generated from a paral-
lelized Fortran program along with user directives that specify how arrays are distributed over
processors. The DINO project at Colorado University [15] requires the user to provide information
regarding both data distribution and communication. The user directives are given at a level that
is machine independent. Other systems for generating communication based on user directives
or annotations include the Kali project at Purdue University [9, 10], the Superb project at Bonn
University [17], and the work of Ramanujan and Sadayanppan [14].

Our major contributions to the problem of generating communication are: (1) the idea of
analyzing source program references and matching these syntactic patterns with aggregate com-
munication routines which can be implemented efficiently on the target machine, (2) the notion of
communication metric and the optimizations performed to reduce communication overhead, and
(3) the development of a target program style for which the compiler-generated communication
are provably deadlock free.

Organization of the Paper The remaining part of this paper is organized as follows. In
Section 2, we give an overview of our approach to communication synthesis. We define precisely
the form of input programs to the communication synthesis module. We then define the notion
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Figure 1: A High Level View of the Communication Synthesis Module

of communication metric and describe an abstract machine which models the class of physical
machine under consideration. We then describe the standard partition strategies we use to dis-
tribute data over processors and their effects on the generation of communication. In Section 3,
the algorithm for matching reference patterns with communication routines is given. Synchro-
nization and correctness of the generated communication are discussed in Section 4. Finally, we
summarize our approach in Section 5.

2 Our Approach to Communication Synthesis

The role of the communication synthesis module in a parallelizing compiler (e.g. the Crystal com-
piler [11]) is shown in Fig 1. The first part of the compiler consists of the parallelization module,
which handles dependence analysis and the generation of parallel control structures. A source
program is transformed into a shared-memory program containing explicit control structures, but
no distributed data, nor explicit communication statements. The second part of the compiler
consists of the communication synthesis module, which handles the generation of communica-
tion commands and data partition and distribution. It transforms a shared-memory program
into a target program. An abstract machine, with a communication metric which reflects the
architecture and communication cost of the target machine, is used to guide the optimizations.

We generate communication statements in three major steps. The first step is to analyze
reference patterns of the input program and match them with efficient communication routines.
The second step deals with scheduling and synchronization of send and receive pairs, as well as
synchronization of global aggregate communication routines. The third step handles the problem
of partitioning the index domain of the input program over the target processors. An approach
for selecting a partition from a small set of standard strategies is described.




for (¢ : [0..n]) {
forall (2 : [1..n],7 : [1..n])
b(i,j,t)=if (=1t) = \+{a(i,z,t-1)|1 <z <n};
else — 1;
forall (¢ : [1..n],7 : [1..n])
a(i, j,t)=if (t=0) — 0;
else if (¢ = b(0,t,t)) — af(t,j,t—1);
else — b(i,t,1);}
forpipe (7 : [1..n])
forpipe (j : [1..n])
c(¢,7)=b(t = 1,4,n)+ b(3,5 — 1,n);

Figure 2: A Shared-Memory Program

2.1 Shared-Memory Programs

The input program to the communication synthesis module can be written in any parallel shared-
memory language or sequential language augmented with parallel control structures. In this paper,
we use a C-like notation augmented with parallel control structures (to be described below).

Parallel Control Structure Three types of loops are used: for, forall, and forpipe. A for loop
is just a sequential loop in which iterations are executed in sequential order. In a forall loop, all
iterations can be executed in parallel, i.e. there is no data dependence between the iterations. A
forpipe loop is a special type of sequential loop, where data dependence is only between adjacent
iterations. The implementation of a single forpipe loop is really no different from that of a for
loop. But if there are two nested forpipe loops, the loop iterations can be executed in a pipelined
fashion across multiple processors as described in the following example.

Figure 2 shows a shared-memory program with two separate loop structures. The first one
consists of nested for and forallloops, and the second consists of nested forpipe loops. The execution
order of the loop iterations of the nested forpipe loops can be described by a sequence of sets of
loop index pairs: {(1,1)}, {(1,2),(2,1)}, {(1,3),(2,2),(3,1)}, .., {(4,5) | i + 5 = n + 1}, where
computations associated with the index pairs belonging to the same set can be executed in parallel.

For and forall loops correspond to do and doall loops in parallel Fortran programs [16], while
forpipe is somewhat similar to doacross.

Assumptions on the Form of Shared-Memory Programs For the sake of simplicity, we as-
sume that a shared-memory program is preprocessed and transformed into the following restricted
form:

Single assignment: Each array element can be assigned to only once. However, an array can
appear on the left-hand side of many assignment statements (so long as different array
elements are assigned to each time).




Left-hand side array indices must be formals: An array index expression on the left-hand side of
an assignment statement must be a formal parameter. For instance, the following statement

a(i’j_ 1) = b(7‘+ 2’.7)

should be written as
a(i,7)=b(i+ 2,5 + 1).

Arrays are aligned: Arrays appearing in the same loop structure (called a w-block in the paral-
lelizing Fortran literature [3]) are aligned, i.e. the relative locations of these arrays are
fixed. The alignment can either be specified by the user or be generated automatically by
an alignment algorithm [12].

Index Domains For each program loop structure, all arrays are aligned and therefore all can
be thought of as defined over the same range of indices, where the boundaries of arrays are
appropriately adjusted according to the alignment. Such a range of indices is called an index
domain. We restrict ourselves to index domains which are Cartesian products of the interval
domains.

In the example shown in Figure 2, the index domain of the first loop structure is the Cartesian
product of intervals [1..n] x [1..n] x [0..n]; and that of the second loop structure is [1..n] X [1..n].

