Abstract

Each iterate generated by the Generalized Conjugate Gradient Method of Concus
and Golub [1] and Widlund [3] is shown to be the best approximation to the
solution from a certain affine subspace (although not from the “natural” affine
Krylov subspace). This property is used to improve the error bounds given by
Widlund [3] and Hageman, Luk, and Young [2].
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1. Introduction

The Generalized Conjugate Gradient Method of Concus and Golub [1] and Widlund [3] is
an iterative method for solving a system of linear equations Ax = b when the coeflicient matrix

A is real and has positive definite symmetric part M = (A+A")/2:

LET 2% BE GIVEN AND SET 2 = 0.
FOR m = 0 STEP 1 UNTIL “CONVERGENCE” DO
SOLVE Mul™ = b — Ag(™
COMPUTE' p_ = (Mv'™), o)
IF m = 0 THEN
SET w,, , =1
ELSE
COMPUTE w,,, = [1+ ¢,_/(p,,_w, )"
COMPUTE 2(™) = o™=V 4 (o™ 4 zlm) — zlm=1)

Let A = M—N, whence —N = (A—A")/2 is the skew-symmetric part of A, and let
K = M 'N. Then it can be shown that the iterate z™ lies in the affine Krylov subspace

20 + Span{v(o), Ko K20 K"'"lv(o)} = x(°)+$m
and is cﬁamcterized by the Galerkin condition

(z, Ad™) =0 forall z€ S, (1.1)
where e(™ = (™_z (see [3]). Moreover,

™ =z + pm(K)c(o) (1.2)

where p,_ (#) is an even (odd) polynomial of degree at most m for m even (odd) and p_(1) =1
(see [3]).

In this paper, we show that 2™ is the best approximation to x from a certain
m-dimensional affine subspace (but not from the affine Krylov subspace O+ S,,) and use this

property to improve the error bounds given by Widlund [3] and Hageman, Luk, and Young [2].

! (,2) denotes the Euclidean inner-product.




Notation: (y,z),, denotes the M-inner product (My,2) and ||2||,, denotes the

corresponding norm. Note that
(Ky,2)y, = (My,2) = —(y,N2) = —(My,M 'Nz) = —(y,Kz),,

so that K is skew-symmetric with respect to (-,-),, and (Kz,2),, = 0 for all z.

2. An Alternative Characterization

In this section, we show that the iterate 2™ generated by the Generalized Conjugate
Gradient Method is the best approximation to z with respect to a certain m-dimensional affine
subspace, but not with respect to the affine Krylov subspace O+ S, (unless 2™ = z). The
cases m even (= 2k) and m odd (= 2k+1) are treated separately.

Theorem 2.1: ¥ € z(°)+(I+K)82k and
(z, z(zk)_z)M =0 for all z € (I+K)S,,,
whence
| ~all,y = min {ly=ally, | v € 2OHI+K)S,,} -

Proof:
Since p,(—1) = p,,(1) = 1 (recall that p,, is even), p,,(p) can be written in the form

py(p) = 1 + (1+p) my_o(n) (1—p)
where m,, (1) is a polynomial of degree at most 2k—2. Therefore, by (1.2),
) = 7 + 9 + (I+K) 7, (K) (I-K)e®
= 9 - (4+K) m,, (KW
€ O+(I+K)S,, .
If z € (I+K)S,,, then z = (I+K)u for some u € §,, and
(2, 2M—2),, = (MI+K)u, ) = (u, Ad®) = 0

by the Galerkin condition (1.1).



However, 2 is not the best approximation to z from 2O+ S,.- To see this, note that
(0, s®—z),, = — (I-K)e?, ),
= — (el?¥), ‘(2k))M + (®H—e®) c(2k))M + (K, Pal K)C(o))M )

By Theorem 2.1, e2¥)—¢® = (250 ¢ (I+K)S,, and the second term vanishes. Since K is
skew-symmetric with respect to (-,),, and p,, is even, the third term also vanishes. Therefore,

W e S, but
(v, x(%)__z)M = — () 6(2’=))M #£ 0,
unless ¥ = z.
Theorem 2.2: z** ¢ x(°)+v(°)+(I+K)82k 4 and
(2, 2%*M—z) = 0 for all z € (I+K)S,, .,
whence

[®*—g||,, = min {|ly—zl, |y € x(°)+v(°)+(I+K)5’2k+l} .

