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Abstract

When solving the linear system Ax = b where A may be nearly singular and b is not
consistent with A, one is often interested in computing a deflated solution, i.e., an unique
solution to a nearby singular but consistent system A_ x 4= b. Keller [14, 15] has considered
deflated solutions with A_ corresponding to setting a small pivot of the LU-factorization of A to
zero. Stewart [22] proposed an iterative algorithm for computing a deflated solution with A
corresponding to setting the smallest singular value of A to zero. Keller’s approach explicitly uses
submatrices of the LU-factors whereas Stewart’s approach is smplicit in that it only involves
solving systems with A. In this paper, we generalize the concept of a deflated solution to that of a
deflated decomposition which expresses the solution x in terms of x 4 and the null vectors of A
We treat such decompositions in a uniform framework that includes the approaches of Keller and
Stewart and introduce some new deflated solutions based on the LU-factorization. Moreover, we
prove some results that relate the different kinds of deflated solutions. In particular, we prove
that the difference between one of the LU-based deflated solutions and the SVD-based deflated
solution tends to zero as A tends to exactly singular. In addition, we present non-iterative
implicit algorithms for computing the LU-based decompositions. Numerical results verifying the

accuracy and stability of the algorithms are presented.

1. Introduction
In many numerical problems (for example, in the numerical treatment of nonlinear
eigenvalue problems [5, 13, 16, 17, 19, 20], homotopy continuation methods for solving nonlinear
systems [1, 9], nearly decomposable Markov chains [21], compartmental models [8] and
constrained optimization problems [10]), one often is faced with the problem of having to solve
the linear systems of the form
Ax=b (1)
where it is possible for A to become nearly singular. For simplicity, we shall assume in this paper
that A is square and its nullity is at most one. The complete framework generalizes to higher

dimensional null spaces but we shall not discuss that here.

For any singular matrix A, with a one dimensional null space spanned by u, if x gisa
solution of the consistent system A_ x,; = g, then x; + p u is another solution for all scalars p.

Consequently, for the linear system A x = b with A close to A, the exact solution x generally




has a large norm. In many applications (see [3] for example), instead of computing x directly, it
is preferable to compute the solution x decomposed in the form
X =x;+ 10U, (2)

Tx 4 = 0. Of course, one would like to

where x, is purged of u, for example by requiring that u
compute x accurately. However, if one takes the obvious approach and solves the system A x =
b directly for x (for example, by Gaussian Elimination) and then orthogonalize x with respect to
u to get x, the solution x one obtains will be dominated by the vector pu and in finite precision,

the accuracy in x; will deteriorate as a result. In this paper, we propose and analyse algorithms

for computing such decompositions in a numerically stable manner.

We call x a deflated solution of (1) and (2) a deflated decomposition of the solution x of
(1). This decomposition can be viewed as an accurate representation of the solution x of (1) in
terms of two parts: a part in the null space u of A  and a deflated part purged of u. In Section 2,
we shall study the question of existence and uniqueness of deflated solutions and deflated

decompositions under a general setting.

Depending on how A_ and b are defined in terms of A and b, there may be many different
deflated solutions and decompositions. One possibility is to define A_ to be the nearest singular
matrix to A in the Frobenious norm and define x ; to be the minimal length least squares solution
to the system A x; = b. This corresponds to setting the smallest singular value of A to zero in its
singular value decomposition (SVD) to obtain A, and taking b to be the orthogonal projection of
b onto the range space of A.. To avoid computing the SVD of A explicitly, which is usually
much more expensive than solving linear systems [2, 11], Stewart [22] gave an implicit algorithm
for computing x; which only requires the ability to solve linear systems with A. In Section 3, we
present this algorithm and show how it can be extended to compute the deflated decomposition
of x. Since the singular vectors required in his algorithm may be inaccurate, Stewart used a form
of iterative improvement to refine the deflated solution. We shall show in Section 6 that if the
inverse iteration is arranged so that these approximate singular vectors satisfy a simple

relationship, then no iterative improvement is necessary.

In Section 4, we define a class of deflated solutions based on a LU-factorization of A with a
small pivot, with A_ obtained by changing some elements of A by amounts of approximately the
same size as the smallest pivot in the LU factors. These matrices A_ have the property that their

left or right null vectors can be determined accurately (to machine precision) by only one back-



substitution. In Section 6, we present implicit iterative algorithms similar to Stewart’s for
computing these deflated solutions. We analyse the convergence and stability of these algorithms

and show that no iterative improvement is necessary.

In Section 5, we prove some results that relate the various deflated solutions. In particular,
we show that the difference between one of the LU-based deflated solutions and the deflated
solution based on the singular vectors tends to zero as A tends to exactly singular, whereas for
the other LU-based deflated solutions this difference tends to something proportional to vgi),
where v_ is the left null vector of A_. These results are verified by numerical experiments in

Section 7.

We have made no attempt to survey all related work in this area although we would like to
mention the work of Peters and Wilkinson [18]. Throughout this paper, upper case Latin letters
denote matrices, lower case Latin letters denote vectors and lower case Greek letters denote
scalars. We shall use the notation ||.|| to denote the Euclidean norm, (u), to denote the k-th

component of the vector u and P with |[u]| = 1 to denote the orthogonal projector I-uu?.