Reference Patterns In the following, scalar expansion (c.f. [16]) is assumed to have been
done. Those scalars which are not expanded to arrays will not be considered here, since they
will be mapped to local variables on each processor and will not directly affect inter-processor
communication. In other words, we will focus on references between arrays.

For each pair of array references appearing on the two sides of an assignment statement in a
loop,

for (41 : D1y...,%n : Dy)

a‘(il""ain)z |f7 - '”b(Tl’“"Tn)”';
else — -

the symbolic form (as a quoted string of characters)
fa(i1y - -yin) = b(T1,. ., T) 27"
is called a reference pattern, where the formals (7y,...,,) are quantified over the index domain

Dy X -+ X Dy, and 7 is the guard of the conditional branch that b(ry,...,7,) is in.

Note that a reference pattern represents a collection of data dependencies. We emphasize
this aggregate form rather than each instance of a reference because data dependencies between
elements of index domains are sources of communication and they need to be aggregated for
performance reasons.

Example From the program in Figure 2, we can derive the following reference patterns:

(i, 7,t) — a(i,z,t—1):j=tand 1 < z < 0,
Ta(1,7,t) < b(0,t,t): t # 0,




"a(i,7,t) < a(t,j,t — 1) :t # 0 and 7 = b(0,,1)",
Ta(i, 7,t) < b(i,1,t): t # 0and ¢ # b(0,1,1)),
"e(i, §) — b(i — 1,,n)}

e(i,7) < b(i,j — 1,n)".

Spatial Reference Patterns When aloop with nested levels is mapped to the target machine,
some levels of the loop will be mapped over different processors while others will be mapped to
a sequential loop to be executed by each individual processor. We call the indices corresponding
to the former spatial indices, and the those corresponding to the latter temporal indices. The
spatial part of a reference pattern, corresponding to the spatial indices, leads to potential inter-
processor communication. For the purpose of determining communication patterns, it is sufficient
to consider only the spatial part. We hence introduce the notion of spatial reference pattern. In
terms of notation, the temporal part in a reference pattern is dropped and the arrow is reversed
(for reasons that will be clear later). For convenience and in situations where there is no confusion,
we will simply call the spatial reference pattern a reference pattern for the rest of this paper.

Suppose that indices ¢, j are spatial for the first reference pattern in the above example; then
its spatial part is
'a@Q(i,z) = (3,§):j=tand 1 < 2 < 0.

Other Related Concepts A canonical form of an expression is a syntactic form in which
variables appear in a predefined order and constants are partially evaluated. For example, "2—i+ 5’
and "j—:+3—1"would have the same canonical form "—i+;+2". The process of deriving a canonical
form is called normalization, and involves symbolic transformations and partial evaluations.

A Boolean predicate P over an index domain is said to be space-invariant if P always evaluates
to the same value with respect to different values of the spatial indices. A non-space-invariant
predicate may contain space-invariant sub-predicates. For example, suppose that indices i, j are
spatial; then the space-invariant component in the predicate "t > 1 and ¢ # j'is "t > 1%

In the rest of this paper, we use Greek letters «, 3,4 etc to denote arbitrary expressions in a
shared-memory program.

2.2 Abstract Machine Model

The class of physical target machines under our consideration is large-scale, distributed-memory
machines, including various hypercubes such as iPSC/2 and NCUBE, transputer arrays, WARP
and iWARP systolic arrays, and the Connection Machine.

We define an abstract machine for this class of machines. The abstract machine is configured
as an n-dimensional grid of size Ny X --- X N, and modeled as an index domain D which is a
Cartesian product of interval domains D = [1..Ny] X - -+ X [1..Ny].

2.2.1 Communication Patterns

Definition Given an n-dimensional index domain D, let (74,...,4,) range over D. Let 0,6, where 1 <
) 9 9 P> ¥ p
p < n be expressions of indices ¢, ..., %,, and let ¥ be a boolean predicate over variables #;,. .., i,.




The following form
'aQ(01,...,00) = (61,...,0,): 7"

is called a communication pattern, which represents the collection of data movements that bring
data pointed to by a from (o1,...,0,) to (81,...,8,) for all the elements in D where 7 is true.

Tuple (o4, ...,0,) is called the source expression, and (8y,...,d,) the destination expression.
There are two special forms of communication patterns. In the sender’s form, the source ex-
pression consists of the formals (¢y,...,%,) ranging over domain D. In the receiver’s form, the
destination expression consists of the formals (¢1,...,%,):

Sender’s form:  "a@(i1,...,1,) = (61,...,6,)}

Receiver’s form: a@(0y,...,00) = (t1,.. ., 0n)"

Tuples (o1,...,0},) and (8],...,6,) are related in the following way. Suppose we can write the
source and destination expressions as

(81,...,6L) = Ty(iry. .. i)

(015, 00) = Tai1s - - -y in)

where T7 and T, are well-defined functions. Then 77 and T, must be inverses of each other.

Example Communication pattern "a@(%,j + 1) = (¢ — 1,7)" can be transformed into

Sender’s form: fa@(z,7) = (1 — 1,5 — 1)},
Receiver’s form:  "a@(: 41,5+ 1) = (3,5)°

When (o1,...,0,,) and (61,...,0,) are linear expressions of the indices, is is possible to symbol-
ically determine the sender’s and receiver’s forms. But in general a compiler would not be able
to do so. Our restriction on the array index expressions on the left-hand side of an assignment
statement (the 2nd assumption on the shared-memory program) is to assure that at least the
receiver’s form is readily available to the compiler. In case (8f,...,6,) is not computable by
the compiler, we allow the user to specify it via the communication form construct in which the
functions T3 and T, are specified and used in references wherever needed.

