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ABSTRACY
Tterative Methods for Large, Sparse, Nonsymmetiric Systems
of Linear Equations
Howard C. Elmen

Yale University, 1982

In this dissertation, we consider iterative methods for solving
large, sparse, nonsingular, nonsymmetric systems of linear equationms.
Such systems occur frequently in scientific computing, as in the
discretization of non—self-adjoint elliptic partiel differential
equations. TUntil recently, few iterative methods were of practical use
for solving nonsymmetric systems. We give an overview of recent
developments in iterative methods for solving such systems, present now
convergence results for a subset of these methods, end examime the

performance of the methods in a set of numerical experiments.

Most of the techniques that we consider are similar in form to the
conjugate gradient method for symmetric, positive-defimite problems.
They choose solution iterates from a Krylov space based on the
coefficient matrix, and require no a priori estimates of scalar
parameters. We show how these methods have been developed from the
minimization and orthogomality properties exhibited by the conjugate

gradient method, and we present new theoretical results that show that

some of them are convergent for problems where the coefficient matrix
has positive—definite symmetric part. We compare these methods with
several alternatives, including the conjugate gradient method applied to
the normal equations and the nonsymmetric Chebyshev algorithm, and we

introduce a hybrid gradient/Chebyshev method.

Wo also consider the use of preconditioning in conjunction with
these techniques. We discuss several preconditionings besed on the
incomplete factorization of the coefficient matrix. For two-cyclic
problems, we oxamine the construction of a redeced linear system. For
discretized non-self-adjoint elliptic problems, we consider fast direct
mothods as preconditionings and show that the convergence of severel
iterative methods with these preconditionings is independent of mesh

size.

Finally, we examine the performance of various combinations of
iterative methods and preconditionings in computing the numerical
solution of some non—self-adjoint elliptic partial differential

equations.
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CHAPTER 1

Introduction

In this dissertation, we consider iterative methods for solving

linear systems of the form
Ax=1f, (1.1)

where A is a large, sparse, nonsingnlar, nonsymmetric matrix of order N.
Such systems arise often in scientific compnting, and their solution

fregnently requires a large amount of numerical compntation,

1.1 Background

Technigues for solving linear systems are classified as either
direct methods or iterative methods., In the absence of roundoff error,
direct methods compnte the exact solution x := s with a finite number
of numerical operations. Iterative methods compute a segmnence of

approximate solutions that converge to the exact soluntion.

Direct methods generally use some form of Ganssian
elimination [41]., When the rows of the matrix A are ordered

appropriately, A is factored into the produmect

A=L1LT7T,

where L is a lower triangnlar matrixr and U is an upper trisnmgular

matrix. The solntion is them computed by solving successively
Ly=f and Tx=y3.

These methods szre most snitable for solving dense systems and densely
packed sparse systems (snch as banded systems), but they have drawbacks

that limit their msefulness for genmeral sparse systems,

The main difficulties stem from the fact that the factors L and T
tend to have meny more nonzeros tham the coefficient matrix A. Thus,
more sterage is required for the factors than for the original matrix,
and the storage regnirements may exceed the resources of any given
computing enviromment. The number of arithmetic operations needed to
compnte the factorization, while mnot &s serions a limitation on the size
of problems, can alsc become larger then is desirable. Although
progress has been made in the development of orderings for the nnknowns
that decreass the complexity of direct methods for solving sparse
problems [32, 58, 59, 661, many large sparse problems cennot be solved

by direct methods en present—day computers.

Tterative methods [38, 73, 78] compute a sequence of approximate

solutions (xi] to x by an algorithm of the form

T4 = Fi(xo,...,xi) B



where x, is an arbitrary imitial guess. Fi may be linear or nmonlinmear;
typically, it consists of & small number of matrix—vector products,
scalar-vector products, inmer products, and vector additioms. Since
matrix—vector products are relatively inoxpensive for sparse problems,
iterative methods tend to have low computational cost per iteratiom.
Dsuelly just a small number (independent of i) of vectors of lemgth N
must be stored in order to compute Tiv1e Thus, the storage requirements
depend essentially on the number of nmonzeros in A, and are lewer than

those of direct methods.

In order to be effective, an iterative method must comverge
rapidly. Many iterative methods require the estimate of scalar
parameters (for example, the extreme eigenvalues of A) for fast
convergence. Such methods include the successive over—relaxationm (SOR),
Chebyshev, and alternating direction implicit (ADI) methods
(see [73, 781}, and the strongly implicit procedure (SIP) [68]. The
parameters can sometimes be estimated dynamically during the early
stages of the iterative procedure [38, 78], but in gemeral the need for
parameter estimates is a drawback of iterative methods. Moreover, this
problem is more difficult for nonsymmetric problems than for symmetric,

positive—definite omes [78].

In contrast, the conjugate gradient method is an iterative

procedure for solving symmetric, positive-definite systems that requires

no estimates of scalar parameters, and in exact zrithmetic comnverges in
at most N steps. Moreover, CG is in some sense optimal over a class of
iterative methods, in that the spproximate solntién X computed at each
step minimizes a certain norm of the error over a translate of an
j-dimensional subspace. At the same time, CG is relatively inexpensive
per step, These properties make CG more robust, easier to implement,
and more rapidly convergent than other iterative methods for solving

symmetric, positive—definite problems {4, 12, 15, 40, 56].

The convergence of some of these methods (most notably, the
Chebyshev method and CG) can be speeded by preconditioning techniques.

Roughly speaking, preconditioning comsists of solving a problem
| £ (1.2)

that is equivalent to (1.1), where Q is an approximation of A so that
(1.2) is in some semse "easier” to solve tham (1.,1). Preconditionings
that have been effective for symmetric, positive—definite systems
include the incomplete factorization of A [50, 51], the modified
incomplete factorization of A [19, 351, the SSOR preconditioming 78],
and, for linear systems arising from elliptic partial differential
equations, fast direct methods [6, 7; 14, 18, 70] and reduced

systems [12, 571.



1.2 Iterative Methods for Nonsymmetric Problems

Although any iterative method can be formally applied to
nonsymmetric problems, in most cases there is mo guarantee that the
sequence {xil will converge to the sclution. We now discmss the recent
progress made in methods that are rigorously applicable to nmonsymmetriec

problems.

DUntil recently, the omnly iterative method known to converge for
general nonsymmetric problems was the comjugate gradient method applied

to the normal equations [40]

ATax = aTs .

The drawback of this techmigue is that, while the coefficient matrix is
T

symmetric and positive—definite, the convergence rate depends on A"A

rather than A, When A is symmetric and positive-definite, convergence

tende to be significantly slower than when CG is applied directly to

The first gradient method for nonsymmetric problems that avoided
the uwse of the normal equations was the gemeralized conjugate gradient
method (GCG), introduced by Concus and Golub [13] and Widlund [75].
This method is applicable to matrices of the form A= I — R, where R is
skew—symmetric, although it can be msed with preconditioning to solve

more general problems.

A large collection of CG-like methods for more gemeral problems

that share a common heuristic has been developed by Axelsson [2],
Eisenstat, Elman, and Schultz [22], Jes {431, Saad [60], Vinsome [74],
and Young and Jea [80, 81]. Each of these methods originates from a
technique that computes x; s0 that some condition (such as norm
minimization or orthogonality) relative to an i~dimensional subspace is
imposed. Such conditions are imposed inexpensively by CG in the
symmetric, positive—definite case, but the cost-for nonsymmetric
problems increases with each iteratiom, The heuristic for cutting
expenses is to relax the condition, forcing it to hold omly with respect
to a k~dimensional space (for some fixed k) at each step, The resulting
methods have fixed computational cost per step. We have shown that some
of these "truncated” methods are convergent whenm the symmetric part of A

is positive-definite [22]. We present these results in Chapters 5 — 6.

Another gemeralizetion of CG is the biconjugate gradient method,
proposed by Fletcher [28]. This methed is related to the Lanczos
biorthogonalizaticon method for nonsymmetric eigenvalue problems [76] and

hes been examined by several sauthors (ses [42, 53, 61, 77, 80]).

Foremost among the methods not inspired by the conjugate gradient
method is the adaptive Chebyshev algorithm developed by
Manteuffel [46, 48, 49]. Like the Chebyshev method for symmetric,
positive—definite problems, it requires estimates of the extreme
eigenvalues of the coefficient matrix., The problem of computing these

estimates is more difficult for nonsymmetric matrices, in part becaunse



the eigenvalues may be complex. Manteunffel’s method includes an
adaptive procedure for computing soch estimates based on information

acquired doring the iteratiom.

Gey [31} has considered Broyden's methed [101, a quasi—Newtom
method for solving nonlinear equations, as & technique for sclving
linear systems. He showed that this method compntes the exact solotion
to ponsingular linear problems in at most 2N steps. Further analysis of
this method has been done by Gerber and Luk [33]1. Tn its nsual form,
the method builds s sequence of approximations to the inverse of A,
These matrices are dense, so that the usual formulation is not suitable
for sparse problems, However, Engleman, Strang, and Bathe [26] have
observed that these matrices can effectively be reconstrncted at each

step by & sequence of inner products.

The efficiency of these iterative methods can alsc enhanced by
preconditioning techniques. Most preconditioning technigues for
symmetric, positive—definite problems, including incomplete
factorizations [23, 24, 361, fast direct methods, and reduced systems,
extend naturally to nonsymmetric problems. We discuss these ideas in

Chapter 10,

1,3 Outline of the Dissertation

In this dissertation, we survey most of these‘methods for solving
nonsymmetric problems, present new theoretical results on cenvergence
properties snd interrelationships amoug the methods, and describe their
behavior in a set of numerical tests. The emphasis is on CG-like

methods and preconditionings that can be used with them.

In Chapter 2, we establish definitions aud conventions of notation

and describe a sample problem used to test the methods presented.

In Chapter 3, we review the conjugate gradient method and a relsated
technique, the conjugate residoal method, for symmetric, positive—
definite problems., We discuss error bounds for these me thods and
highlight their properties of minimizatiou and orthogonality and their
relationship to the symmetric Lanczos algorithm [76] as three qualities

that have been gemeralized to CG-like methods for nonsymmetric problems.

In Chapter 4, we discuss the conjngate gradient method applied to
the normal eqnations, We present an error bound that illustrates the
limitation of this technique and give a bound for the condition number

of ATA that introduces a class of problems for which it may be snitable.

In Chapters 5 and 6, we discuss a class of CG-like methods for
nonsymmetric problems that generalize the minimization properties of CG.
These include Orthomin [74], and methods introduced by Axelsson [2] and

Young and Jea [80, 81]. We present error bounds that show that most of



these methods are convergent for problems with positive—definite
symmetric part. In Chapter 7, we discuss a set of CG-like methods for
nonsymmetric problems based on the orthogonality property and the
relationship with the Lanczos method. These inclnde GCG [13, 751,
Orthores [81], and Saad’s projection methods [601. We give error bounds

for the "untruncated” versions of these techniques.

In Chapter 8, we describe several techmiques for sparse problems
that were not inspired by the conjugate gradieut method. These include
Manteuffel’s adaptive Chebyshev method [46, 48, 49] and the versiom of
Broyden’s method developed for linear problems with sparse coefficient
matrices [26]. The adaptive Chebyshev technigue requires an estimate of
the eigeuvalues of the coefficlent matrix, and it may converge slowly
(or even diverge) until its adaptive procedure provides good estimates.
To overcome this difficulty, we introduce several hybrid methods in
which some of the CG—1like methods are used to compute estimates of the

eigenvalues of A prior to execution of the Chebyshev method.

In Chapter 9, we discuss the issuves associated with preconditioning
and present preconditioned versions of most of the iterative methods
discussed., In Chapter 10, we survey some preconditioning techniques.

We describe the incomplete [50, 51] and modified imcomplete [19, 35, 36]
factorizations of the coefficient matrix and the SSOR
preconditioning [78]. For discretized elliptic problems, we considerx

the use of separable approximations of the coefficient matrix as

10

preconditionings for which fast direct methods can be nsed [18, 701; we
show that the convergence of several iterative methods with these
preconditionings is indepeudent of mesh size. For two-cyclic problems,
we consider the use of cyclic reduction to produce an alternative limear
system of smaller order (e reduced system), to which any of the

previously described solution technigues can be applied.

Finally, in Chapter 11, we describe the performance of the various
iterative methods and preconditionings in computing the numerical
solution of some non—self-adjoint elliﬁtic partiel differential
equations, end in Chapter 12, we summarize onr observationms and discuss

issnes for further research.






CHAPIER 2

Preliminaries

2.1 Introduotion

In this chapter, we discuss some conventions used throughout the
dissertation. In Seetion 2.2, we describe the mathematical notatien and
some conventions that we unse for describing algorithms, In Section 2.3,
we describe a model problem used to test the numerical methods

presented.

2.2 Notation

Given a square matrix A, let o(A) denote the set of eigemvalues of
A, and let A{A) denote any eigenvalue of A. The eigenvalue A{A) with

smallest (respectively largest) absolute value is denoted by lm (A)

in

(respectively lmnx(A)). The spectrel radius of A, p(A), is defined to

be llmax(A)I' If A is nonsingular, them the conditiom number of A is

defined to be

= -1
£¢a) := (Al s,

g, 1
Tf A is symmetric, then K(A) = AR B
min

11

12

T
+
The symmetric part of A is given by M := AZA ., and the skew—
T
symmetric part by R := - éié—. Thus, A = M - R, The Jordan canonicel

form for A is denoted by J := T AT,

If A is symmetric and positive—definite, then the A-norm of a

vector v is defined to be

HVHA t= (v.Av)l'i2 .

Given a set of vectors S8 = (vl,...,vi}. let (vl,...,vi) denote the
spece spanned by S, If v is some vector and i is a nonnegative integer,

then
<v.Av,....Aiv)
is said to be a Erylov space based on A,
The unit vectors in E™ are demoted by ey, where

=8,

[e,] T

j 1$4,j{m,

and sij is the Dirac delta function, We will also have occasion to
allow the indices of o, to begin at i = 0 {so that, for example, {°i]?=0

span !F+1).

The algorithms that we consider in this dissertation are iterative

methods for solving linear systems of the form

Ax=1f,
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where A is a square matrix. Whenever we present am algorithm, we will
describe its work per step and storage requirements. We measure the
work by the number of real (i.e. floating point) moltiplications end
divisions, with both operations referred to as “multiplications.” Most
of the methods require matrix—vector products of the form Av. Since the
number of mmltiplications in this operation depends on the number of
nonzercs in A, we count it separately. We denote the cost of a matrix-
vector product by mv. All of the algorithms depend explicitly on A and
f, s0 we omit any storage required for these objects from the storage

count,

For all the algorithms that we consider, the iterate x, has the

form
o= x5 + s (A (xxp)

where 3; is a real polynomial of degree at most i such that si(O) =0.

Equivalently, the residual ry t= f — Ax; bhas the form

;= g (Ary , (2.1

where G; is a real polynomial of degree at most i and qi(O} =1, We
denote the set of these i-degree polynomials (qi} by Pi' and we call any

algorithm that satisfies (2.1} a polynomial-based method.

14

2,3 A Sample Problem
An important application of the methods of this dissertation is the
numerical soletion of elliptic partial differential equnations. A

prototypicel problem in two dimensions is the followinmg:

= (Buy), - (Cod + Duy + (Du), + Eng + (En) + Fu= G
in 0 CR?, ‘ (2.2)

ua=HR on 041 ,

where @ is a rectangular domain, B(x,¥y), C(x,y), D{(z.y), E{x,y), F{x,¥).

and G(x,y) are functions defined on 2, and B, C > 0, F 3 0 on O,

If (2.2) is discretized by the five—point operator on a uniform
o x u grid, then the result is a system of linear equetioms
Az=f
of order N = nf. TIf D(x,y) = E{x,y) = 0, then (2.2) is self-adjoint snd

A is & symmetric matrix, Otherwise, (2.2) is non—self-adjoint and A is

nonsymmetric.
If
B = B(x) , c=cy , D = D(x} ,
E = E(y) , B = Fl(x) + Fz(y) ’

then (2.2) is said to be 2 separable problem. We will say that the
discrete operator A is separable if the corresponding continuous

operator is separable.



CHAPTER 3

The Cenjugate Gradient and Conjugste Residual Methods

3.1 Introdeotion

Consider the system of linear equations

Ax=1f, (3.1)

where A is & symmetric, positive—definite matrix of order N, In this
chapter, we review the conjugate gradient (CG) and conjugate residual
(CR) methods for solving (3.1). These methods are known to be effective
for solvirg large sparse problems [4, 12, 15, 40, 56] and have motivated
efforts to develop similar methods that are applicable to nonsymmetric

systems. OCur purpose here is to survey their most important properties.

In Sectior 3,2, we present several formulations of the conjugate
gradient method and outline some of its properties and error bounds., Inm

Sectior 3.3, we present the comjugate residoal method.

15
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3.2 The Conjugate Gradioent Method

The conjugate gradient method {40) is an iterative procedure that
computes a sequence of approximate solutions (xi] to (3.1), starting
with an arbitrary initial guess I In the absence of roundoff error,
the exact solution x = A_lf is obtained in at most N steps, so that CG
can be viewed 85 a direct method, In practice, though, a sufficiently
accurete solution is usually obtained in far fewer steps, so that CG is

treated as an iterative method [56].

CG is a polynomial-based alguritﬁm with a strong minimizetion
property, Let {ri 1= f — Axi} denote the residuals of the CG iterates,

and consider the i—dimensional Krylov space

i-1
Si 1= (ro,Aro.....A r0> . (3.2)

At each step, CG computes the point X, 8 xg + si that minimizes the

error functional
/2 _
E (x)) = (x-x,Alxx)) " ° = ezl o
Because of the form of Si, r; can be expressed as
T, = q;(80rg

where q; ¢ Py, 06 is thus the polynomial-based algorithm that is
optimal with respect to Bl' Hence, it converges at least as rapidly as
other polynomial-based methods, such as Richardson’s method and the

Chebyshey methed [73, 78]. Moreover, unlike most other iterative
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methods (see [73, 78}), CG does not require the estimation of scalar

parameters for fast convergenmce.

There ere several mathematically equivalent formulations of CG
(see [12, 25, 54, 56]), The most efficient onme with respect to number

of operations per step is the following:

Algorithm 3.1: The conjugate gradient method.

Choose xq .

Set r, = f - Ax

0 [

Set po = ro .
FOR i = 0 STEP 1 UNTIL Comvergence DO

(ri.ri)
a, = — 1
i (py.p))
xi"‘l = xi + Iipi

141 T Ty T 2ghpy
Y
i [EER

Pie1 = Tyyq *+ by0y

The work per iteration is 5N multiplications plus one matrix—
vector product, Like most iterative methods, CG has modest

storage requirements. Storage is needed for four vectors of lemgth
N: x, r, p, and Ap, Also, CG does not actnally require an explicit
representation of A or f. The‘only reference to A is in the form

of & matrix-vector product Av, s¢ that a routine that performs this

18

operation is sufficient; the right—hend side f is used only to compute
To:
The steplength a

i in Algorithm 3,1 minimizes El(li+1) as a fuonction

of 8. and the directions (pi] are "A-orthogonal,” that is

(pyodp) =0 . i#].

Because of this particular choice of directions, the one~dimensional
minimization ectnally produces the minimum for E1 over x, +

<p0,...,pi) [12, 40], from which the optimality of CG follows.