2. Existence and Uniqueness
Deflated solutions of (1) are solutions to a nearby singular but consistent system derived

from (1). All the deflated solutions that we are going to define are solutions to systems of the

form:
A xy;=8SAx;=Rb, | (3)
Nxy=xy, : (4)
where S, R and N are matrices that are related to A and where A, = SA is a singular matrix

"close” to A, with a one dimensional null space. We shall denote the normalized left null vector
of A_ by v_ and the normalized right null vector by u. Further, we shall only use matrices N
with a one dimensional null space spanned by a normalized left null v, and a normalized right

null vector u .

The following lemma gives necessary and sufficient conditions for the existence and
uniqueness of the solution to the above system.

Theorem 1: The system (3) and (4) has a solution if and only if V:R = 0. The

solution is unique if and only if vzuS #~ 0.

Proof: The conditions for existence is simply that the right hand side Rb be in the



range space of A_ If v;]i{ = 0, then all solutions of (3) are of the form x; = x, + v u,,
where x, is any solution of (3) and v is an arbitrary constant. Condition (4) gives (vn’g(o

+v vEus) = 0 from which we can uniquely determine v if and only if v}us £ 0.

Throughout this paper, we shall use matrices S, R and N of a special form so that the

conditions in Thoerem 1 are automatically satisfied.

Definition 2: We shall always use S, R and N of the following forms: S =1 - wvg; R

=1- stTand N=1I- uspT with ||v || =1, v;rw =1, v} =1 and u;‘i> =1, and ||w||,

[lyl] and ||p|| are bounded independently of the singularity of A.Moreover, if A is

singular, then v_ must be chosen to be the null vector of A so that A = A.

Theorem 3: If S, R and N have the forms in Definition 2, then the system (3) and (4)

has a unique solution.

Proof: It can be easily verified that the vector v_ in the definition of S is indeed a left

null vector of A_ and vrsrR = 0. Moreover, v. = p/||p|| and so v;fus = 1/||p|| 5~ 0.

Therefore, the conditions of Theorem 1 are satisfied.

Definition 4: Define u, with |[u_|| = 1 and § > 0 to be the unique vector and scalar

satisfying u = 0 w. Similarly define u with Huy|| =1 and £ 2> 0 to be the unique

vector and scalar satisfying u =Ky

Note that when A is nonsingular, u  and u, are just multiples of Alw and A'ly and 0 and
k are normalization constants. When A is singular, u, = u, = u and § = k = 0. When A is
nearly singular, u  and u, are approximate null vectors of A and # and x have small absolute
values. In fact, it can easily be verified that u_ is the normalized null vector of A i.e. u = u_

The choice of N implies that u = u_.

If S and R have these specially simple forms, then the solution x of (1) can be easily
expressed in terms of the deflated solution x ; and the vectors u, and u_,.
Theorem 5: Let x; be the unique solution satisfying (3) and (4) then the following is a
solution of (1) :
x = xq + (vib/k)u, - (vAxy/0)u,,. (5)
Proof: To show that x given by (5) satisfy Ax = b, note that Ax = Ax, + (v;]i))y
- (vAx)w = SAx; + (I-R)b =Rb + (I-R)b = b.

We call (5) a deflated decomposition of x. When A is nonsingular, (5) can be interpreted as



a decomposition of the unique solution x of (1) into a part spanned by approximate null vectors
of A (which could have a large magnitude) and a deflated part whose magnitude remains
bounded. When A is singular, it appears that (5) is not defined because of divisions by zero, but
it can still have the following interpretation. First note that v;rAx g = 0 because A == A_when A
is singular. If b is consistent with A, i.e. V:ﬁ) = 0, then (5) can be intrepreted as x, plus an
arbitrary scalar multiple of u_ and therefore still represents solutions to (1). If v;!i) £ 0, then
there is no solution to (1) but (5) can still be interpreted as exhibiting a unique solution of a
nearby singular but consistent system (x,), a null vector of A (v, = v, = uy) and the amount
that b is inconsistent with A (v’sFo) Thus, the concept of deflated solution and deflated

decomposition is meaningful for both singular and nonsingular systems.

With the above interpretation, the deflated decomposition is unique in the following sense.

Theorem 8: If the vector x = z + puy - (V;I‘Az/ﬂ)uW with Nz = 1z satisfies the
equation Ax = b, then z = x  and p = v'sli)/n.

Proof: Form Ax and it can be verified that it is equal to Az + pry. But Ax =b =
Rb + (v's]i)) y. Thus Az = Rb + (v;ﬁo - p)y. If A is nonsingular, then multiplying on
the left by v;rshows that the coefficient of the last term must be zero and therefore p =
(v;li))/lc. If A is singular, then v’sli) = 0 and k¥ = 0 implying that p may have an
arbitrary value. In any case, the last term is zero and it follows that Az = Rb and

since Nz = z, from the uniqueness part of Theorem 3, z = x,.

