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this paper is to illustrate how data parallelism can be successfully integrated into a very high-level,
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Abstract. Data parallelism arises from the application of a single operation to a large data set. The
objective of this paper is to illustrate how data parallelism can be successfully integrated into a very high-
level, machine independent functional language. At the foundation, a macro-parallel abstract machine is
devised and it is combined with the substitution model of functional languages. Features such as data
parallelism, functional composition, abstraction, and recursion, that give the full power of parallel algorithm
specification are unified and supported in a single language, Crystal. A new procedure call mechanism for
programming languages, called hyper-stack, is devised for calls to data parallel modules.

1 Introduction

The rapid development in large scale parallel systems presents a new challenge in software: how to program
an ensemble of hundreds, thousands, or even millions of autonomous, yet closely coupled processors? Can
parallel programming be made at least as easy as sequential programming? The diverse architectures of
existing multiprocessors — SIMD versus MIMD, message-passing versus shared memory, fine-grained versus
coarse-grained, mesh or ring versus hypercube or butterfly interconnection topologies, complicate the matter
further: is portability of parallel software ever going to be possible?

Functional languages are high-level and do not seem to be biased, in particular, towards sequential
implementations. Much effort has been made in the realm of functional and data flow languages (see summary
in [26]) for discovering latent parallelism in programs. Due to the freedom from side-effects, functional calls
that are not interdependent can be executed in parallel. But whether by combinator reduction [10] or data
flow processing, parallelism is obtained by decomposing a program into functional blocks (serial combinators,
adders, multipliers, merge operators, etc.), with different threads of control. However, this type of parallelism,
called control parallelism, is orthogonal to the parallelism arising from the application of an operation to a
large data set. Hence languages based on this principle do not parallelize problems with large quantities
of data well without resorting to some kind of explicit specifications by programmers (such as the use of
annotations in [11]).

Since it is the processing of a large quantity of data that results in large-scale parallelism, as illustrated
not only by problems in scientific applications, but by every problem in the class NC [6] where a parallel so-
lution to a problem uses a polynomial number of processors and poly-logarithmic time, data parallelism [8] is
central to parallel processing. Two quite different programming approaches to data parallelism are currently
in use: the CSP|[9]-based languages, which are essentially sequential programming languages augmented with
communication or synchronization commands, for a variety of shared-memory or message-passing multipro-
cessors, and fine-grain data parallel languages including *Lisp, C*[22], and CM-Lisp[25] for the Connection
Machine.

The objective of this paper is to illustrate how data parallelism can be successfully integrated into a very
high-level, machine independent functional language. At the foundation, a macro-parallel abstract machine
is devised and it is combined with the substitution model of functional languages. Features such as data
parallelism, functional composition, abstraction, and recursion, that give the full power of parallel algorithm
specification are unified and supported in a single language, Crystal. A new procedure call mechanism for
programming languages, called hyper-stack, is devised for calls to data parallel modules.

The paper is organized as follows: Section 2 discuss two types of data parallel models: micro-parallel and




macro-parallel, and the relationship between macro-parallel model and the substitution model of functional
languages. Section 3 describes a macro-parallel abstract machine, and issues concerning its implementation
by a variety of different architectures. Section 4 says a few words about Crystal. The interpretation of the
macro-parallel sub-language of Crystal in terms of the abstract machine is presented. The interpretation
is a truthful implementation of the mathematical definition of the least fixed-point of system of recursion
equations. Next, the hyper-stack mechanism for general procedure calling is described. In Section 5, example
Crystal programs which illustrate the interpretation of very-high-level programs in terms of the macro-
parallel /substitution model are presented. Section 6 gives a few concluding remarks.