2.2.2 Communication Primitives

The original ideas of communication primitives are from Fox et al. [6], and Johnsson and
Ho [7, 8]. They have developed a collection of efficient communication routines for hypercube
machines, and have shown that using such synchronous communication is more efficient than
using asynchronous message passing (i.e. individual send and receive pairs) in most scientific and
engineering applications.

The goal is to devise an algorithm which can analyze source reference patterns and generate
automatically such synchronous communication. We select a small set of communication routines
as primitives, as shown in Tables 1 and 2. Primitives in Table 1 are called general primitives.
Those in Table 2 are called simple primitives. Each simple primitive takes a dimension index p
as input, and confines data movement to the pth dimension of domain D. In the table entries,




| Primitive | Pattern | Cost | Type |

One-All-Broadcast(D, s, a) 'a@s =1 O(Blog|N|)| B
All-One-Reduction(D, d, a,®) | 'a@i= d’ O(Blog|N|)| R
All-All-Broadcast(D, a) 'a@i=j O(B|N]) B
Single-Send-Receive(D,s,d,a) | 'a@ s = d’ O(B) P
Uniform-Shift(D, ¢, a) 'fa@i=>i+c’ O(Blog|N|)| P
Affine-Form(D, M, ¢, a) 'a@i=> Mi+c'| O(Blog|N|)| P

Table 1: General Communication Primitives over Domain D and Their Costs

| Primitive | Pattern | Cost | Type |
Spread(D,p, S, a’) ra’@(lla Sy l2) = (lla i 12)-I O(B lOg_ Np ) B
Reduction(D,p,d,a,®) | "a@(l4,1,1l2) = (I1,d,13)" O(Blog|N,) | R
Multi-Spread(D, p, a) 'aQ(ly,1,03) = (l1,4,12)" O(B|N,|) B
Copy(D, p, s,d,a) 'aQ(l4,8,13) = (I1,d,15)" O(B) P
Shift(D, p, ¢, a) "aQ(ly,5,00) = (1,14 ¢, 1) | O(Blog[N,) | P

Table 2: Simple Communication Primitives over Domain D and Their Costs

B denotes the message size, N the number of virtual processors modeled by the index domain
D, and N, the number of processors along the pth dimension of the domain. We also use bold
face letters i, s, d as shorthand for index tuples (71,%2,...,%), (81,82,...,3n), (d1,d2,...,dy). In
Table 2, [; and I3 denote lists of indices (¢1,...,%p—1) and (ép41,...,%5), respectively.

All of these communication primitives can be implemented efficiently on a target hypercube
machine. In addition, each communication primitive has a unique pattern characteristic that
the compiler can identify symbolically. We now give a brief description of each of the general
primitives.

One-All-Broadcast(D,s,a): The data pointed to by buffer pointer @ in virtual processor s in
domain D is sent to all the other virtual processors in D. This pattern can be identified
by the presence of a constant tuple in the source expression and formals in the destination
expression.

All-One-Reduction(D,d, a,®): A primitive based on the reduction operator in APL. Data pointed
to by a in every virtual processor in D are combined using the binary associative operator
@ and sent to virtual processor d. This pattern is identified by the presence of a constant
tuple in the destination expression and formals in the source expression.

All-All-Broadcast(D, a): Data pointed to by a in every virtual processor in D are duplicated over
every other processor. This pattern is identified by formals appearing in both the source
and the destination expressions.

Single-Send-Receive(D, s,d, a): Data pointed to by a in virtual processor s is sent to virtual
processor d. This pattern is identified by constant tuples appearing in both the source and
destination expressions.




Uniform-Shift(D, ¢, a): Data pointed to by a is sent from every virtual processor i in D to virtual
processor i+c. This pattern is identified by the presence of the same constant offset between
the source and destination expressions over all virtual processors in D.

Affine-Form(D, M,c,a): Input M is a constant n X n matrix, where n is the dimensionality
of D. Data pointed to by a in every virtual processor i in D is sent to virtual processor
M -1+ c. This pattern is identified by deriving both the sender’s and the receiver’s forms
of the pattern, and verifying the relationship between the two forms. Note that Transpose
is a special case of this primitive.

The simple primitives in Table 2 are used for describing collective communication within a
single dimension of the multi-dimensional grid of the abstract machine. Each simple primitive
has a corresponding general primitive, but its data movement is constrained. The correspondence
is as follows:

Spread <=  One-All-Broadcast,
Reduction <=  All-One-Reduction,
Multi-Spread <=-  All-All-Broadcast,
Copy <= Single-Send-Receive,
Shift <= Uniform-Shift.

For example, Spread(D, p, s, a) means spreading data in the pth dimension from virtual processors
which have address s in the pth dimension. In the two dimensional case, Spread(D, 1,2, a) means
spreading data from the virtual processors in the second row to all the other rows, where row ¢
refers to the elements (3, *).

The communication primitives we are considering are classified into three types according to
whether they reduce, preserve, or broadcast messages.

Type R (message-Reducing): Reduction, All-One-Reduction.
Type P (message-Preserving): Copy, Shift, Uniform-Shift, Single-Send-Receive, Affine-Form.

Type B (message-Broadcasting): Spread, Multi-Spread, One-All-Broadcast, All-All-Broadcast.

The classification is used in optimizing the compositions of communication primitives.

Note that these primitives span the complete spectrum of source and destination patterns
— one-to-many (one source, many destinations), many-to-one, many-to-many, one-to-one, and
multiple one-to-one. They can be composed to form more complex communication patterns. It
may be worthwhile to expend this list. For instance, we plan to implement other important
primitives such as Shuffle-Exchange.