The optimality of CG is the basis for error bounds. Using the ith

Chebyshev polyncmial [30] as a particular choice for 9,, ome can derive

h

the following bound on the error at the 1t step [4, 16]:

1 - VKGR 11
Bi{x;) £2 [—T—;—177!rx"] El(xo) . (3.3

Then an approximate upper bound on the number of iterations required to

make the relative error El(xi)lEl(xu) { e is [4]
i= [ % In % ] /XS . (3.4)

Moreover, CG automatically takes adventage of special distributions of
the eigenvalues of A. Stronger bounds are applicable, for example, if
most of the eigenvalues lie within an interval [a,p] but a smell number

of eigenvalues are much greater than B (see [41).

In addition to optimality, CG satisfies the Galerkin comdition
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(Ax;,v) = (£,v)  for all v & §; .
This is equivalent to the orthogonality relation for the residuals

(ri‘tj) =90, i¥3, {3.5)

which determines a second formulation of CG that relates it to other

iterative methods. Consider the iteration

Tier = Xgop Y 0ga (e txy T xg) (3.6)

where .= 0, and oy and w, ., are real scalars, This is a general form
for several iterative methods, imcluding the Chebyshev semi—iterative
method and the Richardson second—order method [73, 78]. For the

(:i'ri)

particular choices e, = T;:TI;;)' w, = 1, and

oy “’i“i _1
= {1 - o BT
ayg lry gl o
the residuals generated by (3.6) satisfy (3.5), end the resulting
algorithm is equivalent to CG [25]. This formulation, while more
expensive than Algorithm 3,1 E56], is of use in the development of

methods for nonsymmetric problems (see Chapter 7).

Both the optimality property and the Galerkin coandition
characterize CG in the class of polynomial-based methods. We state this

formally as follows (see [79], Sections 5 and 7, for a proof):

20

Theorem 3.2: The iterates gemerated by the comjugate gradient method

are uniquely determined by the following combinatioms of requirements:

r, = qi(A)ro , g e P, (polynomial-based)

and either
x, minimizes El ) {optimality)
or
(ri,rj) =0, 1#3j {orthogonality) .

A third formulation of CG shows its relation to the symmetric
Lanczos algorithm (see [54]). Let v, be a vector such thet llvlll2 =1,
and let e = 0, The Lamczos algorithm, which is of use in the
computation of eigenvalues of positive-definite matrices [761,

constructs an orthonormal basis for the Krylov space (vl,Avl,...,Ai—lvl)

as follows:

Av

%u”ﬂ= j_a“j_h“ﬂ' i<i. 3.7

where a; = (vj.Avj) and ﬂj+1 is chosen so that “vj+1"2 =1.

T,
0
Suppose now that vy = “;5“5. where r is the residual of some guess

Iy for the solution to {3.1)., Then (vl....,v1> is the Erylov space S
of (3.2), Hence, by Theorem 3.2, the point in Ty + (vl,...,vi> that
minimizes E; is the CG iterate x;. The coefficients of fvj];=1 that
determine 1, can be obtained by solving a symmetric tridiagomal linear

system of order i with coefficient matrix
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Tya= 0By oy Byl -

This observation is the basis for SYMMLQ, a genmeralization of CG
applicable to symmetric indefinite problems [54}. A similar idea has
been used to develop methods for nonsymmetric problems {see Chapter

7, [60, 61]).

In summary, the conjugate gradient method is a polynomial-based
iterative method for solving symmetric, positive-definite limear
problems that has the three properties of optimality, orthogomality, and
a conmection to the Lanczos algorithm, without regquiring parameter

estimates.

3.3 The Conjugate Residual Method

The conjugate residual method [67] is closely related to the
conjugate gradient method, differing mainly in the inmer product and
error functional associsted with it. CR is an iterative, polynomial-

based algorithm whose iterates fxll minimize the error functional

Byix,) i= (AGxp) Atz ) Y2 = lle-ax,ll

over the translated i—dimensional Erylov space

i-1
g t (ro,Aro,....A Ty -

Like OG, CR computes x in at most N steps and requires no parameter

estimates.
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The most efficient implementation of CR with respect to number of

operations per step is as follows:

Algorithm 3,3: The conjugate residual me thod.
Choose Xy -
Set Ty = f - Axo .
Set Py = Tp
FOR i = 0 STEP 1 UNTIL Convergence DO
(r .4z}

i (Api,Api)

41 = % toeypy

41 = T3~ 85hey

T il T
i (ri.Ati)
Pien = Tiap T B3Py

Apj,q = Aty + byAR; .

CR is slightly more expensive than CG. The work per loop is 6N
multiplications and ome matrixz-vector product. It regquires 5N storage

for x, £, p, Ap, and Ar.

The CR steplength a, minimizes Ez(xi+1) as o function of a;, and

the directions satisfy

(Api.Apj) =0, it

This choice of directions forces i1 to minimize Ez_over xq +
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(po,...,pi) [12]., Alternative formulations of CR based on {3.6) with a

Galerkin condition {25} end the Lamczos process {3.7) [54] also exist.

Brror bounds for the conjugate residual method are analogous to

those for €G. For example, the analogne of (3.3) is

1 - 1/{K(A i
Eyx;) £ 2 [ 1T+17 ] E,{xy) ,

so that
[jwmi]a®

is an approxrimate upper bonnd om the number of steps needed to make

By (x)/Ey(xg) £ &






CHAPTER 4

The Cornjugate Gradient Method Applied to the Normal Equations

Consider the system of linear equations

where A is & nonsingular, nonsymmetric matrix of order N. This problem

is equivalent to the normal equations

ATa x = AT, (4.1)

and to the related system

My =5, x=aTy . 4.2)

Since the coefficient matrices of (4.1) and (4.2) are symmetric and
positive—definite, a natural way to use (G to solve nonsymmetric
problems is to apply it to either of these two problems. In this

chapter, we consider the sdvantages and disadvantages of this approach,

When CG is used to solve {(4.,1), the iterate x; minimizes the

residual norm "rinz over the translated Krylov space

24
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T T,..T T,,i-1,T
X, + (A :o,(A A)A ro,_,_,(A A) A t0> .

We denote this method by CGNR, the conjugate gradient method applied to
the normal equations with minimom residnal [40]., Although ATa figures
in the development and anslysis of this method, it need not be formed

explicitly.

Algorithm 4,1: The conjugate gradient method applied to the uormal
equations {(CGNR).

Choose xo .
Compute T = - Axo .

Compute po = ATro .

FOR i = 0 STEP 1 UNTIL Convergence DO
T T
(A ri,A ri)
i (Ap;.Ap)

L]
!

iv1 T Tp Py
ie1 T Ty T 23APy

T
(ATr 41 AT 1)

T .T
(A ri,A ri)
T
Pieg = ATgyy + 00 -

‘C@ csn be implemented to solve (4.2) without reference to y or the

approximations [yi] of y. This implementation was proposed by
Hestenes [39] and is alsc known as Creig's method [27]. The iterste T

minimizes the error norm "x—xill2 over the translated Krylov space
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T,i-1
x, + (zg, (AADEg, ..., (A1) e

We demote this method by CGNE, the conjugate gradient method applied to
the normal equations with minimum error., Again, AAT need not be formed

explicitly.

Algorithm 4,2: Craig's method (CGNE).
Choose I, .

Compute T, = f- Axg .

Cozpute Py = ATro .

FOR i = 0 STEP 1 UNTIL Convergence DO

. - (ri.ri)
i (pi'Pi)
o TS B LY L
T T Ty T o4hey
(r1+1.ri+1)
b1=j——)——
Tyt

T
Piyg = ATy * ey .

We refer to CGNR and CGNE together as CGN, the conjugate gradient
methoed applied to the mormal equations., Feor both versions of CGN, the
work per loop is 5N multiplications plus two matriz-vector products. In
both cases, 4N storage is required for the vectors x, r, p, and Ap. ATr

car share storage with Ap.

Since a(ATA) = a(AAT). the convergence properties of the two
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algorithms are essentially the same. The only important difference is
in the norm minimized., Using (3.3) and the fact that I(ATA) = [(AAT) =

K(A)z, gn upper bound for the error at the ith step is

1 - 1/K(A) 4
E(xi) <2 [—I—:—I7irxj—] E(Xo) » (4,3)
where
lib-Ax, 1, for CGNR ,
E(xi) 1=
lx-x 1, for CGNE .

Hence, &n approximate mpper bound on the number of itersticns required

to make the relative error E(xi)lE(xo) e is

i=[iw?]rw. (4.4)

These bounds illustrate the mein drawback of CGN. The upper bound
(4.4) is larger by s facter of VE(A) than the analogous mumber for CG
spplied directly to a problem with symmetric, positive-definite
coefficient matrix {see (3.4)). This suggests that if A is poorly
conditioned, them the comvergence of CGN could be slow. Indeed, this
difficulty motivates our examination of the conjugate gradient—1like

methods described in subsequent chapters.

Novertheless, CGN may be suitable for some problems. The following
result bounds E(A)} in terms of the extreme eigenvalues of the symmetric
and skew—symmetric parts of A, end thereby suggests 2 class of problems

for which CGN may be suitable.
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Theorem 4,3: If the symmetric part M of A is positive—definite, then
T 2,
L 2 lmin(u) ’
T 2
A8 S [ag, 00+ pR) ] .
Hence,
p(R}
E(A) £ K(M} + IR (4.5)
min

Proof: Let S demote the unigue symmetric positive—definite square root

of M, i,e., S2 = M, Then

(ATAz,2) = (Ax,Ax) = (8(S - S !R)x,5(5 - §"1R)x)

= (s - S, (s - slwx) .
But for any real y,
(My,y) 2 A Oy, 7}
and
(Ry,y) =0,
so that

(WTax,x) 2 A , ) (S - s, (s - slmx)

A 00 [(53,50) - 2 (Bx,x) + (§ 'R, §7Ra))

AL () [Mx,x) + (87 Rx, 57 Ra)]
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Therefore,

T
Tyy = (A Ax,x) 2
l'm:hl(A A = :;3 zx,xi 2 lmin(m)

T
For the mpper bound om A (A A),

Ay (ATA) = HAIZ < [ty + RN, TP = Dap, 00 + p0 1 s

max

where we have used the fact that "Rﬂz p(R) since R is skew—symmetric

and hence normal [73].

Finslly, inequality (4.5) follows from the fact that

) =JVEaTy =

Q.E,D,

Thos, if M is not ill-conditioned and igig%i) is small, then E(A)
min

is small and CGN will converge repidly. We will return to this

observation in Section 10.4.






CHAPIER 5

@Generalizations of the Conjugate Residual Method I

5.1 Introduction

Consider the system of linear equations
Ax=1f, (5.1)

where A is a nonsymmetric metrix of crder N with positive-defimite
symmetric part, In this chapter we present a class of methods for
solving (5.1) that are modelled after the conjugate residual method and

that exhibit minimization properties like those of CG and CR.

Recall that for symmetric positive—definite problems, the comjugate
residoal method computes a segnence of approximate solutions by an

iteration of the form

b 4 + &

M1 TN Py

and the steplength a, minimizes E(x; ) i= “f—A(xi+‘ipi)“2 as a function

of a.. The direction vectors {pil are computed by & two—term recurrence

of the form

30
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Pyyg = Ty * 3Py o (5.2)

and they satisfy
(Api,Apj) =0, i#tj. (5.3)

As a result of the A?Arorthogonnlity (5.3), the choice of a, minimizes

“ti+1"2 over the translated Krylov space x, + (ro.Ato....,Airo).

Note that the bilinear form {v,w> := (Av,Aw) induces a norm even if
A is not symmetric. Thus, this type of iteration is a candidate for a
descent method for nonsymmetric problems. In this chapter, we consider
a class of descent methods for nonsymmetric problems that combine the CR
solution npdate with a modification of (5.2). The spproximate solution
obtained at each step minimizes the residuel norm over some subspace of

a Krylov space based om A,

In Sectiom 5.2, we present the methods end give an overview of
their properties. In Sections 5.3 and 5.4, we present convergence

proofs and error bounds.

5.2 Four Descent Methods
We comsider four methods that have the gemeral form given in

Algorithm 5.1.

The choice of li minimizes “ri+1ﬂ2 at each step, so that the
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Algorjthm 5.,1: Prototype for variational methods.
Choose I, .
Compute .= f - Axo .
Set po =1, .
FOR i = 0 STEP 1 UNTIL Convergence DG
(r,,Ap.)
. - Bk S (5.4)
(Api.Api)
Tieg T %yt 840y (5.5)
Tisg = g " ;AP (5.6)
Compute Piyy - (5.7

residual norms comprise a nonincreasing seqnence.. We wish to compute

directions [pi] that produce significant decreases in ("tlnzl, with as

little expense as possible,

In the nonsymmetric (positive-definite) case, a set of directions

that satisfy (5.3) cen be computed for uwse in Algorithm 5.1 s follows:

, (5.8)

1
= (i)
Piag =T * 2 P0Ry

3=0

L)

The two expressions for a, in Algorithms 3.3 and 5.1 are equivalent
(see Theorem 5.2), but we have found (5.4) to be less sensitive to
roundeff error.
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where

oD - - (Axi+1.Apj)

i (APj'APj) ifi. (5.9

We refer to the method given by Algorithm 5.1 and (5.8) — (5.9) as the
generalized conjngate residual method (GCR). Agein, “ri+1H2 is
minimized over 5+ (ro,Aro,....Airo), and GCR gives the exact solution

to {5.1) in at most N iterations (see Section 5.3).

The work per step and storage requirements of GCR may ge
prohibitively high when N is large. A modification of GCR that is
significently less expensive per step is derived by limiting the number
of direction vectors used to compute Piy1? gllowing only k (2 0)

directions., We consider the use of the most recently computed

directions {pj}}=i—k+1' with p, ;, chosen to be ATA.-—orthogonnl to these
vectors:
i
_ (i)
Piag = Tie1 * 2 b:'p (5.10)

e 437

[b;i))-defined as in (5.9).‘ We refer to this method, due to
Vinsome [74], as Orthomin(k) {see slso [80, 81I). Omly k direction

vectors need be saved. Both GCR and Orthomin(k) for k > 1 are

‘The first k directions [pj)k 1

=0 are computed by (5.8), as in GCR.
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mathematically equivalent to the conjugate residual method when A is

symmetric and pesitive-definite.

Another alternative is to restart GCR periodically: every ktl
iterations, the current iterate xj(k+1) is taken as the new starting
gness.. At most k direction vectors have to be saved, so that the
storage costs are the same as for Orcthomin(k). However, the cost per
iteration is lower, since in general fewer tham k directiom vectors are

used to compute p,.,. We refer to this restarted method as GCR(k).

For the special case k¥ = 0, Orthomin(k) and GCR(k) ere idemtical,

with

Piv1 = Tia1 -

This method, whichk we refer to as the minimum residnal method {MR), has
very modest work and storage requirements, and in the symmetric case
resembles the method of steepest descent {see [45]). Because of its

simplicity, we consider it separately from Orthomin{k) and GCR(L).

In Table 5-1, we summarize the work and storage costs (excluding

storage for A and f) of performing ome loop of each of the methods. We

*Here j is 8 connter for the number of restarts. The jth cycle of
GCR{k} produces the sequence of approximate solutions

j(k+1)
21D ey -

3s
| GCR | orthomin{k) | GCR(k) | M i

| Work/ | ((i+D+IN |  Gk+ON | ((/2)+N | 4N |

] Loep | + 1mw | + 1mv | + 1my |l +1mv |

| Storage | (2(i+2)+2)N | (2k+3)N | (2k+3)N | 3N |

Table 5~1t Work and storage requirements of ome loop of GCR and
variants.

assume that Ap is updated by

A; = Ar + i b(i)A
Pie1 141 i By
where j1 = 0 for GCR and i = max(0,i-k+1) for Orthomin(k). The storage

i 1+1
3 j=0-
For GCR, Ar can share storage with APi+1' The entries for Orthomin(k)

+
cost includes space for the vectors x, r, Ar, (Pj] =é, and [Apj}

correspond to the requirements after the kit iteration. The work given
for GCR(k) is the average over k+l iterations, The cost of MR is the

gsame as the cost of Orthomin{(0) or GCR(O).‘

.Several other implementations are possible., In GCR and in
Orthomin(k) and GCR{k} with large k, it may bo cheaper to compute Api+1

by & matrix~vector product. With a third matrix-vector prodact, b;i)

can be computed as —(ATAr ,0,}/{Ap,,Ap.), and the previous {Ap.} need
i+1°%] f it | 3
not be saved.
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5.3 Convergence of GCR and GCR(k)

In this section, we give convergence proofs for GCR and GCR(X)., We
show that GCR iz optimal among polynomisl—-based algorithms with respect
to the norm of the residual and that GCR gives the exact solntion in at

most N iterations, and we presemt error bounds for GCR and GCR(k).

We first establish a set of relations among the vectors generated
by GCR. (BSee [40] for an analogous result for the conjugate gradient

method.)

Theorem 5,2: If lxi}, [ri}, and {pi] are the iterates genmerated by GCR

in solving the linear system (5.1}, then the following relations hold:

(APi.Apj) =0, 14j; (5.11)
(ri'APj) =0, 15 {5.,12)
(ri,Api) = (ri.Axi) H {5.13)
(ri,Arj) =0, 1) {(5.14)
(py.ac) = 0, 1§ (5.15)
(Ap,,Ar.) = (Ap,,4p)) ; (5.16)
(rj’Api) = (tO'Api) , jLi; (5.17)
Bgrerespy) = (Fguhrgee.n, ATTgd = Crgauiinryd (5.18)
if r; # 0, then Py £0; (5.19)
x, ., minimizes Elw) = ls-awll, over the affine space

T, + (po....,pl) . (5.20)

Proof: The directions [pil are chosen so that (5.11) holds.
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Relation (5.12) is proved by induction em i, It is vacunously true for
i =0, Assome that it holds for i ¢ t. Then, using (5.6) and taking

the inner prodnct with Apj,
(rt+1,Apj) = (rt.Apj) - nt(Apt.Apj) .

If j < t, then the terms on the right-hand side are zero by the
induction hypothesis and (5.11). If j = t, then the right—hand side is

zerc by the definition of L Hence (5.12) holds for i = t+l.

For (5.13), by premultiplying (5.8) by A and tsking the imner product

with L

i-1

_ T L (1-1)
(ri,Api) = (ri.Ari) + jib bj (r

i'Apj) = (ti,Ari) B
since all the terms in the sum are zero by (5.12).
To prove (5.14), we rewrite (5.8) as

j-1
r

- (j-1)
il T tio by Py .

Premnltiplying by A and taking the inner product with T, 1> .

BGen
(rj A = (r;.4p)) - tEO LIS CHYY % RN

by (5.12).
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Similarly, for (5.15) and {5.16),

o e = (hphp) - 3 b D ap g )
ByoAr,) = (Ap,hpy 2o o P, b,
(Api,Api) ’ for j =1
0 P for j ¢ 1,
by (5.11).

Relation (5.17) is proved by indmctiom om j, for j £ i. It is trivially

true when j = 0, Assume that it holds for j = t ¢ i, Using (5.6},
(r,.q-Ap;) = (xp.Ap;) — a (Ap,,Ap) = (z,4p))
by the induction hypothesis and (5.11}.

Relation {5.18) is proved by induction on i. The three spaces are
identical when i = 0. Assume that they are identical for i ¢ t. Then

t
) jop C<xgreeertyyy?. But by (5.8),

t
+ 3 b(t)Pj s

Poyg =T
[ 0 SN

so that <p0""'Pt+1> is a subspace of (ro,...,rt+1). By (5.11), the

t+1

=0 are linearly independent, Hence, the dimension of

vectors fpj}

(ro,....rt+l) is greater than or equal te t+l, which implies that

+:
{rj};=3 are linearly independent and (PO""‘pt+1> = (rO"“’rt+1>‘

Similarly, by (5.6} and (5.8},
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t
a (t)
Piyp = Ty~ aghpy + E bj P, .
3=0
By the induction hypothesis, r , Ap,, end {pj];=0 e (fonAIO.....At+1r0>'

so that (PO""'Pt+1> is & subspace of (ro,Aro,...,At+lr0>. Again, the

two spaces are equal becamse the {pj] are lineerly independent.