2 Model

2.1 Micro-parallelism vs. Macro-parallelism

One approach to programming parallel systems builds upon conventional sequential programming by aug-
menting explicit communication or synchronization commands to a given sequential language, as illustrated
by Hoare’s CSP [9], and later a variety of parallel C and Fortran supported on various multiprocessors. With
this approach, a given parallel system will be described by a collection of sequential programs, each written
for a given processor, with communication commands for passing messages to and from other processors or
synchronization commands for accessing a shared memory. This approach to parallel programming takes a
microscopic view of a system: a system is described from the standpoint of each individual processor, and
therefore is called micro-parallel programming.

Micro-parallel programming requires that a programmer, at the time of programming, have in mind the

" detailed behavior of each individual processor and its interaction with others, either by message passing or via
shared memory. Since composition of programs occurs between processors in micro-parallel programming,
the complexity of dealing with such interactions grows combinatorially with the number of processors. Hence
this viewpoint may be appropriate in the case of tens of coarse-grained, loosely coupled processors, but rapidly
becomes ineffective as the number of processors grow larger into the range of thousands or beyond.

In contrast, another style of parallel programming, called macro-parallel programming, solves a problem
by reducing it to a sequence of steps where each step involves a parallel operation performed by an aggregate
of processors. In each step, the macroscopic behavior of the entire system as a whole is specified, with
a global coordinate system suitable for describing the problem at hand. This“horizontal”partitioning of a
problem into a sequence of parallel steps is the most natural because human reasoning works step by step;
parallel reasoning only occurs within each step which is designed to be simple and straightforward enough
to be dealt with.

The power of the macro-parallel model is best illustrated by programming in *Lisp or C* on the Con-
nection Machine; experience has shown that it is much easier and less error-prone than programming mul-
tiprocessors where the programming model is micro-parallel. Clearly, although micro-parallelism may be
appropriate when the number of processors are small and the interactions are infrequent, macro-parallelism
wins in the case of large scale parallelism.

2.2 Macro-Parallel Model and Functional Substitution Model

But the macro-parallel model by itself is not enough for general-purpose programming; we need abstraction.
We want to abstract a macro-parallel program into a function so that it can be used as a step of computation
in a higher-level macro-parallel program, or so that it can be used in the same way any function is used in a
functional language. For instance, a program may consist of three levels: (1) at the top level, the problem
is defined with recursion, composition, etc., of a few functions operating over vectors and matrices; (2) at
the middle level, each of these functions is defined in a macro-parallel fashion by scaler multiplications and
additions of floating-point numbers; (3) finally, at the bottom level, the scaler multiplications and additions
are implemented by a pipelined architecture, again in the macro-parallel fashion but manipulating even lower
data representations, namely, bits.




To fit the macro-parallel model into the framework of the substitution model of functional languages,
we need (1) to differentiate whether an argument to a function shall be interpreted by the macro-parallel
model or the substitution model, and (2) to provide a black-box functional abstraction for a macro-parallel
program and, (3) a substitution mechanism for calls to macro-parallel modules. In the description of Crystal
below, we will show that a macro-parallel program can be described by a system of recursion equations over
an index set, and thus from the type of the arguments to the functions appearing in the recursion equations
(they must be indices), we can differentiate the two different ways an argument shall be interpreted, and
hence determine the model. Secondly, the functional abstraction of a system of recursion equations is its
least fixed-point. Hence the black-box abstractions of a parallel module can be made, and once abstracted,
the module behaves as a function that can be invoked irrespective of its implementation. The substitution
mechanism, called hyper-stack, boils down to establishing communications between the group of processors
implementing the caller function to those of the callee.

As opposed to the graph reduction approach where only control parallelism is exploited, each function
call in Crystal eventually reduces to calls to data-parallel modules at the lower levels. If available resources
permit two control-independent data-parallel modules to proceed at the same time, then control parallelism
is exploited.