For the deflated solution to be meaningful, the matrices S and R should be chosen so that
A is "close” to A and Rb is close to b in some norm. In particular, if A is singular then S is
chosen so that A, = A For computational purpose, the matrix N must also be chosen so that x d
remains bounded independent of the singularity of A. We sce from the form of S that A_- A =
w (V;I}\) and therefore it is natural to use approximate left null vectors of A for v_. In the
following two sections, we shall see how v_ can be defined in terms of the SVD of A and the LU-
factorization of A. Even with v, fixed, there are some leeways in choosing the vectors w, y and p

and this gives rise to a variety of deflated solutions and deflated decompositions.



3. Deflation Using Singular Vectors
Let u_, and v_ be the normalized right and left singular vectors respectively corresponding
to the smallest singular value o of A. Then we have

Ausv=0'v (8)

sV
A vV, =0u. (7)

Stewart’s definition of a deflated solution [22] and our extension to the corresponding deflated

and

decomposition correspond to using v, =w =y =v_ and p = u_,. In other words, one uses S
=R =P, and N=P_ in(3)and(4).
8v 8V

Theorem 7: We can write the solution x of (1) as

x——-~xsv+(\r:ls‘vb/a)usv (8)
where x__ is the unique solution of the following system:
P Ax =P b (9)
a,nd 8V 8Y
Pu Xsv = Xy (10)

8y
Moreover, the matrix

A, =P, A

s sv

=P AP
v u

sy sV

=AP,

8V

=A-0ov, ‘i[;v (11)
is singular and has v_, and u_, as its left and right null vectors respectively.

Proof: The identities in (11) can be easily verified by using (6) and (7). The existence

of a unique deflated solution x_, follows from Theorem 3 and the form of the deflated

decomposition follows from Theorem 5.

From Theorem 7, we see that x_ is a deflated solution in the sense that it is a solution to
the consistent system (9) with a singular matrix A, which actually corresponds to setting o to
zero in the SVD of A and is thus the closest singular matrix to A in the Frobenius norm. In fact,

by choosing N =P , x_ Is the minimum length least squares solution of the system A x = b.
8T




4. Deflation Using LU-factorizations
We assume that we can compute a LU-factorization of A (of size n by n) with a small pivot

in the k-th position of the form

QAQ = LU=
ﬂ|~ L1 0 0 «; w; Ul y RU |+

| v} 1 ol | o0 € u; | (12)
| [ |

+ RL Vo L2 + + 0 0 U2 +

where Qp and Q are row and column permutation matrices, L is unit lower triangular, U
is upper triangular and W =c¢ is a small pivot. We shall assume without loss of generality that
the row and column permutations have been pre-applied to A and work with Qg A Q instead of
A. Because the dimension of the null space of A is assumed to be at most one, this implies that
the matrices L, U, and U, are well-conditioned, i.e. |, HUI'IH and ||U2'1|| are o(¢’!). In other
words, we are assuming that the singularity of A reveals itself solely in the smallness of ¢. For
the deflated solutions to be useful, ¢ must be of about the same order of magnitude as the
smallest singular value o of A. We note, however, that although this is often assumed by many
people, it is well-known that it does not always hold with the usual pivoting strategies employed
in Gaussian Elimination, as the often quoted example of the matrix {ai,j =-1if }>i, = 1 1if i=j,
= 0 if i>]j} shows [12, 23]. The reader is referred to [4] for a two pass algorithm that is

guaranteed to produce such a small pivot for a general matrix.

Based on the LU-factorization, it is easy to define an approximate left null vector for A.

Definition 8: Define v) , with ||v) || =1 and a > 0 to be the unique vector and scalar
satisfying
T
At v =ae. (13)
Note that if A is nonsingular, v and a can be computed by
-T
Vi, = @A e, (14)
anda =1/ ATe | (15)

The choice of e, in (13) ensures that a = O(e), making v, an approximate left null vector of A.
Lemma 9: a = O(e).
Proof: It can be shown by directly computing v, from (12) that o =
f/|IL'T(O,..,O,I,-Uz'Tuz)T|| where the 1’ occurs in the k-th position. Since ||L!|| and




||U2'1|| are assumed to be o(¢’l), we have a = O(e).
If A is singular, then v, is the normalized left null vector of A and a = 0.

Similar to the deflated solutions based on the SVD of A, one can use v, to define A_ by
choosing vV, =W =V or equivalently choosing S = P, . Note that this choice of w satisfies
lu

v;rw = 1. However, this is not the only way to define A_. Instead of the orthogonal projector

P_ , one can use an oblique projector.
M

Definition 10: For any vector u with Y 7 0 and 1 < j < n, define E{1= I-u e’f/

u..
J

The matrix E{x is singular and has simple left and right null vectors.
. T o ST T
Lemma 11: E! u =0, (E) ej—O,(EJu) =E, (E)")" = (E)".

Note that the projection operator P has almost the same properties, except that ﬁuu = 0.

Since v, has norm one, one can always find an index j such that (vlu)j'1 = 0O(1),
independent of ¢. Now one can define S by choosing v, = v; and w = e; / (vlu)j’ or equivalently

choosing S = (EJv )T. Note that this choice of w also satisfies V’SI;N =1.
hu

We now have two possible A’s.

iti . == j \T =
Definition 12: A = (Evl“) A A = Pvlu A.