The proof of (5.19) depends on the fact that the symmetric part M of A

is positive—definite., If T # 0, them by (5.13),
(ri,Api) = (ri,A:i) = (ri.Hri) >o,

so that (ri’Api) # 0, whence p; # 0.

For the proof of (5.20), note that

i
x1+1 = x4 2 ‘jpj .

+
j=0

Thus, E(’i+1)2 is & quadratic functional in a = (lo,.,,,ui)T. Indeed,

using (5.11) to simplify the quadratic term,

E(x, 2

i
_ _ 3 2
)= Iz, jioajApj"z

i,
= (zg.xp) ~ Lotgtany-dey)

i
>
ijoﬂj(ro,.&pj) + ;

Thus, E{w) is minimized over L (po,_,,,pi) when

. - (ro.Apj) ) (rj.Apj)
3 (Apj.Apj) (Apj,Apj)
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by (5.17).

Q.B.D,
Corollary 5,3: GCR gives the exact solution to (5.1) in at most N
iterations.
Proof: If ;= 0 for some i { N-1, then Axi = f and the assertiom is
proved. Tf T # 0 for all 1 { N-1, then Py # 0 for all i { N-1 by
(5.19). By (5.11), fpilf;é are linearly independernt, so that
<Po""‘PN-1) = RN. Hence, by (5.20), N minimizes the functional E
over IN, i.e., N is the solutica to the system.

Q.E.D.

This result does not give any insight into how close I, is to the

solution of (5.1) for i { N. We now derive an error bound for GCR that
1

proves that GCR converges as an iterative method. Recall that J = T AT
is the Jordan canonical form of A,
Theorem 5,4: If {til is the sequence of residuzls gemerated by GCR,
then
2
2 (M)
i;
Bz, ¢ min Hag(mlly ey ¢ 1 - 22— ]2 lggll, . (5.2
i%2 P i 2 "to"2 2 (ATA) o'z
qi LR max
Hence, GCR converges, Jf A has a complete set of eigenvectors, them
Ilrill2 S E(T) My gl (5.22)
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¥, := min max |q1(l)| . . (5.23)
9 & Py 2 & o(A)

Moreover, if A is normal, then

5.24
= il, < uy Nsghly . (5.24)

Proof: By (5.18), the residoals {ti] generated by GCR are of the form

T, = qi(A)tO for some q; & P;. By (5.20),

Be ll, = . min  Bg (M)rl, . (5.25)

18P

The first inequality of (5.21) is an immediate consequence of {5.25).

To prove the second ineguality note that ql(z) =1 +az e Pl' and

i
min la (), ¢ Bay (a1 < Mgy (a)lly

1 8%

But
(F+aA)x, (I+aA)x)
llay cAYH2 = max {
1 E— Tex
{x,Ax) 2 (Ax,Ax)}
=-m:; [1 + 2a I + =z .
x

Moréover,

(Ax,Ax) _ (x,ATAx)
i 7 B

X,x X, X

T
L hpaytA A,

and, vsing the positive-definiteness of M,
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(x,Ax) _ (x,Mx)
(x,x})  (x,x) 2 kmin(u) >0.

Hence, if a < 0,

2 T 2
!Iqlm)ll2 €142, a + A, (AAa” .

Ao (M)
This expression is minimized by a = — -—Eiz-ir—, and with this choice of
A (ATA)
max
a,
2
A, (M)
in
“ql(‘U“Z < [1 - E_T_]l./z
A (ATA)
max

which concludes the proof of (5,21).
To prove (5.22), we rewrite (5.25) as

- -1
b, = min [T q,(3) T "1,
9; e Py

~1
Clrlly Iy, min la (0, liegl, .
9 ¢ Pi

Since A has a complete set of eigenvectors, J is diagonal, so that

min “qi(J’)||2 = min max Iqi(l)l .
9; 8 Py 9, s P, A o(A)

whence (5.22) follows.

If A is normal, then T can be chosen to be an orthonormal matrix, which

proves (5.24).

@.E.D.
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Since the symmetric part of A is positive-definite, the spectrum of
A lies in the open right half of the complex plane (see [41])}. Thus,

the analysis of Manteuffel [49] shows that min ﬂqi(A)ll2 and M, approach
q. e P,
i i

zero as i goes to infimity, which also implies that GCR coanverges.

Theorem 5.4 can also be used to establish an error bound for

GCR(Kk).

Corollary 5,5: If {tll is the sequence of residuals generated by

GCR(k), then

3
e anylly €1 min lay, 0l Hegl, (5.26)
9p+1 € Pray
so that
2
AL (M)
i

e,y < [1 - —'L"—-T—A;]” 2 gl . (5.27)

lﬂﬂX(A

Hence, GCR(k) converges. Moreover, if A has a complete set of

eigenvectors, then
J
ey eyl € LK m P olisgl, (5.28)
and if A is normal, then

J
[ firyll, (5.29)

j(k+1)u2 L Oy

Proof: Assertions (5.26), {5.28), and (5.29) follow from Theorem 5.4.
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To prove (5.27), let i = jk + t where 0 { t { k. Then

A (M)
Br o ¢ f1 -~ =2 290 g
jEH2 [ A ATA)] jx'2
X

by (5.21), and

2

AL (M)

min /2

"rjkﬂz £ {1 - —-————T——]j "r0"2 f
.lmnx(A 4

by (5.26) and the second inequality of (5.21).

Q.E.D,

Finally, note that the requirement that M be positive—definite is
necessary. If M is indefinite, then for some i <{ N, (p.]; o m8Y be
I
j i
linearly dependent while {A;r01j=0 are independent, The result is that
T, # 0, but a; = 0 and Piyq = 0, so that GCR breaks down. This occurs,

for example, in the following symmetric indefinite system [B1]:

| O 1|« - 1 3 | . (5.30)

¥With initial guess Xy = (1, Z)T, GCR breaks down on the first iteration.
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5.4 Convergence of Orthomin(k)

TIn this section, we present comnvergence results for Orthomin(k} and
an elternative error bound for GCR and GCR(k). We slso present an
analysis of Orthomin(k) in the special case when the symmetric part of A

is the identity matrix.

The vectors gemerated by Orthoemin(k) satisfy a set of relations

gnelogous to Theorem 5.2.

Theorem 5,6: The iterates [xi!, {ri]._snd {pil generated by Orthomin(k)

satisfy the reletions:

(p hpy) =0, j=dk..ndl, d2k; (5.31)
(r.4p)) =0, j=ikl..,il, i)kl (5.32}
(rshp) = (rg,A2) (5.33)
(i, Ar; () =0 (5.34)
(Ap,Ar.) = (Apy.ap,) (5.35)
(rj.hpy) = (rygohpy) » 5= Fheead i2k; (5.36)
if T # 0, then p, 0 ; (5.37)

for 1 2 k, x minimizes E(w) over the affine space

i+l

Lt (Pyogr-eesPy? - (5.38)

¥e now prove that Orthomin{k) converges. Since the analysis
applies as well to GCR, GCR(k), end MR, we state the results for all

four methods. We first prove two preliminary restlts:
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Lemma 5,7: The direction vectors {pi} and the resideals [ri) generated

by GCR, Orthomin(k), GCR{k), and MR satisfy

(APi,Api) < (Ari.Ari) . (5.39)

Proof: The direstion vectors are given by
- T 4 (i-1)
Py=rp v bj Py -

where the limits of the sum are the same as in (5.8) for GCR and GCR(k),

end (5.10) for Orthomin{k). Therefore, by the A;hrutthogonality of the

{p;} and the definitiom of hji_l).

B = (i-1) < . (i-1),2
(APiJApi) = (Ari.Ari) +2 2 hj (Ati,Apj) + 2 (bj ) (Apj.Apj)
_ Az, app?
= U de) -2 o dy)
37
£ (Ari.Ari)
0.E.D,
Lemma 5.8: For any real x # 0,
Ao (M)
(z,Ax) min
(Ax, Ax) (5.40)

s
hpin 0RO + p(R)

Proof: Letting v = Ax,

-1 -1, .~T -1,,~T
(x,Ax) _ (y,;A ¥) _ 1 (y.(A "+A ")y} A T+A
ek - Gy "2 59 2 hy ) .
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i ffi bound X (A_].-M—T
Thus, it su ces to boun mi )

2 ). Consider the identity

PR R 10 5 § (5.41)

which holds for any nonsingular matrices X and ¥, provided that X+Y is

alsc nonsingnlar, With X = 2A and ¥ = 2AT. {5.41) leads to

teeaTan a1 = to - &D vle - Tt

]

o+ 2 imt L

For any x ¥ 0,

({1 + R 1R)x) = (x,Mx) + (Rx, W !Bz} > 0,

-1 ,-T

R is positive—definite. Therefore é——%£—~ is positive-

so that M + RTH—]'

definite and

N (A_1+A_T) 1
min® 2 A (0 + RIIR)
max

But

A o+ RIIR) = maz |
max

(x,Mx) (x.nTu‘lnx)]
x#0 * °x

(zx,x T

(Re, W Rx) (Rx,Rx)

< lmnx(m + o mex (Rx, Rx) (x,x)

x#0,Rx#0

1~

~1, (oT
Ao (M) ¥ A () 7RI,

]

2
Apag (M) + p(R) llmin(u) .
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AT 1
’ 215
A 00 + p( 2,

The following result shows that Or

(M)

Q.E.D.

thomin(k) converges and provides

another error bound for GCR, GCR(k), and MR.

Theorem 5,9: If {ri] is the sequence of residumls generated by GCR,

Orthomin(k), GCR(k), or MR, then

A {M)
e ll, ¢ [1 - 22— /2 q 4
i'2 [ 2 (ATA)] 02

max

and

2
1min(M)

e, < [1 -
iz 2
lmin("“'lux(u) + p(R)

Proof: By (5.4) and {5.6),

(5.42)

]2 tegh, . (5.43)

2 _ _ 2
fialfly = (gor) - 20,(r0h0,) + 6 (Apy.Apy)

. “2 (ri.Api)2 (ri,Apl)2
= lir -2 +
i'2 (Ap;,Ap,) ~ (Ap;.apy)
2 (ri,Api)2
= |le, Il
i'2

- (e ho)) *
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Therefore,
2
ﬂri+1H2 o (z;,Ap) (ry.4p)) 1o {r. A1) (ry,Ar)
e, 2 Gor) GoLhp) 7 7 Grprp (A k)

by (5.13)/(5.33) and Lemma 5.7. But

(ri.Ari)
(ri,ri) 2 lnin(u) 4
and
(rl'AIi) (r o)) (ri.Ari)

A'minu”

(Ari,Ari) (ri.AThri) (ri,ri)

so that

I [ min(u)z ]1/2 e,
e, . M, ¢ 1 - ———=— r
it172 A (ATA) i

max

which proves (5.42). By Lemma 5.8,

(2,,Ar)) Agga D

=,
;'mnx (A A)

2 *

> ,
(Ar ,Ar.) = 2
i i Amln(u)xm’x(u) + p{R)

so that

P

min

e, 0, < [2 -

if2
12 e,

AL GO, (0) + p(R)
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which proves (5.43),

0.E.D.

In general, the two error bonnds given in Theorem 5.9 are not

comparable, They are equal when M = I, and (5.43) is stronger when

A (A)-A (a)
R =0, When E = 0, the constent [—535————E35———]l/2 in (5,43)
A (A)
max
S (A)-2 (a)
resembles the constant [ nax min ]ll2 in the error bound for the
Apax AV L (8)

steepest descent method (see [45]), Thus, we believe that the bounds in

Theorem 5.9 are not strict for k » 1, See Table 11-8 for a comparison
"'i+1“2
lie M,

If M = I, then Orthomin(1l) is equivalent to GCR, and we can improve

of these bounds with observed maximum values of

the error bounds of Theorem 5.4 and Theorem 5.9.

Theorem 5,10: If A= I — R with R skew-symmetric, then Orthomin(l) is
equivalent to GCR., Moreover, the residuals {rll generated by

Orthomin(1l) satisfy

2

Iz I, < Be M, . (5.44)
27 cprnd + t-cprnyd T2
where
cay o= 2L

Proof: To prove that Orthomin(l) is equivalent to GCR, it suffices to

show that b;i) =0 in (5.9) for j ( i~1. But the numerator of b;i) is

(Ati_,,l.Apj) = ('i+1'APj) - (Rriﬂ.Apj) .
By (5.12),

Ap)) .

(ri+1.Apj) =0=-( g

Ti+1”
Hence, by the skew—symmetry of R,
- - ' - 2
(Ati+1.Apj) = (r1+1.Apj) + (ri+1,RApj) (r1+1.A pj) .

But by (5.6},

d
for j £ i~1, by (5.14).

2 _1 - _
(ri+1.A pj) = = (riﬂ.A(rj rj+1)) =0

S8ince A= I - R is a normal matrix,
eyl < uy Reglly
by Theorem 5.4, where ll.j is as in (5.23}. But

M, ( min max |qj(1+in)| .
J 94 e Pj fnlgp(r)

A bound for Hj is obteined using the particular choice

T,{p/p(R})

R F €0 o

51
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where Tj(z) is the jth Chebyshev polynomial [30]. It is well known

(see [75]) that

T (n/p(R)) 1
y TE, (7N T = T, 7o RN T

max
lul<p(R

2
< —,
ctpeNd + 1—c(p(r))173

where
2

_ 14 + 1
C(A) *

Inequality (5.44) follows.

Q.E.D.



CHAPTER 6

Generalizations of the Coajugate Residual Nethod II

6.1 Introduotion
In this chapter we discuss two other gemeralizations of the

conjugate resideal method for solving linear systems of the form
Ax=f, (6.1)

where A is a nonsingular, nonsymmetric matrix of order N. Like the
methods of Chapter 5, these methods minimize the resideal norz over some
subspace of a Krylov space besed on A. Each has a variant analogous to
GCR that displays N-step convergence if a complete set of vectors is
retained, and each can be restarted or truncated to produce a less
costly variant at the expense of finite termination, and in one case,
robostness. They differ from the methods of Chapter 5 in the form of

either the solution update or the direction update.

in Section 6,2, we present a gemeralization of CR introduced by
Axelsson [2] that is applicable to systems where the coefficient matrix
has positive-definite symmetric part and show that it satisfies the same

error bounds as those established for Orthomin(k) in Chapter 5. In
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Section 6.3, we present an alternative computation of direction vectors
introduced by Yonng and Jea [81] for use with Algorithm 5.1 that can

also be applied to indefinite problems.

6.2 Axelsson's Generzalization of the Conjugate Residual Nethod

There are two vector updates in the conjugate residual method that
can be modified to prodmce a method applicable to nonsymme tric problems.
We derived the generalized comjugate residual method by replacing the
two—term recurrence for the direction vectors in CR with (5.8) - (5.9).
Axelsson [2] has proposed an alternative modification that uses a more
complicated update for (x;] with essentially the same spdate for the

direction vectors, This technique is shown in Algorithm 6.1.

The computation of the steplengths [a;i)]}=o requires the solutiom
of a least squares problem:
minimize Il B(i);(i) -y “2 R (6.2)

(1-1),i-1

where B(E) o= [Apy,...,Ap;1. The chaice of {nj i=0 forces

byl = min lo, (g,
qi e P1
to be satisfied, so that this method is equivalent to GCR. We refer to
this method as LSGCR, for the "least squares gemeralized conjmgate
residual” method., When restarted every k+l steps, the resunlting method

is equivalent to GCR{(k).
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Algorithm 6.1: Axelsson's generalization of the conjugate residuoal
method.
Choose Xy -
Compute I, = f - Axo .
Set Py =1y -
FOR i = 0 STEP 1 UNTIL Convergence DO
1w
X =zt 1a0py 6.3)
=0
where [a(i)]% hosen to minimize f Il
J j=D are chose 0O minimize ti+l 2
1
< (1)
Tiyg =Ty ji ‘j Apj (6.4)
N (Ar4yq.50)) (6.5)
i (Api.Apl) N
Piva = Fraa * By (6.6)
Apjyq = Aryq T by (6.7)
In the truncated versiom of Algorithm 6.1, (6.3) is replaced by
i
{1)
X, ,=x;+ 2 877 p., (6.8)
i+l 17 iThey §

where k > 1 and (l;l))}=1_k+1 are chosen to minimize "=1+1“z [2]. This

requires the solution of a least squares problem:

ninimize Il B(i)g(i) -, “2 . (6.9)
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() - ¢

for a ai—k+1""‘“i)T‘ where B(i) 1= [Apl—k+1""’Api]' We denote

this method by AXEL(k). For k = 1, it is equivalent to Orthomin(1).

+ 0(1%)

LSGCR | AXEL(k) |
| | (3¢i+)+IN | |
| Work/ | + 1 mv i (3k+4)IN |
|Tterationl N | + 1 mv |
| |+ 0(i%) 1 I

Storags | (2(1#2)42)}N |
I | (2k+3)N |
| |

4—

Table 6-1: Work and storazge requirements of ome loop of Axelsson's
methods.

The costs of LSGCR and AXEL(k) are given in Table 6-1., If the
least squares problems (6.2) and (6.9) ere solved using the normal

equations
p{DTp(1) (1) B(i)l‘ri s (6,10)

then the high-order terms for this step are i+2 (respectively k+1)
(i)TB(i) (i)Tr

inner—products to update B and compute B i for LSGCR

(respectively AXEL(k)) and, for LSGCR, 0(12) multiplications to update

DT 1)

the factorization of B and solve for & The storage cost

includes space for x, r, Ar, [pj), and [Apj). For LSGCR, we also

(i)TB(i)

include storage for the factors of B and note that Api+1 cen

overwrite Ar1+1.
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Theorem 6.2: The iterates {xi}. [ri}, and (pl] generated by AXEL(k)

satisfy the relations:

(Api'Api—l) =0 ; (6.11)

(tl,Apj) =0, j=diKk.,..,i-1, 4iX2k; (6,12)

(tl'Api) = (r;.Ac)) (6.13})

(fpde) =05 =31, 12k (6.14)

if r, # 0, then Py #0 ; (6.15)

if r, £ 0, then {pj};=i—k+1 are linearly independent, (6.16)
so that B(l) has full rank ;

for i 2 k, T,,q minimizes E{w) = "f—Awﬂ2 over the affine (6.17)

space 1, + <pi—k+1""’pi> .

Proof: The proof that (6.11) — (6,15) and (6.17) hold parallels the
proof of Theorem 5.2, For (6.16), assume that (pj};=1-k+1 are linearly
dependent, so that p; & S := <Pi—k+l""'pi—1>' Thena by (6.6), £ e S.
But by (6.12}, (ri,As) =0 for all s ¢ 8, which, in conjunction with the
positive-definiteness of M, implies that ri =0,

Q.E.D,

This result shows that AXEL(k) does not break down. Assertion

{6.16) shows that the vector of steplengths 5(1)

is uniguely defined.
The possibility that T4l and p; may become collinear, cited as a

potential difficulty in [2], is precluded by (6.12),
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The following result shows that AXEL(k) converges.