3 A Macro-parallel Machine

To make sure the compiler technology we are developing can be applied to a variety of different parallel
architectures and to ensure the portability of parallel software, we define an abstract machine as an interme-
diate target to which source programs are compiled. The abstract machine is then implemented by a given
target parallel machine. ' »

The macro-parallel machine defined below uses some suitable global coordinate system for naming pro-
cessors, which in turn are mapped to the processor space of a given target machine. The values of coordinates
are taken from an index set defined below:

Definition 3.1 Let A; be a Cartesian product A;; X Ajz X -+ X Ayq of finite sets Ajj, 1< j<qgandqa
positive integer. The set (Aij,E) with the binary relation “approzimate” ([24]) on the elements of A;; s a
flat lattice. An tndex set A is a sum A; + Az +---+ A, of Cartesian products (A;,C) , for some positive
tnteger r, and any subset of an tndezx set 13 also an tndez set.

A macro-parallel machine consists of processors each of which has a local memory space. It operates by
executing a sequence of macro-parallel instructions. Instructions are of two types, local computations and
communications. For convenience, a few “high-level” instructions consisting of a sequence of communica-
tion and computation steps are made available. They include instructions for allocating and deallocating
processors, parallel prefix computation, etc. The components of a macro-parallel machine are defined as
follows:

1. Host: A special processor that initiates the first instruction of a program.
2. Processor space: An index set A.

3. Time steps: The concept of time step is a logical one that corresponds each time step with either a local
computation which can go on without any communication with other processors, or a communication
for delivering arguments from some source processors to one or more destination processors. The
duration of each time step in real time will vary depending on the particular local computation or
communication involved.

The abstract model here is a synchronous one in that all processors are operating in locked steps, where
the length of a particular cycle is the maximum of the time needed for completing a local computation
or a communication over all processors. The implementation of the abstract machine, however, is not
necessarily synchronous; it can be an asynchronous system where each processor has its own clock and
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communicates with other processors with some asynchronous protocol. In that case, time stamps can
be passed along with communications to derive the implicit global time steps. ’

. Memory space within a processor: For every a € A, there is a set of local variables S(a).

Constants distributed to processors: Each processor may contain values ¢ that are used by the
processor but cannot be altered by it.

Local computation: For every a € A, there is a set of processing functions, where a processing
function ®a takes two types of arguments: local arguments that are values of local variables in S(a)
and remote arguments r that are values of variables S(a’) of some other processor a’ # a. A processing
function results in values that update the variables in S(a), but it cannot change the value in any
other S(a’). Let s(a,t) = [sg,...,8,—1] be the tuple containing the values of all local variables of
processor a at time step t. Similarly, let c(a,t) be the tuple of constants in processor a at time step ¢
and r(a,t) = [ro,...,rk—1] be the tuple containing the remote arguments of processor a at time step
t. Then we use the notation

s(a,t) = ®a(s(a,t — 1),r(a,t — 1),c(a,t — 1))

to describe a processing function ¢ executed in processor a at time step ¢ that takes the values of its
local variables and remote arguments and updates the values of its local variables.

Communication: For every a € A, there is a set of communication functions, where a communication
function ¥a takes the values of some of the local variables in S(a) as arguments and produces i) a
merge operator, and ii) remote references: a tuple of index and accessing function pairs [a;,0;):

[merge_op, remote_ref] = ¥a(s(a,t — 1)), where remote_ref = [[a¢,00),...,[am-1,0m-1]]-

Each communication of processor a at time step ¢ results in a remote argument r. It is obtained by
applying the merge operator to a tuple of values where each value is obtained from applying accessing
function o; to the local variables of processor a; at time step t — 1:

r = merge_op([oo(s(ao,t — 1)),...,0m-1(s(am-1,t — 1))]).

In the special case when remote_ref is a singleton (ag,00), no merge operator needs to be specified
and r = oo((ao,t — 1)).

In the above description, a communication is viewed from the processor that is to receive a remote
argument. Similarly, a communication can be formulated from the standpoint of a sender. In that
case, the accessing function o; of a remote reference (a,,0;) is instead a value, and the merge operator
is a copying function ! which copies the value oq to all other o; for ¢ = 1,2,...,m — 1. Only the value
0o needs to be specified, all others are copies of the same value and the copying is done in such a way
that the fan-out problem is taken care of. Similarly, in the case when remote references is a singleton,
no merge operation, or copying in this case, takes place. For a communication of the sender’s form, the
action of the second half of a communication step that retrieves remote arguments does not happen,
but a write-to-local-memory to store the value o, is performed.