2.2.3 Communication Metric

A Metric Based on Pattern Uniformity We define the notion of communication metric for
defining communication costs on the target machine. With this metric, the cost of any communi-
cation pattern of the abstract machine can be calculated. We first present a simple metric which
is based on the “uniformity” of communication patterns.
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Definition Given a communication pattern (written in sender’s form),
ra@(il, .. .,in) = (51, ey 6n)1

we say it is uniform in the pth dimension if 8, 2", + ¢!, where c is a constant independent of the
size of the index domain, and = denotes that the two expressions have the same canonical form.

With this concept, we can classify communication patterns with respect to their uniformity,
namely patterns that are uniform in every dimension; those that are non-uniform in one, two,
three, etc dimensions; and those that are non-uniform in every dimension. We illustrate this
classification for the three dimensional case in the following table.

Pattern Example Uniformity

'aQ(2, 5, k) = (3,7,k)’ Memory access
'a@(7,7,k) = (i + ¢1,7 + €2,k + ¢3)' | Uniform in 3 dimensions
'a@(7,7,k) = (61,7 + c2,k + ¢3)’ Uniform in 2 dimensions
'aQ(z, 7, k) = (61,62,k + c3)’ Uniform in 1 dimensions
'a@(%, j, k) = (61, 02,83)" Non-uniform

A memory access within a processor is often far faster than inter-processor communication.
The difference in cost can be as big as 2 or 3 orders of magnitude. To communicate with nearby
processors within a constant distance, a message needs only to be routed through a small constant
number of processors. Message collisions can be avoided, so neighborhood communication is the
most efficient inter-processor communication. Non-uniformity implies non-local communication,
which is likely to involve message collisions.

This metric is used in two ways: in the index domain alignment module, it guides the opti-
mization of aligning multiple arrays, and, in the communication synthesis module, it forms the
basis for the idea of simple and general primitives and of matching a general reference pattern
with a composition of simple primitives.

A Metric Based on Communication Primitives To guide the optimization of selecting
partition parameters and determining communication patterns, a more sophisticated communi-
cation metric is needed. We define a new communication metric based on the communication
primitives. We assign a cost to each communication primitive and derive costs for other patterns
from them.

When a specific target architecture is under consideration, the cost of the primitives can be
estimated. For instance, suppose the target architecture is a hypercube and the index domain
over which the primitives are defined is a multi-dimensional grid embedded in the hypercube using
some Gray coding. Then the complexity formulas (using the big O notation) can be given for
each primitive as shown in the third columns of Tables 1 and 2.

When a specific target machine is under consideration, a even more accurate cost function can
be obtained. By experimenting with communication primitive routines on an actual machine, we
can determine for each primitive the constant factors in the complexity formula.
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Figure 3: Standard Partition Strategies

2.3 Mapping an Abstract Machine to a Target Machine
2.3.1 Standard Partition Strategies

The partition strategies under consideration here are the standard omes: block partition, strip
partition, and interleaving partition (Figure 3). These strategies partition an index domain into
equal-size sub-domains. The differences between them are in the shape and the granularity of the
sub-domains. In the following, we call a dimension of an index domain partitioned if with respect
to that dimension the domain is mapped to different processors, otherwise we call the dimension
sequentialized. In Figure 3, the horizontal dimension of the index domain is partitioned in all the
four cases, while the vertical dimension is partitioned only in the second and forth cases.

Given an index domain with fixed sizes, all possible different partitions using the above strate-
gies can be enumerated. If the number of processors of the target machine is also given, the
possibilities can be further reduced. For example, suppose an index domain D = [0..63] x [0..15]
is given, and the target machine consists of 32 processors. Then the possible partitions are the
following ones: 32 x 1,16 x 2,8 X 4,4 X 8,2 X 16, and 1 x 32.

The compiler tries each of the candidate partitions, estimates the corresponding communica-
tion cost, and then selects the one which has the minimum cost. The process is shown in Fig 4. For
large programs consisting of many sub-programs or multiple index domains, global optimization
is needed to determine the partition. This is beyond the scope of this paper and will be addressed
in a separate paper. The compiler can also rely on the user to provide partitioning parameters.
In this mode, our compiler generates parameterized target programs, which at runtime take in
parameters provided by the user. Partial evaluation of the target program can further optimize
the generated code.

2.3.2 Aggregating Communication

Once a partition strategy is chosen, the communication patterns of the shared-memory program
and their matching primitives need to be adjusted, because many communication become unnec-
essary.

Internalization For those dimensions of an index domain that are sequentialized, communi-
cation between elements along these dimensions would become local memory accesses. For each
partitioned dimension, a range of indices is mapped to a processor. No communication is needed
between the elements of the same range. We call this internalization.

For example, given a reference pattern

'aQ(3,j +1) = (4,5): j > 0,
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Figure 4: Relation between Partition and Communication

- suppose that the first dimension is partitioned while the second is sequentialized. The communi-
cation corresponding to the second dimension of the domain is completely internalized while that
corresponding to the first dimension is partially internalized. As far as inter-processor communi-
cation is concerned, the reference pattern can be transformed to

'a@(3) = (1) : j > OV

Elimination Look at the following slightly modified reference pattern,
a@(3,5) = (i,5): 5 > O

Suppose that the second dimension is partitioned. The reference pattern can then be transformed
to

fa@(j) = (§):j > 0,
resulting in a pattern for which no communication need take place. Thus this reference pattern
can be eliminated.