Next we define the two corresponding vectors u_s.
Definition 13: Define u and u_ with I|up|| =1land |[u||=1andy >0and § > 0
to be the unique vectors and scalars satisfying

A u, =V (16)
Au, = B e, (17)

The following lemma shows that v, , u_ and u, are related and that 8 and ~ are O(e).
Lemma 14: 7= « (up)k = O(e), = a(u), / (Vlu)j = O(¢).
Proof: Follows easily by left multiplying (16) and (17) by \%‘u and the fact that o =
O(€) and (vlu)j'l = O(1).
It is straigt-forward to prove the following identities for A_ and Ap.

Lemma 15:

— (] \T
A, =B )T A



— (mi \T k
= (B} )T AEE

—_ k
— AEK

e

— (gl \T
- @ rar,

= A-(a/(v,)) ¢ e (18)
is singular and has v, and u_ as its left and right null vectors.
Ap = Pvhl A
_ k
= th AE]

P

=AE‘;
P

=P AP
v u

lu P

T
=A-av, e (19)
is singular and has v and u, as its left and right null vectors.

Thus we see from (18) that A_ is obtained from A by perturbing it at the (j,k)-th position
by a quantity that is O(¢). We also see from (19) that Ap is obtained from A by perturbing the
k-th column of A by quantities that are O().

Note that the operators Eﬁe and Eﬁp are well defined because of the following Lemma.
Lemma 18: (u,), 7 0, (v ), # 0.
Proof: When A is nonsingular, this follows from Lemma 14. When A is singular, then
u, = u, = u and direct computation shows that the unnormalized u_ is equal to

(-Ul'lul, 1, 0,..,0), where the "1’ is in the k-th position. Therefore, (u), 5% 0. In fact,
since ||U1'1H = o(€}), (us)k'1 = O(1).

Next, we have to choose R so that the existence condition V;FR = 0 of Theorem 1 is

satisfied. It can easily be seen that the choice of R =P or (EJv )T will do. This corresponds to
lu hu

choosing y = v, or e, /(vlu)j and the corresponding u ’s have already been defined in (17) and

(16).

Lastly, we have to choose N so that the deflated solution is unique. It turns out that either

P, or Eﬁ will do. The choice of N = P corresponds to p = u_ and the choice of N = EE
8

8 8 8

corresponds to p = e, /(u,),. For either choice, u;li) = 1 and uniqueness follows from Theorem 3.
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The choice of N = P corresponds to defining x, to be the unique minimum length
8

solution to A x = Rb. The choice of N = Eﬁ makes x the unique solution to A x = Rb with x,

8

= 0. Choosing R = P and N = P makes x; the unique minimum length least squares
lu 8

solution to the system A_x = b.
To summarize, we have two possibilities for S (namely (E{.,m)T and P"nu)’ two for R (namely
(E;‘, hl)T and Pvlu), and two for N (namely Eﬁs and P“s)’ giving rise to eight deflated solutions and
their corresponding deflated decompositions. We shall adopt the following notation.
Definition 17: We shall denote the LU-deflated solutions to (3) and (4) by xgpy, where
S, R and N can be either e or p depending on whether the E or the P operator is used.

For example, Xepe corresponds to using S = (E{, lu)T, R = Pvlu and N = Eﬁe.

It follows from Theorem 3 that xgp - is well defined.
Theorem 18: The corresponding systems (3) and (4) defining the deflated solutions

XgrN have unique solutions.

The corresponding deflated decompositions are given in Table 4-1 and follow directly from

Theorem 5.

Some of the deflated solutions based on the LU-factorization have been defined by
Keller [14, 15], although he did not use the implicit formulation that we use here. Specifically, he
considered the case where the small pivot occurs at the (n,n)-th position of U (i.e. k = n). In
that case, the unnormalized v; can be shown to be (Ll'Tvl , -1)T. If we choose j to be n also,

then the unnormalized u, is (Ul'lu1 s -l)T. Using these mull vectors, he explicitly derived the

X,,-deflated decomposition in [15]. In [14], he considered two deflated solutions, which in our
framework, correspond to Xepe and Xepp'
5. Relations Among Deflated Solutions

Each of the deflated solution we have defined so far is the unique solutions to a singular
but consistent system derived from (1). Since this singular system is supposed to be close to (1), it
is not surprising that some of the deflated solutions are close approximations to one another. In
this section, we prove some results that relate the LU-based deflated solutions among themselves

and with the deflated solution based on singular vectors (i.e. x_).

First we shall show that there are certain simple relationships among the LU-based deflated
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Table 4-1: Deflated Decompositions of the Solution of Ax = b

B et +
[ R
B et o e e +
N | E I P
Bt e e it +
: xeee “ epe
T T
E : Qb /Gy )8, lI * b /oy
e e Frm +
: Xeep I| Xepp
Tp - -
P : + b - a0/ II (alxgp i /7 Q)8 v,
T
: (v ;A1 v, I| * b /)y
e T o e +
: xpee |I xppe
T T
E : + (b /(). v, : * b /Wy
i Bt B e +
: Xpep II “ppp
- Tp - ‘ 1
P : (alxpedy /1y II * Lhib = ale 0 /AT
|+ (b /7 )My, |
[ l
e e e DD L e DL L L b L T +
is the unique solution of S A x=Rb, Nx=x

s Au_ = i
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solutions.