A processor may have several communication ports which are active at the same time; in that case,
there will be more than one commmunication function executed at each time step, each resulting in a
remote argument. We use the convention that the number of remote arguments k should not exceed
the number of communication ports which can be active at the same time. Thus all components of the
remote argument tuple r(a,t) are received (or send) in one time step.

The remote references (or remote values to be sent) can be of higher-order types, i.e., they can be
referring to code segments.

1This merge operatiion will be a copy-scan in PARIS on the Connection Machine.




Note that the activity of communication among processors in a parallel machine is not only determined
by the computation of the communication function, but also is sometimes carried out with a merge of
many remote arguments into a single argument (or copying a value and send it to many places).

8. Processor allocation and de-allocation: A processor performs a communication to a group of processors,
announcing them to be allocated to execute a sub-program. Similarly, a processor can de-allocate a
group of processors previously allocated.

9. Parallel prefix operation: Guy Blelloch 2] has proposed the scan-model as an alternative to the EREW
or CRCW parallel computation models. Scan-operator, or parallel-prefix computation [16,17], takes
a tuple T and a binary associative operator @ as arguments and computes a new tuple S such that
S[{] = T[¢] ® S[¢ — 1]. This operation is a powerful abstraction of what can be implemented by a
sequence of communication and computation steps on the macro-parallel model. For convenience, we
may consider it as a primitive operation, and denote it by \\@ for any binary associative operator &.

10. Bounded iterations: A given parallel computation is then a sequence of interleaved local computations
and communications. If an a priori bound t; for the time steps is given, then the computation starts
at initial time step ¢; and continues until the final time step t;. The result of computation is contained

in the final state of the machine, i.e., s(a,ts) for all a € A.

.

11. Unbounded iterations: Suppose the computation has no known a priori bound, and its completion
depends on some termination condition P which in turn depends on the state s(a,t) for a € A of
the machine — then the computation goes on until P is satisfied. The test of such condition can be
realized by, say, a communication from all processors to a given processor with logical AND as the
merge operator?. The result of computation is contained in the final state of the machine, i.e., s(a,tp)
for all a € A where tp is the minimum time step such that P is satisfied.

3.1 SIMD versus MIMD implementations

The processing function 3 and the communication function W3 for every processor a of the abstract macro-
parallel machine might be different for different processors. Their implementation on a Single Instruction
Multiple Data (SIMD) multiprocessor architecture requires them to be time-multiplexed. The number of
possible different processing functions and communication functions over the processors depends a great deal
on applications at hand and the programming paradigms in use. In the case where there are only a few
different functions and each function is fine-grained (consisting of only a few number of machine instructions),
it is more efficient to step through in sequence all different functions for a given logical cycle. Otherwise, it
will be more efficient to time-multiplex the complete machine instruction set for each logical machine cycle.
In this case, each processing function, though maybe different from others, is broken down into a sequence
of machine instructions, each of which is guaranteed to be executed at some time-slice in a given logical
machine cycle. Consequently, there will be at most a constant (the size of the machine instruction set)
slow-down factor for implementing the abstract machine by an SIMD machine.

To implement the abstract macro-parallel machine by an MIMD architecture, synchronization must
occur at the end of each abstract machine cycle when each processor has completed its processing and
communication functions. Such a synchronization mechanism is well known and the choice of a particular
synchronization method depends on the characteristics of the target multiprocessor.