Theorem 6,3: The residuals generated by AXEL(k) satisfy

2
AL (M)
Be b, ¢ [1 - 222 /2 e, ,
iz [ N (Ar“] o'z
max
and
2
A, (M)
. min i/2
iz U, < [1 - 2] Izgll,

Ap1a DXy, O + p(R)

(ri,Api)

1= x4 :ipi' where a, := s—t——=—, That

Pxoof: For any i, let x i (Api'APi).

i+l

is, ;i+l is gemerated from x and Py by ome step of Orthomin(1). The

residoal is given by ;i+1 =r - :iApi' and "ri+l“2 < “;i+1“2 by the

(i)]i

j jei-ktl’ Note that

choice of (a
(Api,Api) < (Ari,Arl) N

as in Lemma 5.7, sc¢ that

(=9 (z,.hp)) (z;,4p)) (ryohc,) (r,A0))

=1 - £1 -
Hriug (ri,ri) (Api.Api) (ri,ri) (Ari’AIi)

by (6.13)., Therefore, as in the proof of Theorem 5.9,

2
Ao (M)
~ in 1/2
M, 0, < 1 - 222 ke,n
< i -
i+172 [ A (ATA)
max
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and

A, (0?

min

AR ) + p(R)

3 - 1/2
0,0, <2 LU

0.E.D.

6.3 Orthodir

Orthodir, proposed by Young and Jea [80, 811, is similar to GCR in
that the recursion for the direction vectors in CR is replaced by a more
expensive computation while the rest of CR is held imtact. Unlike G(R,
Orthodir is guaranteed to converge even if the symmetric part of A is
not positive—definite. However, although the iteration can be truncated
as in the derivation of Orthomin, the truncated algorithm is not

necessarily convergent.

In Orthodir, Algorithm 5.1 is combined with the following Lanczos—

like method for computing a set of ATA—orthogonal direction vectors:
i
_ 3 4 (1)
Piug = Apy + jﬁbbj Py (6.18)

where

2
(AP, ,Ap))
iy _ i*7P
b T, 58, i

In Orthodir(k), the truncated variant of Orthodir, (6.18) is replaced by
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i )
Ap, + 3 bl B, - (6.19)

p... =
i1 15 3

The costs of Orthodir and Orthodiz(k) are given in Table 6-2. They are

identical to those of GCR and Orthomin(k}, respectively.

-

| oOrthedir | Orthodir(k)
| Work/ | (3{1+13+)N |  (3k+IN |
| Loop | + 1mw | + 1mv |
| storage | (2(i+2)+2)N | (x+3)N |

+

Table 6-~2: Work and storage requirements of one loop of Ortheodir
end Orthodir(k).

If M is positive—definite, {Si} is the set of direction vectors
generated by GCR, and Py = ;0, then Py = T3Py for some scalar 7
(see [8C, 81]1). Thus, Orthodir is equivalent to GCR, Moreover,
Pgreaespy? = <r0.Aro,...,Airo> even when M is indefinite, so that

Orthodir converges for genmeral nmonsingular A [80].

For symmetric matrices, {6.18) reduces to the three—term recurremce
given by Orthodir(2). When used with Algorithm 5.1, the resnlting
variational method is equivalent to the c;njnglte residual method [12].
If A=1 - R with R skew—symmetric, then Orthodir(2) is equivalent to
Orthodir, (The proof of this fact parallels the proof of the amalogous
result for Orthomin(1); see Theorem 5.10,) However, we know of mo
theoretical resnlts that guarantee the convergemce of Orthodir(k) for

more generazl nonsymmetric problems, Indeed, we have enconatered several



licear systems for which Orthomin(k)} feils to converge.

oonsider the problem

1 -1 0 0
0 1 -1 o0 z
0 0 1 -1
0 0 0 1

which has solmtion x = (1, 1, 1, )T,

[N

With initial guess x

L

For exampls,

=0,
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Orthomin(2) generates the following sequence of relative residusl norms:

[

le /M B,

1.0000
0,7071
0.5774
0.5000
0.2132
0.2013
0.1951
0.1949

R BN I R S ]

i

]

9
10
11
12
13
14
15

"riuzluroﬁz

0.1949
0.1949
0.1949
0.1949
0.1949
0.1949
0.1949
0.1949 ,

The computed value of g is (0,8358, 0.8349, 0.8405, 0.8079)T.






CHAPTER 7
Goneralizations of the Conjugate Gradient Method: Galerkin and

Lanozos Methods

7.1 Introduction
In this chapter, we consider generalizations of the conjugate

gradient method for solving linear systems of the form
Ax=1, (7.1

where A is a nonsymmetric matrix of order N with positive~definite
symmetric part, Because the bilinear form {v,w> := (Av,w) is not an
inner product, the minimization properties of CG@ do not lead naturally
to methods for nonsymmetric problems. However, the Galerkin condition
and the relationship between CG and the Lanczos method have led to

generalizations of CG applicable to nonsymmetric problems,

The second formulation of the comjugate gradient method presented

in Chapter 3 is derived by imposing a Galerkin condition on the basic
iteration
x

i1 T Tgg P egpfeyTy txg ox ) (1.2)
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We consider two gemeralizations of this formslation of CG for solving

nonsymmetric linear systems.

The first is the gemeralized conjugate gradiemt method {GCG) of
Concus and Golub [13] and Widlund [75]. Ia Section 7.2, we introduce
GOG as & method for solving systems where the symmetric part of A is the
identity matrix, end we present error bounds. In Sectiom 7.3, we derive

an equivalence between GCG and CGNE,

The second generalization of (7.2) is Orthores, proposed by Young
and Jea [80, 811, Like GCR and Orthodir, Orthores displays N-step
convergence if a complete set of vectors is retaiued, and it can be
modified to produce a less costly method with the loss of the finmite
termination property (and possibly robustmess). We discuss Orthores in

Section 7.4.

A generalization of the Lanczos method for computing the
eigenvalues of nonsymmetric matrices is Arnoldi's method, which replaces
the 3-term recurrence of the Lanczos method with an i—step recerrence at
step i [1]. Saad [60, 61] has shown that Arnolﬂi's method can be used
to develop methods for solving nonsymmetric linegr systems, amnd he has
also considered heuristics for truncating the iteration te cut expenses.

We consider these techniques in Section 7.5,
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7.2 The Goneralized Conjugate Gradient Method

The generalized comjugate gradient method was the first CG-1ike
method developed for nonsymmetric matrices that was not based on the
normal equations. We present it as a method for solving systems in
which the symmetric part of the coefficient matriz is the identity
matrix, i.e., A= I — R with B skew symmetric, We consider its use for

more genmeral systems in Chapter 9.

Concns and Golub [13] derived GCG by choosing the real scalars {ui}

and {01+1] to force the residoals of the iterates generated by {7.2) to

satisfy
(ri‘tj) =0, idj. (7.3)

This approach resembles the classical comstructiom of orthogonal

polynomials [17).

The residnals of (7.2) satisfy

i+ T Tyq tey (el - r - )

Umwade g * e 0 -ads, + o jake, . .4

Relation (7.3) trivially holds for i = 0. Assume that it holds for

igt. By (7.4),

(ri4g07) = (1 - Ope) (T go1y) +ep (1 - a)lr.r)

*ooyig0e (Rrp.,)
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=0 -a)lr,e)
by the induction hypothesis and the skew—symmetry of R. Thus, if
e, =1, then (tt+1'rt) = 0. Similarly,
(rt+1'tt—1) = (1~ "t+1)(rt-1'tt—1) + wt+1(th,rt_1) R

which is zero when

(th.rt_l) —~1
- [1 P .t .

(rpgomey)

To complete the induction, note that for j ( t-2,
(rt+1,rj) = ut+1(th,rj) = —mt+1(tt,ﬂrj) R

and

Rtj e <tj—1'rj‘tj+1) »

by (7.4}, so that (rt,Rr ) =0.

i

Finally, the compntation of ®; .1 cen be simplified using the

observation that

Rri—l =

B’l"'
-
™
+
<

for some v g <ri-1’t1—2)’ so that

=1
- (Rri,ti_l) = (ri.B:i_l) = mi(ri'ri) ,
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by the skew—symmetry of R and (7.3). Thus, the generalized conjugate

gradient method is as follows:

Algorithm 7,1: The generalized conjugate gradient method
(ece) [13; 751,

Set X, = 0.

Choose X5 .

FOR i = 0 STFP 1 UNTIL Cenvergence DO

£, = f - Axi

m; = {rg,ry)

1, ifi=0
“i41 T -1

[1+(qi/qi_1)/mi] , iIf i1
T TEg “i+1(ri +x; - xi—l) .

The work per loop of GCG is ZN multiplications plus one matrix—

vector product, Storage is required for i Xigs and 1; x can

i+l
overwrite X If the matrix-vector product Rr can be computed easily,

then the residuals could be updated by

Tiar = mwydry g ek

The work per iteration wonld them be 3N multiplications ples one matrix-—

vector product by R. Sinmnce a, = 1, GCG is less expensive than the

three-term version of CO.

Note that (ro,....ri) CI(rO.Azo,...,Aito). Moreover, the {ri} are
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linearly indepemndent by (7.3), so that this imclusion is actemally an

equality. Hence, (7.3} is equivalent to the Galerkin condition

(A!i.v) = (£,v) for all v & (ro.Aro.....Al—lro) .

The following result establishes an error bound for GCG analogous

to the bound for Orthomin(l) (see Theorem 5.10}.

Theorem 7:2: The error at the ith step of GCG satisfies
2
Hx—x | £ Ix-x_ll, ,
122 coern? + t-cpry™t - 02
where
/ 2
cr = Y1 1

Y .

This result, due to Eisenstat [21], is somewhat stronger than the
original bound presented by Widlend [75] and was first proved for the
even iterates by Hageman, Luk, and Yourg [37]. It implies that GCG will

converge rapidly if p{(R) is not too large.

Finally, we remark that GCG, like CG, is related to the Lanczos

method. Given a vector v, such that ﬂvlﬂ2 =1, =n orthonormal basis for

the Krylov space Si o= (vl,va,...,R1~1v1> can be computed by a two—term

recurrence of the form

Biogvier = Rvy ¥ yyv g .
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(The proof of this fact is essentially the same as the derivation of GCG
T
0

given above.) Let vy oi= ";;“é. znd let x be the point in g * Si whose

residual is orthogomal to S Then x; is the 1th GCG iterate. This

it
observation is due to Widlund and is the basis of an altermative

derivation of GCG [75].

7.3 A Relationship between CGN and GCG

Again assuming that the symmetric part of A is the identity matrix,
we now show that there is an eqnivalence between GCG and CGNE (Craig's
method). This result was first proved in a different manner by Hageman,

Lok, end Young [37]).

Let (xi] denote the iterates generated by GCG, and let {;i} denote
the iterates generated by CGNE, We show that if x, = ;0, then ;= ;i
for 1 > 0, Pollowing Hageman et. al., we refer to this relationship as
"virtnal equivalence.” We establish it by showing that the even
‘iterates of GCG satisfy the orthogonality characterization of CG given

by Theorem 3,2, for the coefficient matrix T - I - R;.

Theorem 7,3: If A= 1 - R, then the even residmals {rZi] generated by

GCG satisfy
r,. =g (I—Rz)r (7.5)
2i i 0’ .
(rZi.rzj) =0, i#j, (7.6)

where q s Pi’ Thos if xq = ;0, then = ;i' the ith iterate

generated by CGNE,
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Proof: We need only prove (7.5), since GCG was derived so that

(7.6) holds. Ve show that the residmnals {ri} generated by GCG satisfy
= 4@, (1.1)

where Ei is a real polynomial of degree i, Ei(l) =1, and

. even, if i is even
qi is

odd, if i is odd .
Assertion {7.5) follows with qi(t) = EZi(JI—t) .

We prove (7.7) by induction. It is clearly true when i = 0, Assume

that it holds for i ¢ j. Since a, = 1, (7.4} reduces to

Tia1 T (1 - uj_u)rj_1 + mj+1R‘j

[{1

- ujﬂ)qj_l(k} + "’j+1R Ej(k)] Ty . (T.8)

The conclusion is a straightforward consequence of (7.8).

Q.E.D.

The work per step of two iterations of GCG is 4N meltiplications
plus two matrizx-vector products. This contrasts with 5N multiplications
and two matrixr—vector prodocts for CGNE (see Algorithm 4.2). GCG
reguires 3N storage, compared with 4N for CGNE, Thus, GCG is a more

efficient method then CGNE for solving problems where A = I - R,
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7.4 Orthores
Young and Jea [80, 81] have proposed & gemeralization of the three—
term formulation of CG (7.2) similar in spirit to GCR and Orthodir inm

1
which T and Ixj}j=0 are used to compute Xiiqe

Algorithm 7,4: Orthores {80, 81].

Choose .

Compute Ty = f - Axo .
FOR i = 0 STEP 1 UNTIL Convexrgence DO

{Ar ,r.)
a(i) = i ’ 1=0,...,1

(rj.rj)
Ly 4
bi = ( > 3 )
j=0
(i) _ (i) =
cj = bi'j . J=0,..0,1
i
_ 5 (1)
= bix1 + jiocj I
i
o (1)
Tiep = “byar + jzoaj T .
The scalars (a;i))}=0, b, and [°;l)}}=0 are determined so that
Gr) =0, i4j, (7.9
and
i c!i) =1 .

=0 !

7

We cmit the derivation, which is straightforward. The requirement that
M be positive—definite is necessary: Orthores breaks down on the first

step for the problem {5.,30) given in Chapter 5.

As dn 6CB, (fy,....r;> = <rg.hrg,...,A %) and (7.9) is oquivalest

to the Galerkin condition
(Axi,v) = (f,v) for all v e (rD,Aro...;.Al_lro) . {7.10)

In the truncated version of Orthores, denoted by Orthores(k), the
(i)

scalars lj are defined to be zero for 0 ( j { i~k. The update for the

solution then has the form

AT
=b.r, + 2 ¢, 'x. . (7.11)
i+l L SE P PR R

The three—term recurrence from which Orthores is derived corresponds to

Orthores{(2), and when A = I -~ R, Orthores(2) is equivaleat to GCG.

The work and storage costs of Orthores and Orthores(k) are given in

Table 7-1.
| Orthores [ Orthores(k) |
[ Work/ | G1+1)+3)N | Grk#3)N |
| Loop | + 1 mv } + 1 mv 1
| Storage | (2(i+2)+1)N I (2k+1)N

Table 7-1: Work and storage requirements of ome loop of Orthores
and Orthores(k).
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As a result of the orthogonality/Galerkin comditions (7.9)/(7.10),
Orthores satisfies error bounds similar to those for GCR given in
Theorem 5,4, The following result gives the analogue of the first part

of (5.21).

Theorem 7,5: Orthores computes the solution to (7.1) in at most N

steps. The iterates genmerated by Orthores satisfy

bes ¢ o2 g, (), Nxxgl
x-x § min Hq,(A) x-x . (7.12)
i"2 Lmin(u) g s Pi i 2 072

Proof: The first assertion follows immedistely from the orthogonality
relation (7.9),

For the second assertion, note that

b-x, 02 ¢ —2 —(r,,2x,) . (7.13)
i & gty ey

Let Si 1= (ro,A:O,....A1_1r0>. For any v ¢ Si.
X, = xxg - V- (xi—xo -v) = X -V + w,

where w e Si. Hemce, using (7.10) and the Cauchy-Schwarz inequality,
(ri,x~xi) = (ri,x—xo ~-v) < ﬂri"z “x—xu - v“2 ’

so that

Crpxx)) < MAl Dxx l,  min -z - 5l . (7.14)

v e Si

13
But for any v ¢ Si,
v=s, ,(A)r, = As; 1 (A) (z-x4)
for some real polynomial 8.1 of degree i-1, so that
X, - v = qi(A)(x-xo) ’ (7.15)
with 9 € Pi' Combining (7.13), (7,14}, and (7.15),
. ¢ i
x—x [I,¢ min q,(A) (x~x_) »
i*2: 1min(u) 4 s P i 0'"2
i
whence (7.12} follows,
Q.E.D.

We know of no result that proves that Orthores(k) is convergent.

7.5 Projection Methods

Saad [60, 61] has considered a class of obligue projection methods
for solving (7.1}). Let Ki and L1 be two i-dimensional subspaces of RN.
Following Saad [61], we define an oblique projection method as ome that
computes an approximate solution I, e Xy ¥ Ki to (7.1) whose residual LI
is orthogonal to Li‘ All the techniques we have considered are oblique
projection methods. For example, GCR is such a method with
Ki = (pO""'pi—1> and Li = (APO""'A91—1>' In this section, we focus

on ome technique that is a generalization of the conjugate gradient
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method.‘
Consider the following generelization of the Lanczos method for
nonsymme tric matrices:
h ; h
41, 374+1 T AV - Gl (1.16)

where htj = (vt,Avj) for t { j and hj+1,j is chosen so that "vj+1H2 =1,

This method is due to Arnoldi [1]. By the choice of [htj]i_o,

(vj,vt) = ajt N (7.17)

50 that [vj];=1 is an orthonormal basis for <v1.Av1,...,Ai_1v1>. The

construction (7.16) can be written in matrix form as

AVi =VH +b&,

T
1 % Baag,1%in % (118

where Vi = [vl....,vi], end H1 is the upper—Hossenberg matrixz whose
nonzerc elements are [htj]' Relations {7.17) and (7.18) imply that

T
Hi = VAV, . (1.19)

This construction is the basis for a class of obligue projectien

methods for solving (7.1). Given an arbitrary initisl guess I, with

L]
Saad presents several other examples. One is another algorithm that
is equivalent to GCR. See [22, 61].

15

T
s _ 0 e =
residual Tor let v, = “;;“; and let Ki 1= Li = <v1,....vi). Then the
obligue projection method computes

L =x, 4 Vig(i) such that VI:i =0 . (7.20)

These cen be combined into the single equation for g(i):

{i)

viav o = vle | (1.21)
i f itg
Relation (7.17) and the definition of v, imply that

T

Virg = lzgllyey
which, with (7.19), implies that (7.21) can be written as

(1) _
Be'™ = lrglye, . (7.22)

That is, the computation of o requires the solution of an uwpper
Hessenberg system of eguations of order i. We denote the method defined

by this choice of x; as the full orthogonalization method (rOM) [60].

The truncated analogue of Arncldi’s method (7.16) is given by

i
>

- 3 (7.23)
gkl

h,

41,3341 T Av

htjvt .

Hi is now & banded upper—Hessenberg matrix with bandwidth k. The matrix

equation (7.18) still holds, but Vi is no longer orthonmormal. Defining

Ki and Li as sbove, it is possible to define en oblique projection



76
method es in (7.20).°

As a less expensive altermative, Saad [60] suggests a relaxation of
the conditions of oblique projection with respect to Ki and Li' The
approximate solution x; is chosen to satisfy (7,22) and the first
condition of (7.20}, but not the second conditiom of (7.20). Following
Sead, we refer to this method as TOM{k) for the incomplete

orthogenalization method.

If A is symmetric and positive~definite, then (7.16} reduces to the
three—~term Lenczos recursion, so that ﬂi is tridiagonal and FOM is
equivalent to IOM(2). In this case, x, is equal to the approximate
solution computed after i steps of the conjugate gradient method

{see [54]).

By (7.18}, (7.20), and (7.22), the residnal t, in both FOM and

IOM(k) satisfies

_ T (i)
Ty = B5e1,i%i% Vil o (7.24)

so that

» T
Although ViAVi does not have a special structure in this case, Hi can

(i)_

still be used in the computation of ¢ The actoal computation

(1) _
requnires the least squares solution of Viﬁ = h1+1,1vi+1 as 8

correction for “roﬂzﬂllel. See [60],

17

(1)
frlly = by, yley™ 0. (7.25)

Thus, an implementetion of FOM end IOM{k) that unses (7.25) in the test
for convergence is given by Algorithm 7.6. If tj =1 for all j in

(7.27) - (7.28), then this algorithm is FOM; if tj = max(1, j~k+1), then

it is IOM(X),

Algorithm 7,6: PFrojection methods: FOM and TOM(k}.