Theorem 19:

(3) Xeee = Xpee () Xepe = Xppe

(b) Puexeee = Xeep () Puexepe = Xepp
(©) EfXep =%Xeee  (0) Eix, =x,,
(d) Pupxpee = xpep (l) Pllpxppe = XPPP
(e) Eﬁpxpep = Xpee (3) Elt;pxppp = Xope

Proof: These equalities can most easily be proven by showing, using (18) and (19), that
the difference between the left and right hand sides, say d, satisfies the system (3) and

(4) with homogeneous right hand sides. Uniqueness then implies d = 0. For example,

let d = EE Xeon = Xeee" Then it can be shown that d satisfies Ae d = 0 and Eﬁ d =

ep eee .

d. The uniqueness result of Theorem 1 implies that d = 0 which proves (c).

We thus see that there are two families of deflated solutions, namely (a) - (e) and (f) - (j),

depending on the choice of the R-operator.

Next we will prove that, if ¢ and o are both small, then v, 18 a good approximation to Ve
u, is a good approximation to u_, and that u, is an even better approximation to u_. We shall
use the notation O(6,,6,) to mean some quantity (scalar, vector or matrix) the norm of which is
bounded by max { O(é,), O(5,) }.

Lemma 20: (a) ||v), - v_ || = OCe, o?),
(b) “ue - usv“ = 0(67 0'2) ’

— 2 2
(©) Il - u | = O, o).
Proof: We shall prove (c) first. From the definition of u, we have
Aup -, = 0.
Now if we multiply both sides of the above equation by AI" we get
(AA- 'yArvlul;[;) u, =M, u =0.

Similarly, for the singular vectors u_, and v_, we have

(AA-ok vsv\irsv] u, =M,y =0
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Thus both u, and u_, are null vectors to matrices that are perturbations of the

symmetric A A. We also have
M, = AA- 'yaeklil;
=M, + a2usvl;l;v - 'yaekl'll;
=M, + O(0?, €%). (from Lemma 9)
Therefore, M,

for simple eigenvalues ( [23], p.67), (c) follows immediately.

is a O(0%, €?) perturbation of M,. From a standard perturbation result

The proof for (b) is almost identical, except that now

M, =M, + o’ L - pled

SV 8V
=M, + 0(0?, ¢).
because although 8 is O(¢), A e; is O(1) in general. The proof for (a) is similar.

Next we use Lemma 20 to prove the main result of this section.

Theorem 21: If A is nonsingular, then

(3) [%eep = Xepll < O(0%,6) (Ve b/0] + cylix, |l )

() i, - %[l S O(0%) ( I b/a] + cyllx

where ¢, and c, are positive constants independent of ¢ and o. If A is singular, then

Xopp = Xsv and Xeop = Xsy = (\;rsvb) Al q, where Al is the pseudo-inverse of A and q =
Ver T & /(vsv)j.

Proof: We shall start with the nonsingular case and prove (a) first. The strategy is to
take the x_-decomposition (8) and orthogonalize the two parts with respect to u_. Since

the xeep-decomposition is a unique decomposition of x, by Theorem 6 the parts that are

orthogonal to u_ must be equal to Xeep: Thus, we have
X, =[x, (lirx Ju,] + (stv)ue ,
u, = [u (l;rll Ju] + (li[;usv)ue.

It follows that, with v = \;gvb/a,

X = [xsv B (lil;xsv)ue] + V[usv B (l};usv)ue]'

eep

From Lemma 20, part (b), we can easily deduce that
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dlil;xsv = (u,, + 0(6,02))szv = O(¢e,0%)x (20)
an

u, - (CuJu, = u, + O(e,0?) - (1 + O(e,0%))u, = O(e,0?) (21)

sv ’

from which (a) follows immediately. The proof for (b) is analogous, except that because
of Lemma 20, part (c), we have O(¢2,6%) in (20) and (21). When A is singular, Vi, = Vo,
and therefore x_, and Xoop 3T defined by the same S, R and N. The uniqueness result of
Theorem 3 implies that they must be identical. Let d = Xeep = Xoy' Then it can be

shown that d satisfies A d = (V;I;vb) qand P, d = d. It follows that d is the minimum
length least squares solution and therefore d = (stvb) Atgq.

The above theorem implies, if ¢ = O(o), that X will approach x_ as o goes to zero but

p
that Xeep will generally be different from x_, (unless v'l;vb = 0) in the same limit.

6. Algorithms

In this section, we propose tmplicit algorithms for computing the deflated solutions and
deflated decompositions defined in Section 4 and analyse their convergence and stability
properties. It should be apparent that the primary task is to compute the deflated solutions
because the deflated decompositions can then be computed without too much difficulty. Since
the implicit algorithms use as a basic tool the ability to solve systems with A, we shall assume in
this section that A is nonsingular relative to the precision of the computer. In practice this is
almost always true. We shall limit our discussions to direct methods based on Gaussian

Elimination.