3.2 Message—passing versus shared-memory implementations

Upon executing its communication function, a processor of the macro-parallel machine is ready to retrieve
its remote argument(s), or the result of a merge of these arguments. The macro-parallel machine is described

2This operation may be very expensive on some multiprocessors, hence may significantly degrade the performance of ap-
plications where a global termination condition is required. On the Connection Machine, on the contrary, this operation can
be implemented by the “wire-or”, which is fast, and takes a constant amount of time regardless of the number of processors
involved. ’




as an architecture with local memory, and processors communicate by accessing other processor’s memory.
This model can be implemented by a message-passing machine where remote arguments of a processor
are sent to it via, say, a fan-in tree of processors which merges these arguments. In order to support the
communications of the abstract machine efficiently, there must be an efficient routing system [28,19,20] for
the message passing machine. The way in which the abstract network of processors is embedded into a given
target message-passing machine can also plays a part in the communication efficiencies[14].

For a shared-memory machine to implement the local memory model of the abstract machine is simpler:
merely partition the memory so that each processor has a piece to itself. Certain data that must be duplicated
in the message-passing model would not need to be duplicated in this case. The access of remote arguments
by each processor is simply accessing the shared memory, while the merge of these arguments must be
implemented by, for instance, a fan-in tree of processors that completes the merge in a logarithmic number
of steps.

4 Parallel Interpretation of Crystal Programs

Having established a parallel programming model, the next step is to design a suitable language which
matches the macro-parallel/substitution model. It turns out that we need not look very far for suitable
language constructs; unconventional interpretations of familiar constructs to the macro-parallel model serve
the purpose. Crystal has taken many of the constructs that are around in existing programming languages
such as APL[13], SETL|7], and functional languages such as FP[1] and KRC|[27], and, more broadly, conven-
tional mathematical notations. But the language is interpreted with the macro-parallel/substitution model
instead. "

High-level data structures such as tuples and sets from SETL are natural for denoting a collection of
ordered or unordered data objects, each of which corresponds to a piece of data distributed to an individual
processor. APL has numerous aggregate operators that apply over arrays; they match the macro-parallel
model well, only that the APL array structure must be made more flexible. Recurrences are widely used
mathematical notations; they describe succinctly the local behavior of each point of a system as well as the
interactions between different points over the entire system. This property allows recurrences, made over
with a functional syntax, to be exactly the natural notation for describing the computation at each processor
as well as the communication between processors of a macro-parallel model.

The above-mentioned constructs, data stuctures, and notations are unified into Crystal [4,5] with func-
tional syntax and fixed-point semantics. A macro-parallel program is described as a system of recursion
equations over an index set. Sets and tuples generated from some index set are just special forms of re-
cursion equations. A system of recursion equations is a natural language for the macro-parallel abstract
machine we have defined. Its interpretation in terms of the abstract machine is described by induction on
the structure of recursion equations.

4.1 Recursion Equations over an Index Set

Below is a system of two recursion equations defined over domain V of indices:

Fi(v) over V = { p11(F1(vi11), F2(Vi12), F2(v113), X114(V)) = #11(F1(Vi11), F2(V112), F2(V11s), X114(V))
! p12(F1(vi21), F2(V122), X123(V) = ¢12(F1(Vi21), F2(V122), X123(V))

F (v) over V = { P21(F1 (V211), Fz("zlz),xma(v), xzu(V)) - ¢21(F1(V211), Fz(szz),X213(V),x214("))
2 p22(F1(va21), F1(v222), F2(V223), X224(V) = ¢22(\ @ [F1(v22k)|0 < k < m]) )
1

In discussing various syntactic parts of a system of recursion equations, we use three indices ¢, 7, and k: ¢
for numbering the equations, 7 for numbering the conditional branches within a given equation and k for
numbering terms within a given conditional branch.




A system is made up of any constant number of functions defined over the domain V, which is an index set.
For practical purposes, it suffices to consider V as a set of integer tuples, however, for convenience, symbolic
names are often used as indices. A domain V will be defined by a domain specification domain_id =<
domain_expr > which specifies the ranges of each of the indices. It also serves the purpose of a shorthand
for not repeating the range of elements of V in the predicates of the equation that follow.