Choose X5 -
Compute Ip=f- Axo .

Compute v, = rolﬂro"2 . (7.26)

FOR j = 1 STEP 1 UNTIL Convergence DO

htj = (Avj’vt) B t= tj:---.j (7.27)
i
w=Av, - htjvt (7.28)
t=t
b,y = v, (7.29)
Vi = YRy (7.30)
g(j) = “rOHZHEIeI {7.31)
- (&}
Hell, = oy gley?l . (7.32)
Set i = j
2 (D
Compute o=z 4 ji]cj M (7.33)
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For FOM, the cost of i steps of the inmer loop (7.27) - (7.32) is

[(2§42)N + 0(4) + 1 mv] = i(i+3}N + 0(1%) + 1 mv

i

=1

{(where 0{j) is the cost of updating the factorization for Ej and

computing g(j)). The outer steps (7.26) and (7.33) require (i+1)}N

multiplications, Thus, the work for one complete step of FOM is

2

(2 + 41+ DN+ i mv + 032

Assuming that i >> k, the cost of IOM(k) is i(2k+2)N + O(ki) + i mv for

i inner loops and (i+1)N for the outer steps, for a total of

(i(2k+3) + 1IN + i mv ,

i+l

For both methods, storage is requnired for x, Av, (v ] _1° aud Hj‘ with w

1
overwriting Avj. The total storage required is

0(12). for FOM ,
(i+3)N +
0(ik), for IOM{(k) .

In IOM{X), (vj]j:§ can be saved in secondary storage until they are

needed for (7.33).

Finally, using en LU-decomposition of Hi‘ FOM and I0M(k) can be
implemented withent an innexr/outer iteratiom [62]. That is, a new
approximate solutiomn X, can be computed from each new vector vi.. Let

»
To make this algorithm formally similar te¢ those in other sectiomns,

we let the indices begin at i=0 in this discussion. Thus, ey denotes
the unit vector with zero—component equal to 1.
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Hi be the Hessenberg matrix computed after i steps of (7.16) or (7.23),

and let Hi have the LU—decomposition
H =Lu0O, , (7.34)

where Li is lower—triangular with a single nonzero sub~diagonal and U is

unit upper—triangular. Using (7.22),

(i) _ —1 _ ~1,-1
Ve = Bz ll, v, B ey = el v, 0,7 L e

T . -1
Let P, := V.Ul 2ad let & : “rOHZLi ¢y~ Then
i-1
x, = + a
i x, jzb jpj .
th th
where p.1 iz the j column of Pi and ‘j is the j entry of a. But Py

and 8, can be computed directly from Vi, Li’ and ﬂi' as shown in

Algorithm 7.7. The costs of thess methods are summarized in Table 7-2.
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Algorithm 7.7: Projection methods with directions: DFOM and DIOM(k).
Choose 10 .
Compute I, = f - Ax
Compute Vo = =1
FOR i = 0 STEP 1 UNTIL Convergence DO
hji = (Avi,vj), j=ji,....i

Update the factorization Hi = L,0

i
i-1
BV jfj 1P
i
[ i£i=0
i R
Ly, amdeaflyy e 121
i1 T % Y 8Py

If ji = 0 for all i, then this algorithm is DFOM; if

ji = max{0,i-k+1}, then it is DIOM(k)}.

| DFOM | bpromx) |
| Work/ | (3(i+1)+2)N | (3+2)N ' |
| Loop | +1mv | +1mv |
| | +o(i) | +ox) |
i | (2¢i+1)+N | |
| Storege | 2 | (2k+2)N |
| I +o0(:%y | I

Table 7-2: Work and storage requirements of ome loop of projection

methods with directions,

It follows from (7.16}, (7.17), aand (7.24) that DFOM satisfies

orthogonality/Galerkin conditions analogous to (7.9)/(7.10), Hence,

Bl

DFOM is eguivalent to Orthores, and the error bound of Theorem 7.5 helds

for both FOM and DFOM,
Theorem 7,8: The iterates gemerated by FOM or DFOM satisfy

lall, .
"x—xiﬂz < T min qi(A)"2 "x—xonz .
min g P,
i i
See [60F for an altermative error analysis, We do not know whether

IOM(X) and DIOM(k) are convergent for gemeral nonsymmetric systems.



CHAPTER 8

Nonvariational Methods and Hybrid Nethods

3.1 Introduction
Consider the system of linear equations

Ax=1, (8.1)
where A is a8 nonsingular, nonsymmetric matrix of order N. In this
chapter, we discuss the Chebyshev algorithm and Broyden's method, two
polynomial-besed iterative methods for solving (8.1) not inspired by the
conjugate gradient method. In addition, we consider a class of hybrid
methods that combine the Chebyshev algorithm with some of the CG-1like

techniques of previons chapters.

The Chebyshev polynomials are used in many areas of numericel
analysis [30]. Their usefulness as the basis of an iterative method for
linear problems stems from the facts that they are generated by a short
recursion and they heve a stromg optimality property. Their main
drawback is that they depend on Inowledge of the eigenvalues of A in
order to be effective. Manteuffel [46; 48, 49] has devised an adaptive
procedure that provides estimates of the eigenvalues of A to be nsed

with the Chebyshev polynomiels for solving limear systems. We discuss
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this method in Section 8.2.

The initial performance of the Chebyshev algorithm may be poor if
little is known about the eigenvalues of A. As we mentiomed in Sectien
7.5, the projection methods FOM, IOM(X), DFOM, and DIOM(k) are based on
Arnoldi’s method for computing eigenvalues. In Section 8.3, we show
that each of these methods, es well as GCR, can be used as a
preprocessor for the Chebyshev algorithm to provide it with eigenvalue

estimates.

A second method not inspired by CG is Broyden's method [10], a
quasi—-Newton method appliceble to nonlinear systems of equations.
Recent interest in this technique has beeu provoked by the observation
that it computes the solntion to linear problems in at most 2N
jterations [31]. In Section 8.4, we discuss an implementation of
Broyden’s method due to Engleman, Strang, and Bathe [26] that is

suitable for sparse problems.

8.2 The Chebyshev Algorithm for Nonsysmetric Systems

The Chebyshev polynominls are defined by
Tn(z) = cosh(ncosh—l(z)) B zeC.

This definition is equivalent to the recurrence
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Tplz) =1

(8.2)

il
]

Tltz) =

Tn+l(z) = ZzTn(z) - Tn__l(l) .

We consider an iterative method based on these polynomials for solving
Iinear systems (8,1) in which the eigenvalues of A lie in the open right
half of the complex plane. The development of this section follows

Manteuffel [48, 49].

Recall that the residuals gemerated by polynomiel-based methods

satisfy
= q,(8)r,
where q; & Pi' Hence
"ri“2 < “qi(A)ﬂznroﬁz ’

and "riH2 will approach zero rapidly if Hqi(A)IE2 decreases guickly, Tf
A has a complete set of eigenvectors, them this is the case if and only
if lqi(l)l —> 0 for ell A & o(A). TIf A lacks a complete set of
eigenvectors, then an additional requirement is that for all eigenvalues
A with invariant subspace of dimemsion m ) 1, the jﬂl derivatives
qu)(l) ~—> 0 as 1 ——)> «, for j {( m. The scaled and translated
Chebyshev polynomials satisfy these requirements, and they are nearly

the optimal choice among polynomials satisfying the first

requirement [48].
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We briefly discuss the optimality properties of the Chebyshev
polynomials. Given any closed and bounded infinite set E in the complex
plane, there exists a uwnique polynomial ti e Pi that satisfies

max lti(z)l =  min max |si(z)| .

z e E 5, 8 Pi zeBE

Since o(A) is contained in the open right half plane, there exists an
ellipse E that contains o(A) in its interior, and whose closure does not
contain the origin. E is described by its center d and its foci d+c and
d—¢, where ¢ and d are complex numbers. Moreover, since A is resl, the
eigenvalues of A ocour in complex conjugate pairs. Hence, E cen be
chosen to be symmetric with respect to the real axis, i.e., d is real
and positive and c is either real or pure imaginary. Manteuffel'’s
nonsymmetric Chebyshev algorithm is based on the scaled and translated
Chebyshev polynomials
Tl((d—z)lc)

q,(z) = ——51737:3—— .
If ¢ is real {(i.e., the semi~major axis of E is the real axis), then for
each i, 9 is the optimal polynomial for E, If ¢ is imaginary, then
these Chebyshev polynomials are not optimal in general for E, but they
approach the optimal polyuomials asymptoticelly as i ——) «, and the

convergence to the optimal polynomial is rapid [49].

Given ¢ end d, and using the recursion (8.2), the Chebyshev

algorithm car be implemented by a set of recursive formules:
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Algorithm 8,1: The Chebyshev algorithm with fixed parameters.
Choose I -
Compute Ty = f - Axo .
Compute Ao = %ro .
FOR i = 0 STEP 1 UNTIL Convergence DO

Tiel S %t Ay
Tieg =P AT,
2a/ (2% ifi=a0
a. . =
i+l a- (c/2)2ai \ i i1

Biag = dajy -1

i+l T ®3417541 * Biady -

The work per loop of this method is 2N multiplcations plus one
matrix—-vector prodnct. 3N storage is reguired for x, r, and A, with Ax

overwritten by r.

This algorithm requnires values for ¢ and d, and will be most
effective if the ellipse containing the eigenvalues is as small as
possible. Manteuffel has devised an adaptive procedure for computing
good values of ¢ and d by estimating the convex hull of the eigenvalues

of A, This technique is based on the following two facts.

1, Let the scaled and translated Chebyshev polynomials {qi] be

determined by some perticular values of ¢ and d. Then there
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exists & linear operator S{A) such that qi(A) z S(A)i, s0
that the residuvals produced by the Chebyshev algorithm

~ i
satisfy z, = S(A) Ty,

2. Given a set H in the right half plane, the parameters c and d
that define the smallest ellipse containing H are given by

the solution to the minimax problem

min max r{z) , (8.3)
c,d z s H
where

(@2 + e—n =%

ri{z) = .
d +¥d "¢

By the first fact, if the Chebyshev algorithm is performed with
some given valoes of ¢ and d, then the residuals generated represent the
vectors prodnced by the power method for S(A)}, from which estimates of
the extreme eigenvalues of A can be obtained, Letting H denote the
convex hull of these estimates, the minimax problem (8.3) can then be
solved to obtain improved values for c and d. fhus, given inmitial
values for ¢ and d, and taking {d+c,d—c} as the imitial guess for the
convex hull of the eigenvalues of A, the adaptive Chebyshev algorithm is
given by Algorithm 8,2, The details of steps 2:end 3 of this procedure
are given in [46, 48, 491, Heuristics for keeping the cost of step 2

down are given in 46, 48, 64].
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Algorithm 8.2: The adaptive Chebyshev algorithm.
REPEAT UNTIL Coavergence

1. Perform several (say, ten to twenty) steps of
Algorithm 8.1;

2, Use the computed residuels and S{A) to obtainm
estimates for the extreme eigenvalues of A, and
update the estimate of the comvex hull of a({A);

3. Solve problem (8.3} to compute new values for ¢ and
d.

We remark that the eigenvalue estimates obtained in step 2 lie in
the field of valnes of A f{asC | 1=%§f%§l, 2eC}, but not necessarily in
the convex hull of o(A). This does not present a serious problem if the
symmetric part of A is positive-definite, but it may lead to eigenvalue
estimates with negative real part if the symmetric part is indefimite.
In this case, the enclosing ellipse contaius the origin and the
Chebyshev polynomials are not effective, Thus, the requirement that
af{A) lie in the open right half plane is not strong emough to guarantee
the convergence of the adaptive Chebysh;v algorithm, but the stromger
requirement that the symmetric part of A be positive~definite is

sufficient [46].
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8.3 BRybrid Methods

The Chebyshev algorithm is sensitive to the parameters c¢ and d.
The associated ellipse should contain o(A) but be as small as possible.
Tf it is too large or too small {i.e., does not contein a(A)), then
Algorithm 8.1 may converge slowly or diverge. The residuals generated
in such & situation can be nsed by Algorithm 8.2 to compute improved
parameters, but the initial set of 1terntion; may not improve the
solution to (8.1), Thus, if little is known about the spectrum of A,
then the adaptive Chebyshev algorithm has a potentially high start—up

cost.

In this section, we discuss a way to avoild this difficulty. Scme
of the conjugate gradient—like methods that we have discussed can be
used to estimate eigenvalues of A, and these values can be used to
compute initial valwmes for ¢ and d. Thus, we propose a hybrid method in
which a gradient method that computes estimates for the extreme
eigenvalues of A is followed by the Chebyshev algorithm, Since the
gradient methods are more expensive per step than the Chebyshev
algorithm, they can be viewed as preprocessing techniques, performing
only enough steps to generate reasomable values for ¢ and d, Unlike the
adeptive Chebyshev algorithm alone, the hybrid method produces these
parameters simultaneously with improved solution estimates, {See [52]

for a hybrid CG/SOR method for symmetric, positive—definite problems.)

The CG-like methods that we consider are GCR, FOM, and IOM(k). ¥e
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first discuss the properties shared by these methods that make them
useful for estimating eigenvalues, At little or no extra cost, all
three methods generate upper—Hessenberg matrices that are associated
with nearly invariant subspaces of A, That is, on the ith iteration,
there is an upper—Hessenberg matrix Hi of order i and vectors
[vl""'vi+1} such that

AV, = V.E, + v, e, (8.4
i ii i+17i

where Vi 1= [vl,....vi]. For small i, the eigenvalues of H, can be

computed easily [T6] and used as estimetes for the eigenvalues of A.

If the trailing term vi+1e¥ did not appear in {(8.4), then the
eigenvalues of Hi would be eigenvalues of A, This is & heuristic
explanation for this choice of eigenvalue estimates. A more rigorous
justification applicable in the cases of GCR and FOM is as follows [63].
The vectors {vi} associated with both these methods are orthoncrmal.

Let n, denote the projection operator from ¥ into Vyveeesvy>, and

consider the projected operator

Al t= "iA"i »
which induces a limear operator from <v1""'vi> into itself, Given an
eigenpeir (i,w) of Hi, let v = V;w. Then

i

T
Av = MAn VW = mAVw = w{ViH; + vi+1°i)'

= lﬂiviw WMV = AV,

91

since ¥+l is orthogonal to (vl,....vi). Thus, the eigenvalmes of H;
are the eigenvalues of the projected operator Ai' See [63] for an

analysis of the quantitative relationship between the eigenvalnes of A

and Ai'

We have described the comstruction of Hi for FOM and IOM(k)} in
Chapter 6 we now discuss the analogouns construction for GCR. Using
(5.6), (5.8), and (5.18), the directions and residuals generated by GCR
satisfy

b(1)

i
< 2
= - = - a A +w, (8.5)
Api+1 = Arg jﬁo j Apj ahpy

Ap.
i : <
where w & (APO""'AP1>' With v, = HI;:“;' (8.5} is eqnivalent to the

matrix equation (8.4), and by (5.11), Vi is orthonormal, so that
T
Hi = viAVi, or
(Apj.A(Apk))
h = .
jk ﬂIPjﬂz “Apknz

But

2

1
Kpy = o e = Arg)

so that

(Apj.Ark} - (APj'Ark+l)

1
h.,, = =—
Jk T ay “ApjnzﬂApkuz

Hap, My [(Apj.Ark) - (Apj.Ary,y)
- “Apjﬂz (ry.Apy)

]. @&



92

All the quantities in (8.6) are computed during the execution of
GCR. The quantities (rk‘APk) and {“Apjnzl are obtained during the
computation of (nj}. For j ¢ k, the inner products in the numerstor are
;k_]) and bjk).

numerator of b;k) and (Apk,Ark) = (Apk,Apk) by (5.16). For j = k+1,

the numerators of b For j = k, (Apj.Ark+1) is the

(Apk+1,A:k) =0 by {5.15), and (Apk+1.Axk+1) = (Apk+1’APk+1) by (5.16}).

As the number of steps increases, GCR and FOM become considerably
more expensive than the Chebyshev algorithm, so that they are cost-—
effective only if just a few iterations are performed before switching
to the Chebyshev algorithm, An alternative is to base (8.4) on IOH(k)..
The work per step and storage costs are lower, and the mpper—Hessenberg
matrix Hi is sparse, so that more steps cam be taken with relatively
modest expense. Unfortunately, the matrix Vi generated by IOM(k) is mnot
orthogonal, and we know of no result that proves that the eigemvalues of

Hi converge to those of A,

.
Orthomin{k) does not lead to a relation of the form {8.4) with en
upper—Hessenberg Hi‘
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8,4 Broyden's MNethod
Broyden’s method [10] is an iterative method for solving nonlinear

systems of equations of the form

F(zx) =0, {8.7)

where F:RN—-)RN is continuously differentiable. It is an example of a

quasi-Newton method: the approximate solutions are computed by an

iteration of the form

-1
T =3 - 9 Flay o,

where Q;lis an epproximation of the inverse of the Jacobian matrix
F'(xi). The philosophy behind such methods is to achieve nearly as
rapid convergence as Newton’s method (where Qi = F'(xi)) without the

expense of computing and inverting the Jacobian (see [10]).

Typicelly in quasi—Newtcn methods, the {Q;ll are built wp by an

update of the form
-1 _ —
Qo =+ 05
where U1 is of low rank and the secant conditiom

~1
Qg (Flxg )-Flxy)) = x4 - x5

holds. The initial approximation Q;l is arbitrary. In Broyden's

method, Q;il is obtained from Q}l by & renk—one update.
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Algorithm 8,3: Broyden's method for monlinear systems.

Choose xq -
-1
Choose QD .
-1

Compute p, = -q, F(xo) .

FOR i = 0 STEP 1 UNIIL Convergence DO
Tiel = X3 T Ry

¥y = Flxyyy) - Flxy)

piQi
al = Q‘l + o, - Glypvl
Piv1 < 1+1F(‘1+1) .

If F is linear, then (8.7) is equivalent to the limear system of
equations (8.1). Gay [31] has shown that if A is nonsingular, them
Broyden’s method computes the solution to (8.1) in at most 2N steps {see
also [33]), The matrix update is not suitable for large sparse
problems, however, because Q:il is typically a dense matrix. We now
present an alternative implementation for linear problems due to
Engleman, Strang, and Bathe {26] in which the explicit formation of Ql+1

is replaced by s sequence of inmer products.

For linear problems, the notation for Broyden's method can be made
to conform to that of most of the other methods we have considered, as

follows:

5= —F(xl) =f - Axi,

=
Piar = Qih1T54p -

Api =y; = Az g~ x) .
The update for Q j+1 cen then be written as

[I . Qi Pi)pi]

l+1 Q 1A

Py

For any i, let

1y _ 41
vj : Qj r, . [ B G

(1+1)}1+1

Starting with v = Qo 141> the {v j=1 satisfy

-1 T

(p, - Q, Ap.)p

(1+1) [I b i i j]v(i+1)
Y41 T = J
249y Ap;

by (8.8). The direction vector is given by

_ a1 _ Li+l)
Pie1 = QaaTi41 = Vi v

Moreover,

—1 ol S & L5 Y
Qj APj = Qj (fj tj+1) Pj Vj

so that VEiII) can be computed without the use of Q}l as

(J+1)pT ‘ )
(i+1) 3 i+1
¥i+1 [I (J+1) ]'j
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(8.8)
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Letting w v§1+1)

g 1= » Broyden’s method for solving linear systems

is as follows:

Algorithm 8,4: Broyden’'s method with direction update, for limear
systems.