2.3.3 Estimating Communication Costs

In general, performance estimation is a non-trivial problem, and deserves a treatment of its own.
However, for applications that are regular and static in nature [6], simple approaches can work
quite well. In our case, when the partition strategy for an index domain is known, the size
of the sub-domain on each processor can be derived, and then, individual message size can be
calculated. The communication cost of a program hence can be estimated by adding up the costs
of communication primitives used in the program. If the partition strategy is given as a set of
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parameters whose values are unknown at compile time, the difficulty is that the sub-domain sizes
can no longer be determined. However, a symbolic expression of the size can still be obtained
at compile time and the communication cost can be given in an unevaluated symbolic form. For
simple cases, it is possible to compare expressions symbolically and determine the relationship
between their values. In general, due to conditionals and unknowns, techniques such as profiling
would be needed for estimations.

3 Algorithm for Matching Reference with Communication

In this section, we describe an algorithm for matching reference patterns of a shared-memory
program with communication primitives of an abstract machine. For a given program, we define
the abstract machine to be of the same shape as the spatial part of the index domain of the
program. The matching algorithm is applied to one pattern at a time. Each reference pattern is
matched with either a single primitive or a composition of primitives.

3.1 Definition of Pattern Matching

Definition Given an index domain D and a communication primitive defined over D, the set of
instantiated source-destination pairs of the primitive is defined as the set of pairs of the elements
of domain D which hold the source-destination relationship with respect to the primitive.

Example Suppose that D = [1..Nq] X [1..N3]. Recall that i is a bound variable over D while
s, d are free variables. Primitive One-All-Broadcast(D,s,a) has the following set of instantiated
source-destination pairs:

{(s,(1,1)),(s,(1,2)),...,(s,(1,N2)),(s,(2,1)),...,(s, (N1, N2))}.

For primitive All-All-Broadcast(D, a), the set contains all the possible pairs of elements of D:

{((17 1), (17 1)), ((1a 1)’ (la 2)), ey ((Nl7 N2)a (Nl, N2))};

and for primitive Single-Send-Receive(D,s, d,a), the set has only one element {(s,d)}.

Definition Given an index domain D and a reference pattern defined over it, the set of instanti-
ated source-destination pairs of the pattern is defined as the set of pairs of elements of domain D
obtained by replacing the formals in the pattern by all possible values, disregarding the predicates.

Example Reference pattern
'0@(2,3) = (4,7):1> 5"

over domain [1..N7] X [1..Ng] has the following set of instantiated source-destination pairs,
£(2,3), (1, 1), (2,3), (1,2))s - ((2,3), (M3, N2))}.

Definition A primitive is said to match a reference pattern if the set of instantiated source-
destination pairs of the primitive for some choices of the free variables over D is a superset of
that of the reference pattern. A primitive is said to perfectly match a reference pattern if the two
sets of pairs are exactly the same.
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Example Reference pattern
'0@(2,3) = (4,5):1> 5"

over a two-dimensional spatial domain D is matched with both of the communication primitives,
One-All-Broadcast(D, (2,3), a) and All-All-Broadcast(D, a), but is perfectly matched with only the
former.

Boolean Predicates Presently, predicates in reference patterns are not used in the matching
process. This is because the primitives described in this paper are not general enough to take
parameters to select processors. We plan to implement communication primitives over a set of
selected processors and incorporate predicates as one of the parameters of the primitives.

3.2 The Matching Algorithm

We first describe the major procedures in the matching algorithm.

Identifying a Perfect Matching Identifying a perfect matching is by normalization and sym-
bolic comparison. Suppose we are given a general pattern over index domain D

'a@Qo = §: 4"

where o and § are the source and destination expressions and < is the predicate. The following
matching steps will be applied:

Pattern Characteristics | Matching Primitives

o2é (Local Memory Access)
const(o) A const(d) Single-Send-Receive(D, 0, §,a)
const(é — o) Uniform-Shift(D, é — o,a)

const(o) A formal() One-All-Broadcast (D, o, a)
formal(o) A const(d) All-One-Reduction(D, 6, a, ®)
formal(o) A formal(é) | All-All-Broadcast(D, a)
affine(o, 6) Affine-Form(D, M, c,a)

Recall that = denotes two expressions having the same canonical form, and that symbolic simplifi-
cations and partial evaluations are needed to obtain canonical forms. The two predicates, const(co)
and formal(c), are for testing whether an expression o contains constants only or formals only,
respectively. Note that an expression containing temporal indices is considered a constant expres-
sion in the matching. The predicate affine(c, ) is for testing if the two vector expressions o and
6 have an affine relationship, i.e. if there exits a constant matrix M and a constant tuple ¢, such
that 0 = M§ + c. If a pattern fails to satisfy any of the predicates in the above table, it is not
perfectly matched with a general primitive and the next matching step will be taken.

Matching a Simple Pattern with the Lowest-Cost Primitive A reference pattern whose
source and destination tuples are exactly the same except for one pair of corresponding index
expressions is called a simple reference pattern. A simple pattern is always matched with a single
primitive. Suppose the following simple pattern over domain D is given:

r . |
aQ@(01,...,0p—1,0p,Opt1y-++300) = (O1,04 0y Op1,0p, Opt1s..+,00) 1 Y
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It will be tested for the following pattern characteristics:

Pattern Characteristics | Matching Primitives
op = by (Local Memory Access)
const(op) A const(6,) Copy(D, p, 0p, 6p, @)
const(d, — o) Shift(D, p, b, — 0p,a)
const (o) Spread(D, p, 0y, a)
const(d,) Reduction(D, p, 6,, a, D)
otherwise Multi-Spread(D, p, a)

The predicates in the left column are not mutually exclusive, so the order in which they are tested
is important. We order them so that the lowest cost primitive will be matched first.