Each equation can be defined by several conditional branches, and each branch by nested levels of
conditionals. Applying F; to any argument not in the domam, or which does not satisfy any of the predlcates,
will yield an undefined value.

Any function value F;(v) may depend on mutually recursive function values F;(v,;x) and on non-recursive
function values x;,x(Vv), where X;, is a function that does not appear on the left-hand side of any equation
in the system.

4.2 Semantics of Recursion Equations

A system of recursion equations over an index set has standard fixed-point semantics. Let V; and all other
value or functional domains over which functions and predicates ®;;, ¥,;x, pi;, and X,;x are defined to be
continuous and complete lattices. Furthermore, let these functions and predicates be continuous. The least
fixed-point of the system of such a system is taken to be the “black-box” abstraction of the macro-parallel
module.

4.3 Macro-parallel Interpretation of Recursion Equations

Every element of the index set is interpreted as a processor, and for every function F, there corresponds a
variable Fj,.q of specified type, together with a change bit indicating whether its value has been changed
from one iteration to the next. The system is interpreted as a loop of unbounded iterations where in each
iteration, a change bit gets set if its corresponding variable is assigned a new value; it terminates when the
change bit of all F; becomes false. Note that the macro-parallel interpretation follows exactly the way the
least fixed-point is defined and that the evaluation proceeds in the opposite direction as a system of recursion
equations would be evaluated in conventional functional languages.

The abstract machine code at each iteration t may consist of two or more macro-parallel instructions,
depending on how complex the right-hand side definition is. We describe the interpretation inductively on
the structure of the right-hand side of a system of recursion equations, starting at the base case where there
are no recursive calls on the right-hand-side:

1. In the system of equations (1), suppose all recursive terms were not present. Then the equations are
translated into two macro-parallel instructions: (1) all non-recursive values X;;x(v) are distributed
to every processor v as constants, (2) a local computation for all processors using the constants and
updates variable Fj,.,; and change bit gets set accordingly.

2. The next simplest form of recursion equations is that which has recursive calls, but the calls neither
appear in predicates (in a conditional expression or appearing in the filter expression of a set or tuple),
nor do they appear as nested recursive calls. In System (1), suppose all recursive terms in the predicates
were not present, then the equations are translated into three macro-parallel instructions:

(i) For each index v € V, constants x,;x(v) are distributed and predicates are evaluated. We say that
index v is selected by a predicate p when the right-hand side predicate p evaluates to true. When
predicates are not mutually exclusive, it is up to the particular programming language to determine
exactly which predicates are to select a given index.

(ii) For each index v € V, it generates remote references to obtain, say, a remote argument r = F(u),
which is the value of the variable corresponding to F in processor u at time ¢ — 1. A remote argument
can also be the result of a merge as in r = merge_op(F(uo), ..., F(uy,-1)).

(iii) For each index v € V, the local variable Fj,¢q is modified according to the result of executing the
processing function, which is applied to local variables, constants, and remote arguments of v.




3. In general, the right-hand side of a system can be a complex structure of calls to functions, but as
long as these function calls are not recursive calls to F, they are part of a computation step and are
to be interpreted by the substitution model, which will be addressed by the hyper-stack mechanism in
Section 4.5.

The only interesting case we are concerned with here is when calls to F are nested. Each level
of nested recursive function calls requires a communication step. Simple flow analysis will tell the
sequence of communications needed in order to fetch the required remote arguments. For example,
in the following Crystal program that defines Ackerman’s function, two consecutive communications
on the macro-parallel machine will be required if the index pair (z,y) is selected by the else clause:
the first communication for obtaining remote argument r; = A(z,y — 1) and the second for obtaining
ro = Az — 1,r1).

A(x,y) = << x=0 -> y+1,
y=0 -> A(x-1,1),
else -> A(x-1, A(x, y-1)) >

4.4 Space-time Optimization

Definition 4.1 A system of recursion equations defined over an index set V contains a loop tndex t if there

“extsts a component t of the index tuple v € V such that the value t; of component t of each tndex on the
right-hand-side ts always less than the value to of the corresponding component on the left-hand-side, and
furthermore, if the mazimum difference to — t; over all such patrs of tndices i3 a constant c.