Choose x5 -

—1
Choose Qo .
-1
Compute Py = 00 I -
FOR i = ¢ STEP 1 UNTIL Convergence DO
Tiep T F T P4

Tivl T Ty Ay

v (() i+1) ~1

=07t
FOR j = 0 STEP 1 DNTIL i DO
IF (j=i) THEN

_(i+1)
Y3 = vy
T
b, = llpi(Pi_'i)

(i+1) _ _(ivl) b]p};ji+1)'

Y3+l 3 |

_ _(1+1)
Pis1 = Yin

The work per loop is [2(i+l) + 1IN + 1 mv and ome solve Qalr {which
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is a null operation if 061 is the identity mntrix).. Storage is
i+l (i+1),4+1 i
required for x, r, {pj]j=0’ (vj }j=0’ and {'j}j=0‘ for a total of

{3(i+1) + 1IN. Ap can share storage with véi+1).

An inductive argument shows that if Qal = I, then the residuals

generated by Broyden's method satisfy
= qi(A)ro, g 8 Pi .

Compared with the expenses of GCR (see Teble 5-1), the work per loop is
somewhat lower but the storage requirements are greater. Since GCR
computes the optimal polynomiel with respect to Hri“:' we suspect that

Broyden’s method offers little advantage over GCR.

.If QBI # I, then the use of Qal in Algorithm 8.4 actually corresponds

to preconditioning by QO. See Chapter §.



CHAPTER 9%

Preconditioning

9.1 Introduction

Consider the system of linear equaetioms
Ax=+f, {9.1)

where A is a nonsingular, nonsymmetric matrix of order N. In this
chapter, we consider the use of preconditioning techniques in

conjunction with the iterative methods of Chapters 4 - 8,

Let Q = Qlﬂz denote a nonsingular matrix., The solution to

(9.1) cen be obtained by solving any of the problems

left: Ix=f(ata)l xl1 =qle=7; (9.2)
right: X % = (ael] [exl =£=7% H (9.3)
split: X ¥ = []"aq;!) [0,x) = q]lf = F . (9.4)

The ose of such an auxiliary matrix is kmown as preconditioning. We say
that (9.2) — (9.4) are three different ways of applying the
preconditioning, although left and right preconditioning can also be

considered as special cases of split preconditioning. (For example,
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left preconditioning reduces to split preconditioning with Q1 = @ and
02 = 1,)

The goal of preconditioning is to decrease the computational effort
needed to solve (9.1}. If Q is in some sense a good approximation of A,
then the coefficient matrices of (9.2) — (9.4) are in turn closer (in
some sense) to the identity matrix than A, and the iterative methods of

Chapters 4 — 8 will converge more rapidly than when applied to (9.1).

For preconditioning to be effective, the faster convergence most
overcome the costs of applying the preconditioning, so that the total
cost of solving (9.1) is lower. The precoaditioned coefficient matrix X
is usually not explicitly computed or stored. The main resson for this
is that although A is sparse, X may not be. The extra work of
preconditioning, then, occurs in the part of the preconditioned matrix-
vector prodocts involving Q—l (or Q;l and Q;l). The main storage cost
for preconditioning is for Q. which must be stored so that the operatiom
oLy (or Q;lv and Q;lv) can be performed efficiently. In addition, most
of the iterative methods requnire ome extra vector of length N to handle

the preconditioning operation,

In this chapter, we discuss some of the issues of implementing the
various preconditioned iterative methods. In Section 9:2, we discuss
preconditioned versions of CGN. In Sectiom 9.3, we discuss
preconditioned GCR and Orthomin(k) as representative of the

preconditioned methods of Chapters 5 — 8. In Sectiom 9.4, we discuss
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some slternative implementations appliceble when Q is symmetric and
positive—definite, One example of this special case is the

preconditioned gemeralized conjugate gradient method (see Section 7.2).

9.2 Preconditioning for the Normal Equations

We showed in Chapter 4 that there are two types of normal equations
to which the conjugate gtadieng method can be applied, and that the norm
minimized by CG differs for the two problems. When preconditioning is
used, the norm minimized depends on both the choice of normal equations
and the technique of applying the preconditioning [55]. In Table 9-1,
we list the quantities minimized for the variows combinations. The
first three columns correspond to the three choices of preconditioning
techiques (9.2) — (9.4), the foorth column to the special case in which
Q is symmetric and positive—-definite. In the latter case, the
algorithms can be implemented so that the norm is independent of the

factorization of Q (see Algorithms 9.3 and 9.4 below).

e e T
| Left Right Split oolit I
i | -1 | ' -1 ' |
| cam | Nate, bed, | Ngten, | e |
| oo | | | | |
| cene lIx x1"2 HQ(x—xi)“z l “02(x~xi)u2| “x—xi"Q I

Table 9~1t Error norm minimized by preconditioned CGN methods.
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In the interest of brevity, we present implementations of just four
of the methods given in Table 9~1 (cf. [44, 55]1). CGNR/Right and
CGNE/Left are noteworthy because the norms they minimize depend only on
the original problem (9.1}, end not on the preconditioming. (The Erylov
spaces do depend on the preconditioning.) The two instances of
symmetric split preconditioning are also moteworthy, since they display
good asymptotic properties for elliptic ptoblohn (see Section 10.4).
Moreover, the only preconditioning operation in these fonr methods is a

solve Q_lv. so that an explicit factorization of Q is not required,

The cost per iteration of these four algorithms is two matrix~
vector products (Av and ATv). two preconditioning solves (Q—lv and
Q—Tv), end 5N multiplications., Storage is required for five vectors
plus Q; the spocific storage requirements for each of the methods follow

its description.



Algorithm 9,1: CGNR with right preconditioning.
Choose x5 .

Compute Ty = f - Axo .

Compute SO = Q_TATIO .

Compute Py = Q_l‘l;o .

FOR i = ¢ STEP 1 UNTIL Convergence DO

(@ TaTe @Az )

g eV

i (Apg.Ap;)
el S Xt ARy
Tiel T Ty T 8RR

T T ~T,T

o - (@ A ri+1,Q A ri+1)

i (@ TaTe ,a AT )
-~ _ -T,T ~
Pigg =@ A1y + b0y .

1~
Pivg = @ Py

T,T,

Storage: x, r, T ATr shared with p; @ "A'r shared with Ap.
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Algorithm 9,2: CGNE with left preconditioning.

Choose X .
Compute £y = f - Axo .
~ -1
Compute Ty = Q Io .
To~T~

Compute By = A'Q T, .
FOR i = 0 STEP 1 UNTIL Convergence DO
(73,1
%17 Tp,.pp)
Pinpi

il TRt ByRy

|
Tie1 = Ty 7 840 TApy
b = (£301°T541)
i~ ~ o~
(ri'ti)
.
Pieg “AQ Ty by

Storsge: x, T, pi @ 1, shared with Ap; A'Q T shared with G lAp.
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Algorithm 9,3: CGNR with symmetric, positive—definite split

preconditioning.

Choose x

Compute r, = f — Ax

0

et = Qe

0

0

0
-1, T

Compute By = QA 16 .

FOR

Storage:

i = 0 STEP 1 UNTIL Convergence DO
(aTey.qaTey)
—1

(Ap,,Q “Ap;)

Tieg T XY 4y
-1

L} = -

T r! AiQ Api

i+1 i

T _1,T
(Ari,.Q A1)

b, = 177 dn7
i T ~1,T
{A r'i,(l A r’i)
= -1,T ]
Piyg =Q AT, +hip; .

x, ', p; ATc' shared with Ap; @ 14Tz shared with Q_lAp.

Algorithm 9,4: CGNE with symmetric, positive-definite split
preconditioning.
Choose X .

Compute r

0 f - Axo .
Compute pt‘) = ATQ-.]':D .
Compute p, = Q~196 .

FOR i = 0 STEP 1 UNIIL Convergence DO

(ri.Qﬁlri)
17 Tp.p))
Tiel T Xt APy

Tiel T T3 T 254y

-
(fi41°2 Ty4g)

—1
(ri,Q ri)

T, -1
Pilag = A Q7T + Byp}

= o1y
Piy1 = Q Pl

Storage: x, r, p'; p shered with Q_lr; Ap shared with ATQ—lr.
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9.3 Preconditioned GCR and Orthomin(k)

The preconditioned versions of most of the methods of Chapters
5 — 8 can be hendled in essentially the same 'ny.. Note that the
technique of applying the preconditioning affects the norm associated
with the minimizing methods of Chapters 5§ — 6, while this question does
not seem important for the methods of Chapters 7 and 8 thet do not
minimize a norm. We focus on the preconditioned versions of GCR and

Orthomin(k) as representative of the preconditioned methods.

As we mentioned above, the "ome-sided” (left or right}
preconditionings are aotually special cases of split preconditioming.
In Algorithm 9.5, we present preconditioned GCR and Orthomin(k)} in terms
of split preconditioning. We point ont specific issues of one-sided

preconditioning whem they arise.

If ji = 0 fer all i, then this algorithm is preconditioned GCR. If

ji = max(0,i-k+1), them it is preconditioned Orthomin(k).

The work per loop for these preconditiomed methods is idemtical to
that for the unpreconditioned versioms (see Table 5-1), except that the
metrix—-vector product is replaced by a preconditioned matriz-vector
product Q;IAQ;1;1+1. In general, this operation is performed in three

steps: 4 system of equations with coefficient matrix Q2 is solved for

»
The one exception is GCG, which we discuss in the next section,
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Algorithm 9,5: Preconditioned GCR and Orthomin(k).
Choose Ty .
Compute r, = f - Axo .
Compute ;0 = Q;lro .
Set Py = Q;1;0 .
FOR i = 0 STEP 1 UNTIL Convergence DO

~ A
(r;,qQ, Ap,)

b}

(Q;IApi.QIIApi)
x1+1 = xi + .ipi

~ ~ —1
Tig1 = 75~ 830 Apg

~1, -1~ =
B{1) (0,740, 7, ,.Q, " 4p,)

3 -1 =1
(q Apj,gl Apj)
i
— 1~ (1
Py =0 Ty v 2 biTpy
=3,

= _1, ~1~ Lot

o ap,,, = Q L jéj bj o Apj .
1

Q;lri+1; the resplt is multiplied by A; and that result is used as the
right hand side in a system of equatioas to be solved for

QIIIA ﬂ;121+1], If one—sided preconditioning is used, then ome of the
preconditioning operations reduces to mnltiplication by the identity

matrix, end the other involves the solution of a system of eqnations
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Qo =v, One can also think of the preconditioued matrix—vector product
as providing the intermediate vecter Q;1t1+1 used in the computation of
Piy1e (That is, a smbroutine can be used to compute the two vectors
lezi+l and QIIAQEI;i+I') With this viewpoint, it is relatively easy to
take advantage of the efficient techniques [20] developed for
preconditionings based on the incomplete factorizatiom of A (see Chapter

10).

The storage costs depend on the technigue of applying the
preconditioning, We assume that the preconditioning is implemented so
that Q;lAv can overwrite Av. All three techmiques require storage for
1, T, (pj}. {Q;lApj], and AQ;l;. which by assumption can share space
with QIIAQEI;. As in the unpreconditioned versiom of G(R, QIIAQ;1;1+1
can also be overwritten by Q;lApi+1. For right and split
preconditioning, onme additional vector of sterage is required for Q;l?;
for left preconditioning, Qz = I so that 051; = r. Thus, the left
preconditionad versions of GCR and Orthomin(k) have the same storage
requirements as the unpreconditioned versions (see Table 5-1), and the

-
right and split versions require one extrs vector of storage.

L} ~

If the actual residual T, = eri is required, then left
preconditioning loses this edge, since it requires an extra vector of
storage for r;- For right preconditiening, = ;1. and for split

preconditioning, r,; cam share storage with Q;l;i.
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As with CGN, the techmigue of applying the preconditioning affects
the norms and Krylov spaces associated with these metheds. The

quantities minimized are as follows:

“Q_ltiﬂz R for left preconditioning
"riﬂ2 R for right preconditioning
HQ;ltiﬂz R for split preconditioning .,

For GCR, the Erylov spaces in which these norms are minimized are all

given by
-1 -1,,1i-1
x, + <pg.Q Apgs.e.s(Q A}" Tpg>

where the dependence on the technigque of preconditioning is reflected in

the definition of Pyl

Q—lro » for left preconditioning
Py = L for right preconditioning
‘ QI Ty » for split preconditioming .

We have gensrally favored right preconditioning with the variational
methods since the norm minimized is independent of preconditioning. For
nearly symmetric preblems, split preconditioning may have an sdvantage,

since the preconditioned matrix Q;IAQEI may 2lso be nearly symmetric.
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9.4 Symmetrio Positive—Definite Preconditioning
Assume that Q is symmetric and positive—definite with factorizaticn

Q= SST, and consider split preconditioming by Q:
ir=rstas st - s e 7 (9.5)

Like CGN, the variational methods of Chapters 5 -~ 6'can be implemented
to solve (9.5) withont reference to the factorization of Q, as shown in

Algorithm 9.6.

The work per loop is the same as that for Algorithm 9.5, except
that the matrix—vector prodoct Ar' and preconditioning operation Q_lAp

are separsted. Storage is required for z, r', {p.}, [Apj], end Ar',

i
d_lAp can share storage with Ar', and for GCR, this vector can be

overwritten by Api+1‘

If =M, then A = I — & with E skew—symmetric, sco that the error

bound of Theorem 5.10 holds:

Theorem 2,7: The residuals genersted by Orthomin{1l) with split

preconditioning by the symmetric part satisfy

2
cipaiznt + (-curim)T

ey Byt < - Megly1

where

2
. 1 o+
C(x) T .

Algorithm 9,6: GCR and Orthomin(k) with symmetric, positive—definite
split preconditioning.

Choose LI

3

Compute £y =

Compute r6 =@, .

Set Py = ré .

FOR i = 0 STEP 1 UNTIL Convergence DO
(r},Apy)

tap,, a7 4p))

LTS Bk TR LS

-1
’ = -
TR L U A

—1
(Ar'_ ..,Q "Ap.}
P S e L

i (Apj.Q'IApj)

i
, (0
Piyp = Thea * 2 PP
=1,
i
, (0
Api+1 = Arj., + E_ bj Apj .

i

The symmetric part is the only preconditioming that can be used
with the gemeralized comjugate gradiemt methed. This preconditioned
method also cen be implemented without explicit referemce to the factors

of M.
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Algorithm 9,8: The preconditioned generalized conjugate gradient
method.
Set 1_1 =0 ,
Choose xo .
FOR i = 0 STEP 1 UNTIL Convergence DO
£, = f - Axi
v = M L
ny = (v.My))
1, if i =0
i+l

e
=

Qg _ep ™t g1

LIPS I P L i T L

The work per loop of preconditioned GCG is 2N multiplications plus
one matrizx-vector product and one solve M_lt. Storage is required for

I xi—l' r, and v, plus M,

The analogue of Theorem 7.2 is as follows:

th

Theorem 9,9: The error at the i step of preconditioned GCG satisfies

2

“!-li"u £ lx-xglly-.

cpirnt 4 [—c(poilp)yi

where C(A) is as in Theorem 9;:7.

Finally, the virtual equivalence of GOG and CGNE extends natnrally

to the preconditioned versions:
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Theorem 9,10: Let [xi) denote the iterates genmerated by preconditiomed
GCG, 1let {;i] denote the iterates genmerated by CGNE with split

preconditioning {Algorithm 9:4) by the symmetric part, and essume that

Xy = Xg. Then Xy = ;1.



CHAPTER 10

Some Preconditioning Techniques

10.1 Introductior

Consider the system of linear equations
Ax=1f, (10.1)

where A is a nonsingular, nonsymmetric matrix of order N. In this
chapter, we consider some examples of preconditioning techmnigues that
can be used with the iterative methods of Chapters 4 — 8 for solving

(10.1),

We seek a matrix Q that is in some sense a good approximation of A,
and that is inexpensive to use in the preconditiomed algorithms. By a
good approximation of A, we mean roughly that the conditiom number of
the preconditioned coefficient matrix A should be small, or the
eigenvalues of A be tightly clustered. The error bounds of
Chapters 4 — 6°'do not suggest 2 "best” definition for this concept.
Mereover, it is umsuvally diffienlt to analyze the effect of a particular
preconditioning for nonsymmetric metrices. As a result, preconditioning

is more of an art than a science, in which approximations Q are
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developed from heuristic notions of cleseness to A and from techniques

known to be effective for symmetric problems.

In Section 10,2, we consider preconditioning matrices constructed
from approximate factorizations of the coefficient matrix. A lower
triangular matrix L and an upper triangular matrix U are constructed
that are in some sense approximations of the factors in the LU
factorization of A, but that are also sparse. The preconditioning
matrix is the product @ = LU. We consider two such approximate
factorizations, the incomplete LU factorization {(ILD) [50, 51], and the
modified incomplete LU factorization (MILU) [19, 35, 36]. Ian Section
10.3, we discuss the related SSOR-preconditioning, whick uses an
approximate factorization of A derived from the symmetric successive

over—relazation iterative method [78],

In Section 10.4, we consider fast direct methods as
preconditionings for linear systems arising from the discretizatiom of
elliptic partial eguations. We use the error bounds of Chapters 4 — 7
and 9 to derive bounds on the asymptotic operation counts of the
preconditioned iterative methods, and we discuss the existing fast

direct methods.

Finally, in Section 10.5, we consider the preconditioning that
forms a reduced system to solve (10.1). If A is a two—cyclic
matrix [73], then with a small amount of preprocessing some of the

unknowns can be elimineted from (9.1) to produce a reduced linear system



116°

of order m £ E. This preconditioning differs from the others in that
only a subproblem of the preconditionmed problem is actually solved by an
iterstive method, and this smaller problem can be solved using any of

the techniques (inclading other preconditionings) that we have dicussed.

10.2 Approximate Factorizations

We consider two preconditionings based on the approximate
factorization of A, The heuristic used to insure that the
preconditioning is inexpensive to implement is to force the factors to

be sparse by allowing monzeros only within a specified set of locations.

The first technique is the incomplete LU factorization (ILU)
popularized by Meijerink and van der Vorst [50, 51]. Let Z be a set of
indices contained in {(i,j) | 1¢i,j¢N}. The ILU factorization is given
by Q = LU, where L and U are lower triangular and unit upper trisngnlar

matrices, respectively, that satisfy

if (i,j) & Z, then Lij =0 and U

if (i,j) € Z, then Qlj = Aij . (10.3)

=0 (10.2)

Thus, the approximete factors are forced to be zero at the indices in Z,
and the product @ agrees with A at all indices (i,j) not in Z. The
second requirement can be imposed by formally applying a Gaussian
elimjination step at all indices (i,j) # Z. For example, the following
algorithm computes the nonzero entries of the factors by a modification

of the Crout version of Gaussian elimination [41].
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Algorithm 10,1: The incomplete LU factorization.
FOR i = 1 STEP 1 UNTIL N DO
FOR i = 1 STEP 1 UNTIL N b0

IF ( (i,j) é Z) THEN

min(i, j)-1
S1 7 Ay T ti'l Liels;
IF (12§ THEN Ly, = s
IF (i) THEN Uj=s, /L.

This algorithm is well-defined provided that Lii # 0 for all i.
Meijerink and van der Vorst [51) show that if Z does not contain any
diagonal indices {(i.i)]§=1 gnd A is an M-matrix, then this
factorization is well-defined and determines a reguler splitting of
A [73]. They also give empirical evidemce that when applied to
symmetric problems arising from the discretization of self-adjoint
elliptic partial differential equations, the eigenvalues of the
preconditioned system are tightly clestered, so that this is an
effective technique to mse in conjunction with the conjugate gradient
method. (See also [44],) Typically, Z is choien to be the set of
indices for which the entries of A are zero, or some slightly smaller

set (so that the factors are slightly less sparse than A).