Decomposing a Reference Pattern A general reference pattern in an n-dimensional index
domain can be thought of as a composition of n simple patterns, each describing data movement
along one dimension. We call a composition of a subset of these simple patterns a sub-pattern
of the general pattern. When a general reference pattern cannot be perfectly matched with a
single primitive, it will be decomposed into sub-patterns and the then matching algorithm will be
applied to these sub-patterns recursively. '

Example Reference pattern
ra@(c(i,j)’j - 3) = (37.7)1

over domain D cannot be perfectly matched with a single primitive. It is therefore decomposed
into two sub-patterns, each of which is matched with a single primitive:

'aQ(3,5 — 3) = (4,7)'  Shift(D,2,3,q)
‘aQ(c(4,5),7) = (4,7)"  Multi-Spread(D, 1,a)

The composition of these two primitives, Shift(D,2,3,a) and Multi-Spread(D, 1,a), is the result
of the match (Fig 5).

|
!

= — | + 5

'a@(c(i,7),7—3) = (4,7) Shift(D, 2,3, a) Multi-Spread(D, 1, a)

Figure 5: Decomposing a Reference Pattern

In general, when the index domain is of high dimensionality, there will be many ways to decom-
pose a reference pattern. To find the optimal composition of primitives, dynamic programming
techniques are used.

16




Optimizing the Composition of Primitives Notice that the ordering of the primitives in
the composition does not affect the correctness of the target program. However, it does affect the
cost of communication. For the above example, we can have two orderings:

Case 1: Shift(D, 2,3, a)oMulti-Spread(D, 1, a) (applying multi-spread in dimension one first; shift
in dimension two second) — the message size for multi-spread is the original message size B,
and the cost of it is O(B|D;|). However, the result of multi-spread is that every processor
gets a whole column of data, hence the data size for shift becomes B|D;|. The corresponding
cost is O(B|D4]).

Case 2: Multi-Spread(D, 1, a)oShift(D, 2, 3, a) (applying shift in dimension two first; multi-spread
in dimension one second) — The message size for shift is B, so the cost is O(B). The message
size for multi-spread is the same, and the cost is O(B|Dq|). The total cost is less than that
of the first case.

The principle for ordering primitives in a composition is to have them appearing in the following
order: type R followed by type P primitives, and finally type B primitives.

We now summarize the above with the reference pattern matching algorithm below:

Algorithm (Matching Reference Patterns).
Step 1. For a given pattern, search through the list of primitives and try to find a perfect match;
Step 2. For a simple pattern which fails Step 1, find the lowest cost matching primitive;
Step 3. For a general pattern which fails Step 1,
3.1 decompose it into sub-patterns;

3.2 recursively apply the algorithm on the sub-patterns;
3.3 optimize the composition of the resulting primitives.

3.3 Optimizing Reference Patterns

Reference patterns derived directly from the input program are usually not in the most efficient
form. In this following, we introduce several optimizations which transform the original set of
reference patterns into ones that are better suited for implementation.

Narrowing Scopes By constant propagation, the communication primitive that perfectly matches
a given reference pattern may change to another with lower cost. For example, a perfect match
of the reference pattern

aQ(3,5) = (i,7):i =4

would result in a Spread. However, the information that ¢ is a constant or it is space-invariant
results in the reference pattern
'aQ(3,5) = (4,5}

which matches perfectly with a Copy, which is less costly than a Spread.

Combining Identical Patterns Two reference patterns can be combined if they are equiv-
alent, disregarding the guards. Clearly, the advantage of combining is to reduce the number of
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communication statements and thus the number of messages. For example, the following two
reference patterns

‘a@(i+3,5) = (3,5) : 3 > 53,
'a@(t+3,5) = (4,7):i< T
can be combined as :
'a@(4,5) = (14+3,7):1>53 or 1 < 7,
thus eliminating a Shift.
Combining Subset Patterns If the set of instantiated source-destination pairs of one reference

pattern is a subset of another, then it can be eliminated. For example, the following two reference
patterns

'a@(2,3) = (2,7):j > 1),
'a@(2,3) = (4,5):5> 1

can be combined as

'a@(2,3) = (4,5): 5 > 1

Aggregating Patterns In case there are many individual reference patterns sending messages
from the same source to different destinations, it is often better to use Spread instead of many
Copys. For example, for the following reference patterns

ra’@(27j) = (cl,j) .7 > 11,
ra’@(27j) = (627j) .7 > 117

'a@(2,5) = (ck,j): 5> 1"

where ¢y, ¢, . .., ¢t are constants. When £ is large, it is better to combine these reference patterns
as
'a@(2,7) = (4,7): 5 > 1

When to do this optimization depends on the relative costs of Copy and Spread and must be
determined experimentally for each target machine.