First of all, we have to compute the approximate left and right null vectors of A,. For v ,
u, and w, they can each be computed by one backsubstitution using the LU factors of A by
formulas similar to (14) and (15). For v_ and u_, we can use an inverse iteration similar to one

proposed by Stewart [22]:
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Inverse Iteration for v _, u_ and o

Starting with an initial guess v, iterate until convergence:
1. Ay, A=Y
2wy = /Iy,

3. AFVH—I = U4

4 Vi = Vigd/ IV Il
Denote the converged v, by v_, compute u_, and o by:

Al = Ve

u, = u/|[uf],

o =1/l (22)

After the null vectors of A have been computed, one then has to find algorithms for

solving the system (3) and (4) for the deflated solutions. We propose the following algorithm for
computing the unique solution xgp\ of the system (3) and (4) which is based on a similar
algorithm first proposed by Stewart [22].

Algorithm ITA (Iterative Improvement Algorithm)
Start with any x such that Nx = x

Loop until convergence:
(1) r =Rb- SAx
(2) Solve Ad =r

(3) x=x+ Nd

The following theorem states the conditions under which Algorithm IIA will converge to the
desired solution xgp -
Theorem 22: Assume that the assumptions of Theorem 1 are satisfied so that the
system defining Xgpy has a unique solution. Further assume that N has a one
dimensional null space u_ and that N2 = N. Define K =1 - A'IAS, M = NKN and g

= vsTAun. Then the following statements are true for Algorithm IiA:
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(a) All iterates x satisfy Nx = x.
(b) If x converges, then it will converge to xqp if p 7% 0.
(c) The iterate x converges if |[M|| < 1.

(d) If M = 0, then we can obtain x directly from x = NA'IRb.
Proof: Since we always start with an x such that Nx = x, Step (3) of Algorithm ITA
guarantees that all iterates satisfy the same constraint since N2 = N. The iteration can
be written as the following linear stationary iteration:

x ¢= (I- NA"A )x + NARD. (23)
If the iteration converges to x, then we have x = (I- NA'IAS)x + NA'IRb from which
follows that NA™lr(x) = 0 , where r(x) = Rb - Ax. This implies that r(x) = v Au_,
where v is an arbitrary scalar. Left multiplying by V;I; we see that if p 3£ 0, then v =0
and therefore r(x) = 0, which together with Nx = x proves that x satisfies (3) and (4).
Uniqueness then implies x = xgpy. For analysing the convergence, note that since Nx
= x and N2 = N, we can rewrite the iteration as

x &= N(I - AA )Nx + NA''Rb = Mx + NA''Rb, (24)
and thus the iteration will converge if [[M|| < 1. If M = 0, then we have convergence
after one iteration independent of the starting vector and the converged solution is

NA'IRb which must be equal to Xggy because of uniqueness.

We can now apply the above theorem to the application of Algorithm IIA for computing
x,, and the xgpy's.  The matrix K only depends on S, whereas M depends on both S and
N. Since we always choose N to be either EE or P, p only depends on the choice of S. In Table
6-1, we give the expressions for K, M and p fi)l‘ the :iifferent possible choices of S and N.

From Table 6-1, we see that all the M’s are exactly equal to zero and all the p’s are
nonzero. Thus, for all the deflated solutions that we have considered so far, Algorithm ITA will

converge in one step, and consequently we can use the non-iterative version as outlined in

Theorem 22, part (d).

The above conclusion assumes that we have the exact null vectors Vg and u, of A available.
Although the LU-based null vectors v , u, and u, can most likely be computed with small
relative errors, the accuracy of Ve, and u, depends on the convergence of the inverse iteration. If

the smallest singular value of A is not well isolated, then the inverse iteration may have
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Table of K, M and p

Table 6-1:
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convergence difficulty. This may occur if one uses the deflation algorithm when A is not nearly
singular. If v_ and u_, are completely unrelated and do not satisfy (6) and (7), then M £ 0 and
Algorithm ITA will in general take more than one iteration to converge. However, in the
implementation of the inverse iteration in (22), v_, and u_, do satisfy (6). It turns out that this is
enough for M to be equal to zero although the deflated decomposition has to be modified because
the last term in (5) is no longer equal to zero.

Theorem 23: If the approximate singular vectors u_, and v_ used in Algorithm IIA

for x, satisfy Au =0 v, (but not necessarily A Vo, =0 usv), then M = 0, and the

corresponding deflated decomposition is given by:

x=x4+ (‘:Ev(b - Axy)/o) u_. (25)

Proof: The proof is straight-forward and follows from Theorem 5.

Seen in this light, the LU-based X op deflated decomposition can also be considered as a
member of the SVD-based deflated decomposition where v is chosen specifically to be Vi OF

equivalently, using one step of inverse iteration with v), = e, .