Note that if a system of recursion equations contains a loop index, then the value of F;(v) won’t change
once it becomes defined by the iterative process to reach the least fixed-point of the system. If the difference
of the left-hand side and right-hand side ¢ values is bounded by ¢, then once the computation arrives at
t = t;, all values before t; — ¢ will never be accessed again. Let U be the index set with the time component
removed. Hence there is no need to allocate one processor for each index tuple in V as described above,
it is only necessary to allocate one processor for each index tuple in U, where each processor has ¢ storage
elements for retaining the value F;(v) for ¢ time steps.

The interpretation of a system that has a loop index by the macro-parallel machine can be either a
bounded iteration where the upper bound is defined by the range of the loop index ¢, or an unbounded
iteration whose termination depends on some specified conditions. More generally, a system of recursion
equations may have an implicit loop index which can be made explicit by a space-time mapping [4,3] of the
original index set to a new index set.

The above discussion illustrates that recursion equations defined over an index set allows side-effects
to the state of variables distributed in parallel processors to be described in a functional way: either by
including a loop index in the description as illustrated by the example in Section 5.2, or by the implicit
inductive procedure that finds the least fixed-point as illustrate by the following program for the transitive
closure [12] of a binary relation 3:

closure(x,y) =
x=y or E[x,y] or exists z in V: (closure(x,z) and closure(z,y)),

11! input data
11! vertex set

v=4{0,1, 2, 3,4,5},

!!! binary relation represented by an adjacency matrix

8Crystal’s recursion equations over an index set is closely related to the first-order inductive definitions used in [12] where .
the complexity of a program is captured by the language.




Figure 1: The hierarchy of hyper-stack frames.

E:

[[o,1,1, 0,0, 1]
,[o0,0,1,0,0, 1]
,[0,1,0,1,0, 0]
,[o0,1,1,0,0, 1]
,[0,1,1,0,0, 1]
, [1,1,1, 0,0, 0]
]’

In either case, the language processor determines the loop indices and generates a sequence of macro-
parallel instructions that changes (or causes side-effect in) the state of the processors. In this sense, space-time
mapping, in its own right, becomes a method of overcoming the difficulty in implementing array operations
in functional languages.

4.5 Hyper-stack: a procedure calling mechanism for macro-parallel modules

Perhaps the easiest way to visualize how macro-parallel modules can work within the functional substitution
model is by simulating a calling sequence. The mechanism used for procedure calls is called hyper-stack,
which is a generalization of disirtbuted stack with a concrete spatial dimension to each stack frame.

For convenience, we describe the procedure-calling mechanism to macro-parallel module in the upward
and downward phases. In fact, both the upward and downward phases can go on in different parts of the
machine at the same time:

1. Downward phase. Each time a function f is called, a frame for that function is created, where the
frame is flexible and can grow to the right size later. We then go into the body of f where other
functions might in turn be called. For each function g invoked within function f, a frame for g is
created. Graphically, ¢’s frame is drawn within f’s frame as shown in Figure 1. In f’s definition, if
91(g2, gs) appears, then three non-overlapping frames, one for each g;, are drawn within f’s. We also
draw arrows between frames at the same level for keeping track the results of one to the other. For
instance, both go’s and g3’s frame must be glued to g;’s so that result of evaluating the former can be
passed to the latter. This process continues and a hierarchy of frames within frames will be created
until no more recursive calls are made. In the downward phase, no processors other than those that
keep track of the frames and direction of data flow between frames are allocated. Thus for a program
with tree recursion, the number of processors used for this purpose is as many as the number of tree
nodes. In this phase, the model described here is similar to the graph reduction model.