The second approrimate factorization that we consider is the
modified incomplete LU factorization (MILU} proposed by

Gustafsson [35, 361 and derived from the iterative method developed for
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elliptic partial differential equations by Dupoent, Kendall, and
Rachford [19F. Let Z be the set of indices that determine the zero
strocture, and assume that (i,i) # Z, 1 £ i { N. The modified
incomplete LU factorization is given by Q = LD, where L and U are lower

triangular and unit opper triamgulaer matrices, respectively, that

satisfy
if (i,j) e Z, then Lij = 0 and I]ij =0 ; (10.4)
if {i,j) # Z and 1 # j, thenm Qij = Aij H (10.5)
N
for 1 { i (N, jﬁu (Qij - Aij) =a, (10.6)
where a is a scalar. Let E ;= @ — A denote the error matrix. The extra

defining condition (10.6) of the MILU factorization is that the row sums
of E equal a. The difference is effected by modifying the ILU
computation of the diagonal entries of L so that this condition is

satisfied, An implementation is given by Algorithm 10.2.

Assume that this algoritbm is well-defined, i.e., that L11 # 0 for
ell i. We demonstrate that the computed factors satisfy (10.6), The

essential observation is that for (i,j) & Z,
E.. =-— sij . (10.7)

The residoal entries satisfy

minii,j)

By =%y Ay 2 Taely T Ay (10.8)

Algorjthm 10,2: The modified incomplete LU factorizatiom.
FOR i = 1 STEP 1 UNTIL N DO
Liy=e
FOR j = 1 STEP 1 UNTIL N DO

min(i, j)-1
S13% A5 7 :51 LtV
IF ( (1,)) § Z) THEN
PG> ) TN Ly = s

IF (i = j} THEN Lii =Lj;+s

IF {1 < j) THEN ﬁ”=s

ii

1j

ELSE Lii = Lii + sij

FOR j = i+l STEP 1 UNTIL N DO

U,,=0,. /L

ij 1j i °

But if j ¢ i, then (i,j) & Z implies that Lij = 0, so that the upper
limit of the sum in (10.8) is actually j-1. Similarly, if j > i, then
the npper limit is i-1, Hence, (10.7) follows from the definition of

s in Algorithm 10.2, Now consider [Eij} for (i,j) € Z. If j # i,

ij
then Eij =0 by (10,5), If j = i, then
i i-1
Biy= 2 L300 — Ay = [ 2Ly Uy - Ay le gy
t=1 t=1
=-s5.. + s5,. + 2 S, . +c .
87T ez M
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Thus, the contributions to the i*® row sum of E from the off-diagonal

entries are cancelled by the contribution from the diagonal, and

N
JE

Perutt B

The MILU factorization is well-defined provided that the pivot
element at each step is nomzero., The following result establishes

sufficient conditions for this to hold,

Theorem 10,3: If A is strictly diagonally dominant, then the MILU
factorization is well-defiued for a » 0, If A is irreducibly dizgonmally
dominant, then there exists a permutation matrix P such that any MILU
factorization of PAPT that is st least as dense as PAP' is well-defined

for a 2 0.

This result is due to Gustafsson [36]. Although the statement of
the theorem in this reference does not mention the permutation matrix,
the proof depends on it. Indeed, the MILU factorizatiom may not be well
defined for irreducibly diagomally dominant matrices whose rows are not

ordered suitably. For example, let

2 1 1
A=} 1 0 .
-1 0o 2

1l

and Z

n
(=
M

{(2,3),(3,2)}. Execution of Algorithm 10,2 shows that L2 2
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so that the MILU factorization breaks down. If rows onme and three and
coluomns one and three are interchanged, then the factorization is well

defined.

The parameter a can be used as & "tuning mechanism’” to speed the
convergence of MILU-preconditioned algorithms. Ian some epplications,
a = 0 has been found to be the best value (see [12] and Chapter 11), so
that the MILU factorization could be considered independent of

parameters.

Several other incomplete factorization techniques have been used
with success, including the strongly implicit (SIP) [68], alternating
direction implicit {(ADI} (see [73, 78]), and shifted incomplete LU [47]
factorizations. Unlike the MILU factorization, theae methods are
sensitive to the choices of one or more scalar parameters., (See [11]
for a recently proposed gemeralization of the MILU factorization known

as ADDER for use with elliptic partial differential equations.)

10.3 SSOR Preconditioning

Let

A=bP-L-T7,

where D is the diagonal of A, L is the strict lower triangle of A, 2ad U
is the strict upper triangle of A, The symmetric successive over—
relaxation (SSOR) iterative method [78} is the following two-stage

algorithm:



122

(D-wl) x = [(1=-w)D + mU]xi + of

i+1/2
(D—uU)xi+1

[{(1-w)D + uwlix + of ,

i+1/2
where w is 8 real scaler parameter between 0 and 2., With
e 1 —1
Q: ;TEZET(D-mL)D (D—w¥) ,
this method can be formulated as a one stage algorithm
Q11+1 = (Q—A)xi +f,
Q is the SSOR precomnditioning matrix.

The SSOR preconditioning has been shown to be effective when used
with the conjugate gradient method for symmetric, positive—definite
problems [3, 12). It is not as sensitive to the value of w as the SOR
moethod, and some techmiqunes for estimating the best value for o have
been developed [78]. Unfortunately, we know of no techniques for
estimating w for nonsymmetric problems, and the SSOR preconditioning is

sensitive to w in this cese (see Chepter 11),

We consider SSOR preconditioning despite these drawbacks because it

is easy to implement. @ can be expressed as
=1 Ay oy ldpy iy
Q= 70 oy G

Since the iterates generated by a preconditioned algorithm are

independent of multiplicative constants in the preconditioning, the
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factor i%; can be ignored. Thns, the SSOR preconditioning requires at
2

most one vector of lemgth N for storage, for p:= ;D. Moreover, when
formulated this way, the SSOR preconditioned matrix-vector product can
be computed efficiently [20]. For exsmple, consider the product Q—lAu.
Let NL and NU denote the number of nonzeros in L and U respectively. If
the product is computed naively, then 4N + ZNL + 2NU multiplications are
required. Using the techmiques developed in [20], just 3N + NL + ZNU

multiplications are meeded. Thus, if a good value for o can be found,

SSOR may be an effective preconditioning.

10.4 Fast Direct Methods

Fast direct methods can be used as preconditionings for limear
systems arising from the discretization of elliptic partisl differemtial
equations of the form {2.2), on rectangular domains., Recall that the
discretization of (2.2) by the five—point operator on a uniform n x a

grid results in a block-tridiagonal system of linmear equations

Az=1f (10.9)

of order N = nz. If A is separable, then (10.9) can be solved by fast

direct methods, which require 0(n2103,n) operatioms (see below). If it
is nonseparable but self-adjoint, then fast direct methods can be
combined with the Chebyshev algorithm [14] or the conjugate gradient
method [6, 7] to solve (10.9) efficiently. Imn particular, the error
bounds for the Chebyshev method and CG ere independent of h., We show

that these ideas can be extended to the nomseparable, mon—self-adjoimt
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case, using CGN, GCG, and the variational technigues of Chapters 5 and
6. Ve state the results for the latter techniques in terms of
Orthomin(k) only, slthough they also apply to GCR, GCR(k), MR, LSGCR,

AXEL(k), and Orthodir.

10,4,.1 Convergence Results

The symmetric part M of A is positive-definite [29]. As
Widlund [75] observes, since the skew—symmetric part R is derived from a
differential operator of lower order than that producing M, the

—1

eigenvalues of M R are bounded independeut of h for small h.

Let M = SST, and consider split preconditioming by M:
A= tstas™ s - s e gy (10.10)

The error bounds for GCG and Orthomin(1l) applied to (10.10) depend only
on p(H—ll) {see Theorems 9.7 and 9.9). Hence, these bounds are
independent of h, In light of the virtual—equivalence of GCG and CGNE
established in Section 9.4, it follows immediately that the convergence
of CGNE with split preconditioning by M is also independent of h,

Alternatively, by (4.5),
K(A) <1+ p(sIREH =1+ p07'D)

so that the error bound (4.3) for both CGNE and CGNR is independent of

h,

Each step of these preconditioned algerithms requires the sclntion
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of a system of equations with coefficient matrix M {see Sections 9.2 and
9.4), If M is separable, then these systems can be solved with fast
direct methods in O(nzlog,n) operations. The neumber of iterations
needed to reduce the error by a given factor ¢ is independent of mesh
size., If the error is to be reduced to truncation, then e is
proportional to n—z, and the number of iterations required is

proportional to log,n. We summarize these observations as follows:

Theorem 10,4: The asymptotic operation counts of Orthomin{l), GCG,
CGNE, and CGNR with split preconditioning by tho symmetric part for

solving (10.9) to truncation error are 0(n2(1°s‘n)1)_

If M is not separable, then fast direct methods sre not applicable
to (10.10). However, there often exists a separsble, symmetric,

positive—definite matrix Q that satisfies

e, (z,Q2) < (z,Mx) £ c,(2,Q2) (10.11)

for all z, where ° and o, are positive constants [14]. For example. Q
might be the discrete analogue of the negative Laplacian ~ [ 2 2]

T

If @ = VvV, then @ can be used to precondxtion (10.8) to produce tha

linear system of equations
R A M S I L I A (10.12)

The following resnlt shows that @ is essentially as effective as M for

preconditioning (10.9).
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be a symmetric, positive—definite matrix that

satisfies {(10,11). Let A2 = V*IAV—T. with symmetric part Mz = V_IHV—T
and skew—symmetric part R, = V_IRV_T. Then

o MM L oy, {10.13)

) < ey pR) (10.14)
and

T ["1(1 + o0 1R ]2

l(Az.lz) S—————-—c;——*‘ . {10,15)

Proof: For (10.13),
=1.,.-T
(z,V MV "z) {u,Mu)

A . (M) = min = min 4+ 26, »

min' 2 240 (z,2) af0 (u,0u) 1
by (10.11), Similarly, Lmax(uz) L Cye
For (10.14),

)? = ™o (B 5V R T max (Ru,0”'Re)

PE}" = 2eo (z.2) wo  (u,6u) °

But

1 < 1
(v, qu) ~ °2 (o, m0) *

Moreover, we claim that

(Ru, @ 1Bu) ¢ cz(xu,u"lkn) .

Hence,
(R )2 ¢ M8z (Rn,M—IRn) _ mex (S_lkS_Tv,S—]'RS_Tv)
PIR)™ < oo ™ (u, M)~ vH0 )

=p wip? .

To prove the claim, we show that

—1
max (V;Q_I—V)— < Sy -
v#0 (v,M "v)
—1
(v,Q "v)
Let v be a vector at which ———— attains its meximum, p. Then (p,v)
(v,M ~¥)

is & solution to the gemeralized eigenvalue problem

(see [76]1). Let w = H-lv, so that
Mw = pQw .

Hence,

_ (w,Mw)
= e &% -

Finally, (10,15) follows from (10.13}, (10.14), and the following

inequality:

Agay) C RUgAY) € [A,,, 00) + o T s

which is a consequence of Theorem 4.3.

Q.E.D,
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Corollary 10,6! If @ is & symmetric matrix that satisfies (10.11), then
the asymptotic operation counts of Orthomin(k), CGNE, and CGNR with

split preconditiong by Q are O(nz(log,n)z).

Proof: The residnals genmerated by Orthomin(k) satisfy

2

<

1 i/2 _
e 1 < [t - g egg " el

2 . -1,.2
oy + czp(H R)

by Theorem 5.9 and Theorem 10.5.

Similarly, by the error bound (4.3) for CGN and Theorem 10.5, the CGN

iterates satisfy

(14p R — o

c
E(x) ¢ 2 [-2 — ] Btz &
ey (14p(H B)) + o)
where
Iz 1 for CGNR ,
E(xi) 1=
“x—xi_"Q for CGNE .

Hence, the error bounds for these algorithms are independent of h.

Q.E.D.

This result shows an advantage of Orthomin(k) and CGN over GCG.
GCG requires the solution of s subproblem with coefficient matrix M at
ecech step, If M is not separable, then this may be an expemsive task.
In contrast, Orthomin{k), CGNE, and CGNR can be combined with an

alternative preconditioning based on fast direct methods to solve
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(10,9} even if M is not separable. (See [34] for an altermative

GCG~1ike iteration for nonseparable M.)

Note that the mse of split preconditioming in (10.12) requires that
Q be symmetric and positive—definite, Since fast direct methods are
applicable to separsble nonsymmetric matrices as well [69], it may be
prefersble to mse a separable preconditioning matrix @ that contains
some approximation to the skew—symmetric part of A. Either of the
one-sided formulations for the preconditioned problem (9.2) or {(9.3) are
suitable for such matrices. Also, as stated in Section 9.2, the norms
mininized by Algorithms 9.1 end 9.2 and Algorithm 9.5 with right
preconditioning depend only on the original problem and not on the
preconditioning. We do not have an error bound analogous to Corollary
10.6 for snch preconditioning techmnigues. See Chapter 11 for numerical

experiments with these techniques.

10,4.2 Examples of Fast Direot Methods
We conclude this section with a2 brief discussion of the known fast

direct methods. These methods comprise the following technigmes:

1. the cyclic reduction algorithm ;

2. Fourier analysis ;

3. the generalized marching algorithm .
Definitions and a complete list of references for the first two methods
can be found in the survey papers [18, 701. The generalized marching

algorithm is described ia [7, 8]. Our present concern is to outline the



advanteges, limitations, and costs of these methods,

The preconditioning matrix Q ls based on the discretization of a

separable approximation of the differential operator in {(2.2),

- (Bux)x - (Cny)y + Do + (Du)x + Euy + (Eu)y +Fo =6, (10.16)
i.e.,
=8, T=%wy . B = btx) ,

E=Ey ., B=F @ +Fin .

Thus, one of the important issmes of this precomditioming techmique is
the choice of these coefficient functioms. The other issues are the
particular choice of fast direct method and the technique of applying
the preconditioning. To s great extent, these issues are
interdependent. For example, @ is nmonsymmetric if D or E is nonzero,
but not all the methods sre generally applicable to nonsymmetric
problems. Also, as we have shown in Chapter %, the symmetry of Q

figures in the way it is applied as a preconditionming,

The choice of the approximating functions 1s highly problem
dependent, and we do not address it hers {sece [6]). We briefly address
the second issue in Table 10-1, which contains the asymptotic operation
coents of the four methods and ountlines restrictions om operatoers to

which they can be applied.

The best technique to mse for a given problem is unot gemerally
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| Method | Operetors | Operation Couat |
= : | Self-adjoint: !

Cyclie | Sn3log,n |
| Reduction | General separsble | Non—self—nd]o;nt: ]
| I | 20n%log,n 1
| | Self-adjoint separable, | 1
| PFourier | non-self-adjoint if comstant | 2031 |
| Analysis | coefficient _in at least | nilog,n |

-
| { one varisble i ]
| | | |
-
} G;::::i:;ed i Self-adjoint, separable % 12n310g,§ =
! | I |

Table 10-1: Properties of fast direct methods.
known {see [65]). We remark that the operation counts given in Table
10-1 contain only the highest order terms, and they reflect the
assumption that the coefficients in (10.16) are mot constant. (The
coefficients are smaller if @ is derived from a constant coefficient
operator.) The actual performamce of these techniques may be affected
by lower order terms, as well as idiosyncrasies of the computing

environment.

Finally, lower asymptotic operation counts can be obtained from

- ~ ~ ~
Either B, D, and Fl are constant, or C, £, and ﬁz are constant,

..The integor parameter s figures in the stability of the gemeralized
marching algorithm, On a t-digit machine, error boumads are of order
¢®27t, with ¢ > 1.
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judicious combinations of these metheds. A combination of Fourier
analysis with cyclic reduction results in the FACR method [70], with an
coperation count of 5n210!,log,n. For constant coefficient operators, a
combination of the genmeralized marching algorithm with Foorier

techniques leads to a method requiring O(nz) operations [8].

10.5 Reduced Systoms
If A is a two—cyclic matrix [73], then its rows and columns can be

permuted symmetrically so that (10.1) has the form
(1) {1)
D1 C1 x f
Ax = = = £,

D, x(z) £

where Dl and D2 are diagonal matrices of order my and m,. Without loss
of genmerality, m, 2 m,. Premultiplying by

-1
1

<pl 1

271 m,
results in the preconditioned problem

—1 (1) DIlf(n

0 D

-1 (2) (2)_n —1.(1)
2~CaDy C1 x £ C2D1 £

in which the block unknowns x(l) and x(z) ere deccupled. Block x(Z) can

then be computed by solving the reduced system

— — 1
[o, - ¢p7lc,] =2 = £ _ ¢ p e (10.17)

1)

of order m,, with x recovered by

Ay _ 1,1 _ . _(2)
x =D, (f ¢z )

Typically a, = ?.

In contrast to the other preconditioning techniques, the
coefficient matrix and right-hand side of (10.17) are computed
explicitly. This enables (10,17) to be solved by most of tﬁe other
preconditioned iterative methods discussed in this dissertation. (Tais
computation is mot necessary if no additional precomditioming is used to
solve (10.17). See [12] for a discussion of this alternmative in the
symmetric case; see [9] for e discussion of preconditioning for a
coefficient matrix that is mot explicitly formed,} If Cl and C2 are
sparse, then the preprocessing step to decouple the block unknowns is

inexpensive and the coefficient matrix in the reduced system is sparse.



CHAPTER 11

Numerical Experiments

11.1 Intreduotion

In this chapter, we describe the performance of some of the
jterative methods end preconditionings discussed earlier, The test
problems are linear systems arising from the discretization of several
non-self-adjoint elliptic partial differential equations. In Section
11.2, we describe the differential equations and resulting discrete
problems, In Section 11.3, we discuss some implementation issues., In
Section 11.4, we present the results of numerical experiments with the
conjugate gradient method applied to the normal equations {see Chapter
4), the minimizing methods of Chapter 5, and the Chebyshev and hybrid
methods of Chapter B, combined with the preconditioning techniques of
Chapter 10, Other numerical experiments are described

in 12, 5. 23, 24, 34, 46, 48, 60, 61, 75, 801,
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11,2 The Test Problem

Consider the elliptic partial differenmtial equation

- (an)x - ((.‘u.y)y + Euy + (En)y +Fo=¢6G, (11.1)
where
Blr.y) = ¢ ¥, clx,y) = o~ ,
_ _ 1
El(x,y) = y(x+y) , F(x,y) = T+xty *

v is a real scelar parsmeter, and the right hand side G is chosen so

that
wix,y) = x o7 sin(nx) sin(ny)

is the solution to (11,1). FPFor the test problem, we pose (11.1} on the
unit square 0 { x {1, 0 £ y { 1, with homogeneous Dirichlet boundary

conditions.

We discretize.(11,1) using the five~point centered fimite

difference scheme [29, 73] on & uniform n x n grid, with h = ;%T'
producing a linear system
Az=1f¢f (11,2}

of order N = nz. The symmetric part of A is determined by the
second—~ and zero—order terms of (11.1), and is positive-definite [29].
The skew-symmetric part is determined by the first—order terms. The

cost of the matrix-vector product Av is approximately 5N
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multiplications.

In the numerical experiments, we use values of h = 1/16, 1/32,
1/48, and 1/64, which result in linear systems of order 225, 961, 2209,

and 3969 respoctively., ¥e use the values v = 5, 50, and 250,

11,3 Implementation Issues

The iterative methods CGNR, Orthomin(k), GCR(k), MR, the Chebyshev
algorithm, and the hybrid method consisting of GCR followed by the
Chebyshev algorithm are used in conjunction with the preconditioning
techniques of Chapter 10, We outline some of the issues and costs

concerning the implementetion of these methods below.