In choosing N, the only necessary condition is to satisfy the uniqueness condition of
Theorem 3. We have chosen N with a null vector u_ equal to u_. Although this choice is not
necessary, we shall argue that it leads to stable algorithms for computing them in finite precision
arithmetic. It is well-known that when one performs a back-substitution with an ill-conditioned
A, in general the solution will have large errors, and the residual will be large. However, the
standard round-off error analysis also shows that if the computed solution is not large, then the
residual must be small ( [8], p.181), even if A is ill-conditioned. This is exactly what happens
here. Step (1) of Algorithm IIA changes the right hand side so that the solution obtained in Step
(2) will be small. However, if A is nearly singular, a small residual still allows for a possible large
error in the solution in the direction of the null vector. Therefore it is a good idea to choose N so
that its null vector u_is the same as the null vector u, of A  so that Step (3) annihilates this
error. This makes the non-iterative algorithm stable to round-off errors. These nice properties

will not hold if we use an arbitrary N with u_ 7€ u_.

Because of the equivalence relationships in Theorem 19, we can limit our attention to
computing only two of the LU-based deflated solutions, corresponding to the two possibilities for
R. The other deflated solutions can be obtained from these two by simple transformations. We

recommend computing either x,__ or x_, , and either x

. cep T Xoop because first, the corresponding

(o)
ppe
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deflated decompositions requires computing only two approximate null vectors instead of three

for the others, and second, Step (1) of Algorithm IIA can be simplied to S(b-Ax) since S = R.

We now say a few words about the efficiency of the algorithms. We first note that the P-
operators take one inner product to apply whereas the E-operators take none. The non-iterative
version of Algorithm IIA costs one LU-factorization of A, one back-substitution ard the cost of
obtaining the null vectors. It also requires storage for the (2 or 3) approximate null vectors and,
in the case of (25), storing a copy of A. The iterative version also requires storing a copy of
A. Since the factorization usually requires much more time (storage) than the back-substitutions
(solution), the work (storage) involved is usually not much more than the normal factor-solve
process for (1). If there are more than one righ hand sides, the cost of the extra back-solves for
the null vectors can also be amortized over the total computing time. For the LU-based
deflations, this extra cost is always two back-solves, regardless of whether A is nearly singular or
not. On the other hand, the cost and convergence of the inverse iteration for computing the
singular vectors of A are much more sensitive to the singularity of A (two backsclves per
iteration). Moreover, if the singular vectors are not accurate, then the computed x_, will not be
the minimum length least squares solution to Ax = b (although it will still be a deflated solution
in our interpretation), and thus, in view of the results of Theorem 21, it is no more special than
the LU-deflated solutions. Furthermore, an extra copy of A must be stored to obtain the deflated
decomposition. Therefore, in applications where A may occasionally not be nearly singular or
when it is not known a priori whether A is nearly singular or not, we argue that the LU-
deflations are to be preferred because they are non-iterative. Such situations arise, for example,
in applying continuation methods to solving nonlinear equations with Jacobian matrices that may
become singular [3, 13, 16]. If it is known that A is very nearly singular, then the SVD-deflations
are probably to be preferred because they do not depend on the assumption that the LU-
factorization of A has a small pivot and because the inverse iteration will converge very quickly
in that case. Both of these implicit deflation techniques are to be preferred to the explicit
deflation techniques if the data structures for storing the LU-factorization of A are complicated,
for example, in band solvers and sparse solvers. An extra advantage of the implicit algorithms is
its modularity - it is independent of how the factorization and solve is done and requires
minimum modifications to the conventional factor-solve procedure. The most effective approach
may be in the form of a hybrid algorithm which uses a LU-based algorithm as a default and
switches to a SVD-based algorithm when the condition ¢ = O(0) is not satisfied.



20

7. Numerical Results
We present some numerical results to verify the accuracy and stability of the various

deflation algorithms developed in the earlier sections. We consider two classes of matrices:

to have norm 1, and ¢ varies from 1 to 108,
Ay: TN, (T) - ol where T = Tridiagonal(1,-2,1) and o again varies from 1 to 108,

Note that the smallest singular value of A, and A, is equal to 0. For A, the smallest

singular value has multiplicity 2 when 0 = 1. The dimension n of A is chosen to be 20.

b and x___. Solutions are
> “ppe pPPP

chosen to have the form x = z + p u_ where z is randomly chosen and satisfies Nz = z and u_is

We will only be concerned with computing x_, x,_.., Xeep
the corresponding null vector of A_. The right hand side b is then obtained by forming b = A v
+ p A u_ where the last term is formed by using the definitions of u_ in (6), (16) and (17) so as to
minimize round-off errors. By Theorem 6, z is the unique deflated solution of A x = b. The

constant p is used to control the value of v;li).

For comparison, we will consider the following deflated solution Xpe = Pust'lb, which is
equal to x_, in exact arithmetic but computed without using deflation. All LU-factorizations are
performed by the routine SGECO of LINPACK [7] which uses the partial pivoting strategy. The
computations were performed on a DEC-20 with 27 bits mantissas corresponding to a machine

precision of about .4 x 108,

The first set of tests is to see how € varies with o and to verify the accuracy of the
computed o. In the inverse iteration for determining the singular vectors we always take 5
iterations. When A is highly singular, one or two iterations is enough for full accuracy. The
computed ¢, its position k, and the computed o are given in Table 7-1 for A, and A,. We see
that, at least for these two classes of matrices, € is indeed generally O(c). However, the smallest
pivot does not always appear at the (n,n)-th position, especially when ¢ is not small. In fact, for
the case ¢ = 10" for A, the n-th pivot is not small at all. Note also that, when o is well-
isolated, the computed o’s are rather accurate and have low absolute errors. However, when the
smallest singular value is not well isolated, the inverse iteration is not successful at all. This is