3.4 Trade-off in Matching Patterns

Our approach may generate communication which are more costly than necessary due to indirect
references. For example, suppose the reference pattern (over domain D = [1..n] X [1..n])

'a@(2,7) = (c(i,5),5):5 > 1"

contains an indirect reference ¢(%,j) whose value can not be determined at compile-time. Our
pattern matching algorithm would match it with Spread, but Copy would suffice if ¢(%, j) was known
to be constant at compile time. Let’s examine some alternatives to our matching algorithm.
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Asynchronous Communication An alternative approach is to generate a Request-Receive
pair which interrupts the processor holding the requested value. The target program looks like

Program for processor p :
if (j > 1)and (s =2) {
(Send a tequest to processor idx_to_pid(c(%,7),7));

(Wait for an answer from processor idx_to_pid(c(4,5),7)); }

The Request-Receive pair works as follows: Whenever there is a request coming to a processor,
an interrupt handler will send out the requested data if it is ready, otherwise it will queue the
request and send out the value when it becomes available. The overhead of interrupt handling
and queue management may be reduced if a separate communication co-processor is available
in the hardware. In practice, message granularity in this approach is fine enough so that it
incurs unacceptably high overhead on machines like the iPSC/2. In addition, asynchronous com-
munication makes this approach far more error-prone. A working mechanism for asynchronous
communication on this class of machines may incur additional system overhead.

User Directives Another alternative is to allow the user to provide enough information to
generate efficient communication. It turns out that all that is needed is a pair of functions which
are inverses of each other for specifying the sender’s form and the receiver’s form of a given
reference pattern. Using the same example shown above, the user can say

Communication Forms:
T(i,5) = (e(i,4),5) = {(i div j,5)}
T_inv(4,5) = if (i <= (ndiv j)) — {(k,j)|i*j <=k <min(n+1,(i+1)*35)};

The inverse T_inv can then be used to generate a send-receive pair for efficient communication.
The corresponding target code will look like

Program for processor p :

if (j >1)and (i =2)
(Send msg to processor idx_to_pid(T(4, 5)));

if (j > 1) and (p € {idx_to_pid(T_inv(3,7)})
(Receive msg from processor idx_to_pid(2, j));

We think this approach is the best and will support this in the future.

4 Synchronizing and Scheduling Communications

Once a communication primitive is chosen, we still need to schedule it and synchronize those
processors that participate in the communication.

From the point of view of synchronization, communication primitives can be classified into two
groups. Group A consists of primitives that require synchronization among more than two proces-
sors (i.e. using combining trees), e.g. Spread, Reduction, One-All-Broadcast and All-All-Broadcast.
Group B consists of primitives that require synchronization only between pairs of processors (i.e.
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using just pairs of send and receive), e.g. Copy, Shift, and Single-Send-Receive. This classification
relates to the classification based on message type (Section 2) in the following way: the set of
group A primitives is equivalent to the union of the sets of primitives of type R and B, and the
set of group B primitives is equivalent to the set of primitives of type P.

4.1 Synchronizing Group A Communication Primitives

Take the following source program segment as an example,

for (¢ : [0..n])
forall (7 : [1..n],7 : [1..n])
a(i,j,t)=if (t>1)and (¢ > j) = b(i + 1,5 — 2,1);
else — a(i,7,t—1);
One spatial reference pattern derived is

QG+ 1,7 —2)= (¢,5):t>1and i > j,

and is matched with a Uniform-Shift.

A Uniform-Shift consists of a set of send and receive pairs. To construct correct message passing
on a distributed-memory machine, each send must be matched with a receive. Both the sender’s
and the receiver’s forms of a reference pattern are needed. From the above reference pattern, we
need to derive the sender’s form

Q@(i,7)=> (1 —1,7+2):¢t>1and (: — 1) > (5 +2)*

The resulting target code (omitting the address translation and aggregation for simplicity) looks
as follows:

if(t>1)&& (1 —-1)> (j + 2)
send(D, (-1,2),b);

if (t> 1) && (i > 7)
receive(D, (1, —2),b);

if (t>1)&& (¢ > )
ali][j] = bl¢ + 1]l - 2];

Note that the send statement is derived from the sender’s form of the reference pattern while the
receive statement is derived from the receiver’s form.

The compiler generates a non-blocking send and a blocking receive, and places the receive
statement right after its corresponding send statement. A blocking receive does not return until
the message it is expecting arrives.

4.2 Synchronizing Group B Communication Primitives

When many processors participate in executing a communication primitive, the important thing
is to make certain that all relevant processors execute the same predicate. For example, from the
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source program segment

for (¢ : [0..n])
forall (¢ : [1..n],7 : [1..n])
a(i,t) = if (t > 1) and (i > 5) — b(3,5,1);
else — a(¢,7,t—1);
we derive the reference pattern

Q(3,5)= (3,7):t>1land i > 7,

which is then matched with a Spread(D,1,3,b), where D = [1..n] X [1..n], by disregarding the
guard ¢ > j. The corresponding target code looks like

Program for processor (z,y) :
if (t>1){
Spread(D, 1,3,b);
if not ((4,7) € [Li(z,y)..Lu(z,y)] X [Ji(z,y)..Ju(z, y)] such that ¢ > j)
(discard received data);
if (4> 7)
alt](5] = b[3][5];
}

In general, we extract space-invariant components out from the guard and disregard the rest in
communication. Note that unnecessary data are discarded as soon as possible to free up message
buffer space and to avoid using local memory in the processor.

4.3 Scheduling Communication

Recall that an intermediate, shared-memory program consists of multi-level loops. A target
program generated by the compiler for processors of the target machine has similar structure.
Disregarding the details of computation, a loop body can be thought of consisting of a sequence
of segments, containing computation or communication.

Definition For an array assignment statement appearing in a multi-level loop of a shared memory
program (without lost of generality, assume the outermost k loops are for loops),
for (i1 : Dy,...,%% : D)
forall (¢k+1 : Dikt1y.++y0n : Dp)
a(i1y.enyin) =+
we call the set of statements in the target node program for implementing the assignment state-

ment a computation segment for array a, and denote it by computation(a,iy,...,1), with the
indices of the outermost k& loops specified as parameters.
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A computation segment may contain conditionals, loops (e.g. inner-level forall loops), and local
environments (e.g. compound statements in C). The parameters ¢y, ..., i, are space-invariant and
their significance will be discussed later.