Chebyghev method: We use the Chebyshev code TCHEB written by
Manteunffel [48], modified to handle preconditioned matrix-vector
products. The initiasl choice of the ellipse parameters ¢ and d {see
Section 8,2) is as follows: with no preconditioning, d is taken to be
the average of the diagonal elements of the coefficient matrix; for
preconditioned problems, d is initialized to 1. In both cases, ¢ is
initially chosen to be 0. New parameters are computed at most every 20
iterations (the adaptive procedure is invoked earlier if the residual
norm is increasing rapidly)., The overhead for the adaptive procedure

{14N multiplications [46]) is not included in the operation counts.

MILU, ILU, and SSOR preconditioning: Except for the reduced

systems, we use the efficient implementation of these factorizations due
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to Eisenstat [20]. The cost of the preconditiomed matrix—vector product
is 9N multiplications. WUnless otherwise indicated, o = 0 is nsed as the

MILU parameter.

Fast direct preconditioming: We use the cyclic reductiom algorithm
implemented in the routine BLEKITRI in the FISHPACK subroutine
package [71]. The number of multiplications for the preconditioning

solve Q—lv is approximately
2 2
200" [log,(n+1)] ~ 552" + 40nllog,(n+1)] ,

where [x] denotes the largest integer less than or eqoal to x

(see [69]). We approximate the coefficient fumctions of (11.1) by

L}

B(x) B(l.%) R Ty = C(%,y) , (11.3)

By = sEGy . Fay -irad +1rdy .

The scaling factor &6(y) in E(y) is introduced to prevent the off—
diangonsl entries of Q from being too large and violating an error
condition in FISHPACK, It satisfies 0 { b(y) ¢ 1, and is identically 1

for y =5, all h, and v = 50, h < 1/48,

Reduced system preconditioning: The cost of the matrix-vector
product for the reduced systom is approximately %N multiplications, The
MILU preconditioning operation costs an sdditional %N moltiplications.
Hence, the preconditioned matrix-vector product for the reduced system

costs approximately 9N mmltiplications.



Note that the terms “cyclic reduction’ and “reduced system” here
refer to two distinct preconditionings, Cyclic reduction is one example
of a fast direct method, wherezs reduced system refers to a way of

eliminating some of the unknowns from (11.2), See Chapter 10.

11.4 Numorioal Results

In all tests, we use right preconditioning as in (9.3) so that the
norm of the residual of the unpreconditioned system is minimized by CGNR
and Orthomin(k), et., al. The initial guess is the zero vector. The

stopping criterion is

([P ] .

12 gt

llx
The tests were run in optimized FORTRAN-20 on a DECSISTEM 2060. With
the exception of the experiments nsing the cyclic redmction
preconditioning, all tests were rur in double precision (63 bit
mantissa). The experiments wsing cyclic reduction were run in single

precision {27 bit mantissa)., The Chebyshev algorithm was not used with

cyciie redection precomditioning.

The main set of results is shown on pages 142-164. This data is
arranged in three groups, corresponding to y = 5, 50, and 250. VWe

comment briefly on some of the patterns exhibited in these tests,

Among the iterative methods, the norm—minimizing methods
Orthomin(k), GCR(k), and MR exhibit fairly similer behavier, but require

fewer operations with small k {0 or 1) than with k = 5. The Chebyshev
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algorithm wsually converges more rapidly {in terms of multiplications)
than these methods, but it may diverge imitially before good parameters
are found. The conjugate gradient method applied to the normal
equations is always the least effective iterative method. (See Figures

11-1, 11-2, 11-3, 11-8, 11-9, 11-10, 11-15, and 11-16.)

If enough preprocessing steps are taken, then the hybrid metheds
prevent the initial divergence of the Chebyshev algorithm, but they do
not always cnt the total cost of satisfying the stopping criteriom,

(See Figures 11-6; 11-7{ 11-13, 11-14, 11-19, snd 11-20,) This is due
in part to the higher cost of the G(R iterations. Also, we suspect that
the eigenvalue estimates provided by GCR may delay the acquisition of

information about the extreme eigenvalues by the Chebyshev algorithm.

All of the preconditioning techniques are improvements over mo
preconditioning. (See Figures 11-4, 11-11, and 11-17.) Among the
preconditionings, the combination of the reduced system with the MILU
factorization seems to be the most effective, (See Figures 11-5, 11-12,
and 11-18,) The MILU preconditioning seems to be more effective than
the ILU preconditioning. The cyclic reduction preconditiomning is
competitive with the incomplete factorizations only for small y.
(Because of this, we did not include a figure for cyclic reduction
preconditioning for y = 250, h = 1/48; a represemtative picture of its
performance for this problem cam be seen in Fignre 11-17.) Its

difficulty for larger y is probably due in part to the scaling 5(y) in
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(11.3}. Note, though, that the mumber of iterations required to reach
the stopping criterion with this preconditioning does not grow with
decreasing h (see Tables 11-2, 11-4, and 11-6), suggesting that it may

be useful for very large problems.

Recall that most of the convergence results for the methods of
Chapter 5 require that the symmetric part of the coefficient matrix be
positive-definite., Although this requirement is satisfied by A, we do
not know in general whether it holds for the preconditioned coefficient
matrix. Indeed, we have encomntered numerous preconditioned problems
srising from elliptic partial differential equations in which the
symmetric part of the preconditioned matrix is indefinite, including

some of those msed in the preceding tests, We itemize these below:

n

— MILU preconditioning: h = 1/48, v =5,
h=1/64, vy = 5, 50, 250 ;
~ Cyelic reduction preconditioning: h =1/16, ¥y = 50 ,

h=1/16, 1/32, 1/48, 1/64, vy = 250 .

We have also encountered indefiniteness with the ILU preconditioning in
other problems, althovgh it seems less prone to this difficnlty than

MILU. We feel that this issue merits further study.

In Table 11-7, we examine in more detsil the effect of the mumber
of directions k on Orthomin(k)., The data suggests that there is little

advantage to taking k much larger than 2, and that MR (k = 0) may at
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times converge more slowly thaa Orthomin(k) for k 2 1. GCR(k) behaves

in a similar manner.

In Figure 11-21, we show the effect of a on the MILU
preconditioning with Orthomin(1), for h = 1/48, The value a = 0 is
approximstely optimal (a = 0.1 required one fewer iteration for
y = 250}, We do not know how a affects the definiteness of the

proconditioned problem,

In Fignre 11-22, we briefly examine the SSOR preconditioning with
Orthomin{(l), for h = 1/48, These rosnlts snggest thet SSOR
preconditioning is very semsitive to the valne of w. Indeed, the curves
are cnt off abruptly at their right endpoints because the preconditioned
problems are indefinite for larger valmes of w and Orthomin(1l) failed to

converge.

ey, My
Pinally, in Table 11-8, we compare the bounds for

derived
“‘1“2
in the proof of Theorem 5.9 with the maximum valnes attained during the

exscution of Orthomin{l). We consider fonr problems: h = 1/16, y = 5

and 50, no preconditioning and MILU preconditioning. In the table,

2
B ryin ™M 1472
B, = [1 - asn) ]
Y {A7A)
max
X, (M)2
min i/2
B, :=[1- .

2
Mg DAL (M) + p(R)

The data suggests that the boumds may not be tight.
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Figure 11-1: Residual norm vs. moltiplications for several iterative

methods with MILU preconditioming, for y=5, h=1/48.
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Figure 11-3: Residunal norm vs, multiplications for several iteratjve
methods with cyclic rednction preconditioming, for y=5, h=1/48,

Figure 11-4: Residusl norm vs., multipiications for Orthomin(l) with
several preconditionings and with no preconditioning, for
. y=5, h=1/48,
The data for MR, Orthomin(5), GCR{1), znd GCR(5) was nearly identicail
to that for Orthomin(1) in this problem.



MILD | ILD I
| wr | s8 | 323 | 11 |
| orthomin(1) | 32 | 78 | 9 |
| Orthomin(5) | 25 | 53 | 9 1
| GCR(1) | 37 | 93 | s |
| ecr(5) | 28 | 61 | s |
| ceNR | g0 | 165 | 13 |
| Cchebyshev | s | 9 | - 1

146

Table 11-1: Number of iterations to sstisfy stopping criterion, for

y=5, h=1/48,
| Iterations 1 Multiplications |
| 1/n i MILU ILU Cyc.Red. | MILU ILD Cyc.Red. |
1 16 | 14 19 8 | 50397 67957 85725 |
| 32 | 22 50 9 | 339741 765117 549492 |
| 48 | 32 78 9 | 1134925 2747869 12203712 |
| 64 1 40 123 9 | 2548429 7788053 2892032 |

Table 11-2: Iterations and multiplications nsed by precomditiomed
Orthomin{(1) to satisfy stopping criterion, for y=5 snd several
mesh sizes.
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methods with MILU preconditioning, for y=50, h=1/48.
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Figure 11-10: Residual norm vs. multiplications for several iteragive
methods with eyclic reduction preconditioning, for y=50, h=1/48,

Figure 11-11: Residusl! norm vs, mnltiplications for Orthomin{l) with
several preconditionings and with no precomditioning, for
» v=50, h=1/48,
The deta for MR, Ortbomin(5), GCR(1), and GCR(5) was nearly
identical to that for Orthomin(l) im this problem.
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) I Mo | 1L0 | cyc.Red.|

| m | 21 | 32 | 14 |

| Orthomin{1) | 21 | 32 | 14 |

| Orthomin(s) | 20 | 31 | 12 |

| Gcr(1) | 21 | 32 | 14 |

| 6Gcr(s) | 20 | 3s | 12 |

| coNr | 37 | 58 | 17 |

| Chebyshev | 43 | 36 | - |
Table 11-3: Number of iterations to satisfy stopping criterion, for

vy=50, h=1/48.
| Iterations | Mnltiplications |

I /e MILD ILU Cyc.Red. | NILU ILU Cyc.Red. |
| 16 | 9 10 23 | 32837 36349 245730
| 32 | 15 19 17 f 233397 294165 1036332
| a8 | 21 32 14 ! 749221 1134925 1896007 |
| 64 | 27 45 14 1 1727765 2864069 4494447 |
Table 11-4: Iterations and moltiplications msed by preconditiomed

Orthomin{1) to satisfy stopping criteriom, for y=50 and several

mesh sizes,
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Pignre 11-12: Rednced system preconditioning, and reduced system

followed by MILU preconditionming, compared with methods spplied

to the fnll linear system, for y=50, h=1/32.
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Figure 11-13: Residual norm vs. multiplications for the GCR/Chebyshev
hybrid method with MILU preconditiening, for y=5%0, bh=1/48.
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Residual norm vs, moltiplications for several iterative
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Figure 11-17: Residual morm vs. multiplications for Orthomin{1) with
several preconditionings end with mo preconditioning, for
y=250, h=1/48,

| MLt | ILU 1 Cyc.Red.|
| MR | 16 | 17 | 39 |
| Orthomin(1) | 15 | 14 | 39 |
| oOrthemin($) | 13 1 14 | 38 |
| ecr(1) | 14 | 14 | 39 |
[ ecr(5) | 14 | 14 | g |
| conr I 26 | 26 | 172
| Chebyshev | b3 I | 17 | -
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Table 11-5: Number of iteraticns tc satisfy stoppimg criterion, for
v=250, h=1/48.

| Iterations | Mnltiplications
| 1/n | MILU TILU Cye.Red. | MILU LU Cyc.Red.
| 16 | 7 8 94 | 25813 29325 1003087 |
I 32 | 10 11 53 | 157437 172629 3227112
| 48 | 15 14 39 | 538837 503773 5274182
{ 64 | 20 19 30 I 1285869 1222741 9622175

Table 11-6: Tterations and multiplications used by preconditioned
Orthomiu(1l) to satisfy stopping criterion, for y=250 and seversl

mesh sizes,
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Figure 11-20: Residnsl norm vs, multiplications for the GCR/Chebyshev
bybrid method with ILU preconditioning, for y=250, h=1/48,

| No preconditioning

| MILU preconditioning )

|Iterations|
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|
I x 1 Molts | |Iterationsl Molts |
it + + + +
l ol »>s00 | »4250000 | | 39 | 488413 |
I 111 306 | 3493287 | | 22 | 339741 |
| 211 156 | 2225893 | | 21 | 379345 |
| 311 174 | 2976349 | | 21 1 431257 |
| all 167 | 3326195 | | 20 | 456441 |
y=35 1 s1 1 143 | 3242699 | | 20 1 499701 |
I 611 138 | 3508657 | | 20 | s40077 |
[ B I I & ] | 3714177 | | 20 I 5717569 |
1 811 125 | 3ss0607 | | 20 1 612177 |
I 91| 129 | 4323079 | | 20 | 643901 |
fw it a3s | 48s0471 | | 20 | 6712741 |
| x | lTterations]! Mults | |Iterations!  Mults |
| ol ] 135 | 1155691 | § 15 f 193021 |
| 111 142 | 1622017 | | 15 I 233397 |
| 211 108 I 1539181 | | 14 | 252813 |
I 31 ) 17 | 1997203 | | 14 | 284537 |
I 411 121 | 2403343 1 | 14 | 313377 |
y=5 | s11 120 | 2714941 | | 14 | 339333 |
| sl 120 1 3043717 | | 13 | 332793 |
| 711 1 1 3398323 | | 13 | 350097 |
I 811 127 | 3913803 | | 13 | 364517 |
I 9 125 | 4185151 | | 13 | 276053 |
lwo bl 132 | 4778373 | | 13 | 384705 |
| x| |1terationsl  Mults | |Iterationsl Mults |
+——+ + + + + +
I ol | >s00 | 4250000 | | 11 | 143789
I 111 205 I 2340847 | | 100 | 157437 |
I 211 210 I 2997769 | | 10 | 180509
| 311 213 | 3646201 | | 10 | 200697 |
| 411 22 | 4389481 | | 9 | 194157 |
y=250 | s| 1 186 | 42290377 | | 9 | 208693 |
I 61} 194 | 4955137 | | 9 | 214345 |
I 711 193 | s46s731 | | 9 | 220113 |
] 811 185 | 5746487 | 1 9 | 222997 |
| sl | 189 | 6391999 | | 9 | 222997 |
lwoll 19 | 71207163 | | 9 [ 222907 |
=t + + +— + +
Table 11-T: Iterations and multiplications used by Orthomin(k} to

satisfy stopping criterion.
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- Bl B, | Ratio ;
b vy=35, WNooprecon. ! .99996 | .99807 | .93%78 i
i T = 50, No precon, | .,99998 | ,99997 | .98928 i
i ¥ =5, MILU I 97572 | .e1728 | 58727 i
| y = s0, MILU I .94071 | .8s4s2 i 29181 i
Table 11-8: Upper bounds for “'i+1“1’"'in2 compared

with mazimum values obtained during oxsciitiod 5f Orthomin{(l)

for b=1/16.
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i7 | Convergence { |
i Method ] Domaiz ] Expense [
| conr, conE | Goneral | Fixed, ATa |
12 | GCR | M p.d. | TIncrease |
Conoluaions [ i 1 |

= Orth:?an(k) = M p.d. { Fized
i LSGCR | M p.d. | Incresse |
Minimizing + = N
| Axol(k) i M p.d. | Fizea |
In this chapter, we roview the main ideas of the dissertation and i Orthodir i General | Increase |
suggest some arens for further research, } Orth:;;r(k) ! M=1 I Fized ;
¥e have attempted to describe and add to the development of | GCo | N=1 | Fized !
iterative mothods for large, sparse, nonsymmetric linear systems, Moch i Orthores | M p.d, | Increase |
of the effort in this direction hes been in gemeralizations of the Galerkin- | Orthores(k} | M=I, unknown for | Fized i

Lanczos | k22 | more general A |
conjugate gradient method. Algorithms based om this idea have the - - + +
I FOM, DFOM | M p.d. | Increase |
advantage of requiring no a priori informationm about parameters (eo.g., — - + +
| IoM(r), DIOM(k) | N=I, vaknown for | ... |
cigonvalues) associated with the coefficient matrixz. Although the I k22 | more general A |

optimality properties of CO appear to be achievable for nonsysmetric | Chebyshev ! N p.d. | Fized |
problems only at large expense, several algorithms have been proposed Othors i Broyden | General | Incresse |
that are less than optimel but imexpensive and convergent. i Hybrid | M p.&. | Pized !

[
[

An alternetive approach is to scquire information about the Table 12-1: Summary of iterative methods and their properties.
coefficient matrix during the iteration, and to use this information to

In Table 12-1, we list the methods that we have considered, their
modify the iteration. This idea is the basis for both the adaptive
! i f convergence, &nd some aspects of their work and storage
Chobyshev method and Broydea's method. Of these two techniques, only domsins o gence.
f
. The C6-1ike methods are gronped eccordimg to the properties o
the Chebyshev method has low cost per step, costs e
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CG that they generalixe., The convergence domains consist of the lergest
classes of nonsymmetric matrices A for which the methods are known to
converge. They are identified as general nonsingunlar matrices
(Genersl), matrices with positive—definite symmetric part (M p.d.), and
metrices 'hose.lynmetric part is the identity matrix (M = I), For the
work/storage properties, we specify whether these oxpenses per iteration
are fired or increasing with the number of iterations. JIn addition, we

Ta

identify those methods that generate a Krylov sequence baged omn A
rather than A, Note that methods with increasing costs, snch as GCR,

can have their costs fized thromgh restarting.

¥o claborate ou the convergence domsins. For the aorm-minimizing
methods, we have conmstructed counter—examples in the next larger domain
for which the methods do not converge. For example, Orthomin{k) is mot
guaranteed to converge for general nonsymmetric matrices. We are less
certain sbout Orthores(k), IOM{k), and DIOM(k). We know of no
couvergence results for these methods that are applicable to problems
with positive—definite symmetric part, but we do not have examples of
soch problems for which the methods do mot converge, We indicate this
uncertainty in the table, (GCG was not desigued for more gemersl
problems,) Finslly, recall that while the Chebyshev polynomials are of
use if the cigenvalues of A lie in the right half plane, the adaptive
Chebyshev algorithm requires that the symmetric part be positive—

definite.

172

We have performed momerical experiments with a smbset of these
methods, using several preconditioning technigues. In gemeral, we have
found the Chebyshev method to be more rapidly convergent than the
CG-1like methods (Orthomin(k) and GCR(k)) tested, but the former method
is sensitive to iteration paramoters. All of these methods appear to be
more offective than the conjugate gradient method applied to the norm;l
equations, Precoanditionings based on inconpleie factorizations, fast
direct methods, and reduced systems all speed the convergence of the

iterative methods,

Finally, several important issues concerning these methods are

uaresolved. We feel the most important omes are the following:

1, Error bounds: The iterative methods seem to comverge more
rapidly than the current error bounds suggest; we do not kmow

if these bounds are tight or if there are stronger bounds.

2. SBtopping griteria: We have used the norm of the residual for
the stopping criterion because it is ecasy to compunte.
However, the error x=xy might be Ilrg; even if the residuoal
is small. For symmetric, positive—definite problems, an
upper bound for the norm of the error can be obtained fairly
easily [38]. We know of no simple way to do this for

nonsymme tric problems.



3, Indefinite systems: Problems in which the symmetric part is
indefinite occur in applications, snd (as we showed in
Chapter 11) they may result from preconditioning. Most of
the methods considered are not rigorously applicable to

indefinite problems.

4. Yector pachines: Since the iterative methods are based on
inner products and scalar—vector products, they are well-
suited to vector mechines. However, the forward- and back-
solves required by the incomplete factorizatiom
proconditionings cannot be implemented as efficiently on
vector machines, Other technignes need to be examined.

{See [72] for a list of references to work im this area,)
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