especially true for A, because its lowest eigenvalues are rather close to each other.
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The next set of tests is to check the accuracy and stability of Algorithm IIA. For each
choice of S, the right hand sides b are generated as discussed above so that v;]i) = 1, and the

deflated solutions x x_ and X, are computed. The iterative version of Algorithm IIA

eee’ Xppe’ sV

was implemented but one iteration always proved to be enough for all the deflated solutions, so
the results given here are computed with the non-iterative version. The relative errors are
displayed in Figs. 7-1 and 7-2. As expected, Xee loses accuracy as A becomes more singular
whereas the other deflated solutions remain accurate to within roughly an order of magnitude of
the machine round-off level. Moreover, one can draw a distinct correlation between the less
accurate LU-deflated solutions with relatively large values of € (e.g. 0 = 107 for Al)' These tests
indicate that the LU-deflated solutions and the non-iterative version of Algorithm IIA together

form a rather robust procedure for computing deflated solutions.

The next set of tests is to verify the results of Lemma 20 and Theorem 21. A large number
of matrices of the form A, are generated and the three null vectors u_,, u, and u are computed.
In Fig. 7-3, ||u_, - u || and |[u_, - upll are plotted against 0. It is seen that u, is indeed generally
closer to u_, than u_ is for the same value of 0. The straight lines shown are the best least
squares fit to the two sets of data {log(difference), log(c)} by straight lines. From Lemma 20,
the exact slopes of the straight lines should be 1 for |[u_, - u || and 2 for |[u_, - up”. The slopes of
the least squares fit are 1.028 and 1.537 respectively.

Next, right hand sides are generated with values of v’l;vb varying from 10 to 10! for the
matrices A, and all the deflated solutions computed with the same right hand sides. In Figs.
7-4 and 7-5, |]x_, - xeepH and ||x_, - xppp” are plotted as functions of 0. It is seen that |x_,
- xeep” does tend to a constant value roughly proportional to {vb and |x_, - xppp” does tend to
zero (or round-off level) as o tends to zero. Moreover, the differences do vary linearly with V{vb

when o is small. The results of Lemma 20 and Theorem 21 are thus verified.

8. Conclusion

We have offerred a rather complete analysis of deflated solutions and deflated
decompositions of solutions to nearly singular linear systems. We have provided a uniform
framework through which it is possible to relate the various approaches used in the literature as
well as some new approaches proposed here. We have analysed both theoretical questions of

existence and uniqueness and practical questions of stable computational algorithms. The use of
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Table 7-1:

Matrix A1
o +
| T | € |k
e il F————
| 0 | 0.1504303E+01 | 1
| 1 | 0.1130482E+00 | 1
| 2 | 0.8422814E-01 | 1
| 3 | -0.7856242E-01 | 19
| 4 | -0.8268356E-03 | 20
| 5 | 0.9228393E-02 | 20
| 6 | -0.1059374E-04 | 20
| 7 | -0.7590279E-06 | 20
| 8 | -0.2421439E-06 | 20
tem t————

Matrix A2

o +-——-
| T | € |k
B et ittt tm———
| 0 | 0.2773407E+00 | 20
1 | 0.9002221E+00 | 20
| 2 | 0.5978710E+00 | 20
| 3 | 0.6968676E-01 | 20
| 4 | 0.7055007E-02 | 20
| 5 | 0.7061549E-03 | 20
| 6 | 0.7033348E-04 | 20
| 7 | 0.6996095E-05 | 20
| 8 | 0.6780028E-06 | 20
et e il ot tm——

b o — ¢ — ¢

computed o

¢ as a Function of o = 107!

________________ +

O O OO OO O O O

.1000000E+01
.1000000E+00
.1000000E-01
.9999483E-03
.9996640E-04
.9993521E-05
.1034953E-05
.7292485E-07
.2352214E-07

________________ +

computed o

________________ +

SO OO O O O OO

.2233835E-01
.7668735E-01
.1000000E-01
.9999985E-03
.9999866E-04
.9996851E-05
.9955706E-06
.9902853E-07
.9597004E-08

|
|
|
|
|
|
|
|
i
|
|
]
|
|
[}
|
+

Inverse iteration had not converged after 5 iterations.
Singular vectors had not converged after 5 iterations.

*%
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Figure 7-1: Relative Errors of Computed xgpy vs 0 = 1071 for A
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Figure 7-2: Relative Errors of Computed xgp\ vs 0 = 107 for A,
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Figure 7-3: |lu - u || and |Ju_ - up“ vs. 0 = 107
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Figure 7-5: |[x {| vs. 0 = IO'I, (P = V"Evb)
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implicit algorithms results in a modular approach which only accesses the matrix as a linear
solver. Therefore, the algorithms proposed here should be easily extensible to linear solvers other
than dense Gaussian Elimination, for example, sparse direct solvers, conjugate gradient methods

and multi-grid methods.  Extensions to higher dimensional null spaces should also be

straightforward.
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