Proof:
Since py, (1) = 1 and p,,., (—1) = —Pypy(1) = —1 (recall that p,, , is odd), p,,_ ,(#) can

be written in the form

Porra(#) = p+ (1+p) my_\(n) (1—-p)
where m,,_(p) is an odd polynomial of degree at most 2k—1. Therefore, by (1.2),

220 — 5 4+ ge® 4+ (I+K) m,,_(K) (I—K)e(o)

= 2 — (I-K)9 - (I+K) 7y (KW
= &9 + 9 — (I+K) m, (KO
€ O+O+(1+K)S,,,, .

If z € (I+K)S,,, ,, then z = (I+K)u for some u € §,, , and

(2, 2™ =2), = (MI+K)u, ) = (u, A®*) = 0



by the Galerkin condition (1.1). O
Again, 2%*1 is not the best approximation to z from 2O+ Sop+q1- To see this, note that
( v(O)’ z(2k+l)_ z)M —_ (( I— K) c(o)’ C(2k+l))M

— ( 3(2"“), c(2k+1))M _ ( c(2k+1)__ Kc(o), c(‘zk+1))M

- (6(0)’ p2k+1(K )6(0)) M

By Theorem 2.2, e®**V_K¢(® = g2k+1)_50)_,(0) ¢ (I+K)S,, and the second term vanishes.
Since K is skew-symmetric with respect to (-,°) e 20d p,, 41 15 odd, the third term also vanishes.
Therefore, W0 e Sopsq DUt

(U(O)’ x(2k+l)_x)M — (C(2k+l), 8(2k+l))M # 0,

unless 22V — 4.

3. Error Bounds

In this section, we use the best approximation property of the iterates {x('")} to prove error

bounds for the Generalized Conjugate Gradient Method.

Theorem 3.1:
la™=z|l,, < llg, (KXzO-2)],,

for any real polynomial g, () of degree at most m satisfying g,,(1) = 1 and g_(—1) = (—1)™.

Proof:

Let y =2 + q, (K )e”). Then it can be shown that y € x(°)+(I+K)Sm if m is even (see the
first part of the proof of Theorem 2.1) and that y € x(°)+v(°)+(I+K)Sm if m is odd (see the first
part of the proof of Theorem 2.2). Therefore, using either Theorem 2.1 or Theorem 2.2,

I ~all,, < Ny=2lly, = llg, (KN"=2)],, -

Let o( K) denote the spectrum of K. Since K is skew-symmetric with respect to (-,-) A it

can be shown that



Rep—0, |fm ul < Kl =4
for any p € o( K), and that

K —
g, (Ol ;22}’}() |g,..(12)]

for any real polynomial g_(p).
Corollary 3.2:

2
™ —z]|,, < 29—zl

~ R(A)” + [-RA)T

where R(A) = A7 + VA ?+1.

Proof:
Let g (1) = Tm(iA_lp)/T ' (147") where T, (z) is the m'® Chebyshev polynomial. Since
T, () is even (odd) when m is even (odd), g,,(#) is a real polynomial which satisfies the conditions

of Theorem 3.1 so that

™ =z||,, < llg, E)zO=2)l,, < lg, (El,, I120==2ll,, -

But

T, (i47"p)| < 1

K =
9. (Fll weo(K) IT, (47 = |T,(i47Y)

since —1 < iA'u < +1 for all p € o(K) and IT, (2)] < 1for =1 < 2z < +1. Moreover, it can
be shown that

T, (i47) = S [RA™ + R ™

Therefore, since R(4) > 1,

™=z, < 2

< — — (29—,
R(A)" + [~R(A)]

0

Hageman, Luk, and Young [2] proved Corollary 3.2 for m even by observing that the even

iterates can also be generated by applying conjugate gradient acceleration to a certain



symmetrizable “double” method. Widlund [3] proved somewhat weaker bounds for general m

using a standard argument for Galerkin methods.

The best approximation property and the nesting of the subspaces {Sm} guarantees that
{118 ) and {lle®*+ ) ) are both monotone decreasing. Widlund (3] gives a direct proof. The
following result shows that both sequences must converge at the same rate, contradicting the

experimental results reported in [3].

Corollary 3.3:

A7 ™ g, < [@™=2]l,, < Af2™V—g|,,  forallm >1.

Proof:
It suffices to prove the right-hand inequality. Since g,(#) = pp,,_,(n) satisfies the

conditions of Theorem 3.1,

™=z, < llg (KX=O-2)],,

< Ky 1 (Bl

A 2™ D—g|,,
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