Definition Given a reference pattern P as in the above definition,
P Ta(iy, ... in) <« 0(81,...,6,) : T

we call the set of synthesized communication statements (including the calls to primitive routines,
statements for loading message buffers, etc.) for implementing it the communication segment for
pattern P, and denote it by communication(P).

A sequence of computation segments within a multi-level loop consistent with the data de-
pendence between the arrays is first obtained in the control structure synthesis module of the
compiler. The task of scheduling communication is to determine the appropriate location for
each communication segment within the sequence of computation segments. For this purpose, we
define for each communication segment two sets of associated computation segments.

Given a reference pattern P as in the above definition, the set of pre-segments for communication(P)

consists of (1) the computation segment in which b(é1,...,6,) is computed; and (2) the compu-
tation segments in which the indirect array references occurring in é4,...,6, are computed. The
post-segments consists of the computation segments in which a(¢,...,%,) is computed.

A communication segment is scheduled before all of its post-segments and after all of its
pre-segments.

Example Given the following program,

for (¢ : [0..n]) {
forall (2 : [1..n],7 : [1..n])
b(i,j,t)=if (t=0) — 0;
else — b(7,5,t—1);
forall (¢ : [1..n],7 : [1..n])
a(i,j,t) = if| (t>0)and (i > j) — b(e(s,7,t—1),7,1);
forall (¢ : [1..n],7 : [1..n])

C(i,j, t) = a’(iaj’t) +3;

}

the sequence of computation segments of the target program can be derived as shown in Fig-
ure 6(a). The reference patterns of the program

Py : "a(i, j,t) « b(c(3,7,t = 1),5,t): ¢t > 0and i > j,
Py : "a(i,j,t) « c(i,5,t—1):t > 0and i > 5,

Py: "b(i,,8) — b3, j,t— 1) 1 ¢ > O,

Py : Te(i, 4,t) « a(i, 5, t)"

determines the corresponding pre-segments and post-segments:
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for (0 <=t <=n){ for (0 <=t <=n) {

computation(b, t); communication( Ps);
computation(a, t); computation(b, t);

computation(c, t); communication( Py );
} communication(P,);

computation(a, t);
communication(Py);
computation(c, t);

}

(a) shared-memory program (b) with explicit communication

Figure 6: Outlines of a Target Program

Pre-Segments Post-Segments

communication(P;) | computation(b, t) computation(a, t)
computation(c,t — 1)
communication(Pz) | computation(c,t — 1) | computation(a,t)
communication(P;) | computation(b,t — 1) | computation(b, t)
communication(Py) | computation(a, t) computation(c, t)

The target program after the insertion of the communication segments is shown in Figure 6(b).

Cross-Iteration Dependence As we see in the above example, the pre- or post-segments of
a communication segment may contain segments which are not computed in the current loop
iteration. Thus a communication segment may be placed at the beginning or at the end of a
loop body to satisfy the cross-iteration dependence. The space-invariant indices attached to each
computation segment provides the information for doing so.

4.4 Correctness of Communication Synthesis

One important issue in synthesizing communication is to guarantee that no deadlock is introduced
by the compiler. We prove this property of our synthesis procedure as follows:

The target code generated by the compiler consists of a host program (which we will not
discuss), and a node program for all the processors in the so-called SPMD style. The node program
consists of sequential loops; the body of each loop is a sequence of computation segments and
communication segments.

The computation segments of a target program are single-entry single-exit segments (i.e. there
are no goto or break statements). The compiler generates these computation segments based on
semantics-preserving transformations which do not introduce deadlock, and the execution of such
a segment eventually terminates. Therefore, we can focus on each individual communication
segment, which consists of either a group A or a group B communication primitive. We prove
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by induction on the sequence of communication segments. We assume that all processors have
reached at the Nth communication segment.

Case 1: The communication segment consists of a group A communication primitive. Since
such a communication primitive is guarded only by space-invariant predicates, all processors will
execute the communication segment. Since the communication primitive is assumed to terminate,
the entire segment terminates.

Case 2: The communication segment consists of a group B communication primitive. We assume
that the message buffer is large enough to hold the entire data transmitted in a message. 1 (1)
Since the send and receive pair of the primitive is arranged as a non-blocking send followed by
a blocking receive (Section 4.1), every processor will execute a send statement first. (2) Due to
the assumption on the buffer size, no deadlock due to buffer overflow will occur; therefore every
processor entering the communication segment will eventually finish executing the send statement,
and move on to the receive statement. (3) Since the predicates for the send and receive statements
are arranged in such a way that for every message sent out to the network, there is a receiving
statement matching it (Section 4.2), every receive statement will terminate with received data.
Therefore, the the Nth communication segment eventually terminates, and so the program also
terminates.

5 Summary

In this paper we consider generating a program with explicit communication commands from a
program for shared-memory multiprocessors (called an intermediate program) based on a set of
standard data partition strategies. The shared-memory references of the intermediate program are
translated to either local memory accesses or inter-processor communication. These references,
depending on their syntactic patterns, are matched with a library of aggregate communication
primitives. Based on a communication metric that captures the cost of inter-processor communi-
cation, communication primitives with lowest cost will be chosen. We use a stylized SPMD target
program form for incorporating communication commands together with the computation part of
the program. For a communication between two processors, matched send and receive pairs must
be correctly synchronized and sequenced in such a way that no deadlock is generated.
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