2. Upward phase. The power of this model lies in the upward phase where the number of processors
allocated is proportional to the amount of data to be processed by the macro-parallel module, not




just those correspond to the tree nodes mentioned above. A frame at the bottom level is some macro-
parallel module (sequential module is just a special case), and the size of the module will be specified
by its domain specification which may depend on, say, the size of its input argument. We now grow
this frame to reflect the size of macro-parallel module, i.e., allocating processors to make the frame
concrete. At this point, the frame is set and the computation of the macro-parallel module is initiated.
For frames at the same level, they must be properly “glued together” for passing the results of one to
the other, i.e., actual communications are established according to the arrows drawn in the downward
phase. A frame disappears after a procedure has been completed and has sent off all of its results
to the caller. Processors within the frame will be deallocated. Practically, these processors are often
re-used by the caller module so that the result can be kept in the same processors to minimize the
communication time. '

5 Examples
5.1 Almost Ascending Sequence

Having discussed the abstract machine and in general, and the way in which recursion equations are inter-
preted by the abstract machine, we now use an example to illustrate how a program can be“compiled” to the
abstract machine. The first example is structurally very simple in that it does not really contain recursion.
However, it illustrates, in particular, how sets and tuples are interpreted. It is the problem of longest almost
ascending sequence [21] described as follows: Given an integer array A of n elements A[0], ..., Aln-1]:
A sequence A[p], Alp+1], ..., Alq] is ascending ifforalli,p < i < q, A[i-1] is less or equal to A[i].
An almost ascending sequence is a sequence in which there is no more than one possible i, p < i < gq, such
that A[i-1] is greater than A[i]. We want to find what is the length q-p of the longest such sequences.

A first Crystal program that solves this problem is a simple, straightforward specification of the problem:

! Program LAAS (Longest Almost Ascending Sequence)

! input data
A=1[3,4,5,3,4,1,2,63,4,5,4,5,6,7,7,5,6,7,8,89, 9],
n = ||All,

L = \max{ q-p+1 | 0 <= p <= q < n : aas(p,q) },
aas(p,q) = || {i | p <i<=gq: A[i-1] > A[i] } || <=1,

In a Crystal program, the order in which definitions are given does not matter, as long as they are at the
same level; subprograms are indicated by the keyword where. The input sequence of numbers is given as a
tuple A whose length is n. The number of elements of a set or the length of a tuple is denoted by enclosing
it by double bars as shown. In Crystal, a generated set is written in the form

{ exp(v) | domain(v) : filter(v)}

where exp(v) can be an arbitrary expression of v, domain(v) specifies the domain of variable v, and
filter(v) is a predicate that selects elements in the domain. An ordered tuple is defined similarly:

[ exp(v) | domain(v) : filter(v)]

where domain(v) has a specified order. Any binary associative operator can be prefixed by the reduction
operator \ and results in an n-ary operator over a set or a tuple of elements. When \op is applied to a set,
op is assumed to be commutative. Whereas \op over a tuple of elements means that the operator must be
applied to the elements in the order of left to right (or first element to the last element). No commutativity
is assumed in this case.

Now we want to interpret this program by the macro-parallel/substitution model. Note that the order
of evaluations of the various components of a reduction operator over a generate set or tuple is domain —
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filter — expression — reduction op. In the following, we use the convention that the local variables created
in each processor will be in italics, while accessing function for retrieving its value will be the same name in
boldface font. The implementation of Program LAAS consists of the following sequence of instructions:

1. The host processor allocates 0 <= i < n “Constant” processors C; for holding the input tuple A, whose
length n is pre-evaluated by the host machine. Each processor C; now contains the constant at =A[i].

2. The host processor allocates n(n + 1)/2 processors Ry, according to the domain specification 0 <= p
<= q < n.

3. Now start evaluating aas(p,q) for each processor R,,:

(a)
(b)

(c)
(d)

(e)

Each processor Ry, now allocates g-p processors Spqi according to the domain specification p <
i<=q.

Predicate A[i-1] > A[i] is evaluated in all processors Sy, stored as a boolean value dip?. This
step takes a communication and a computation step. First, each processor S,,; generates two
remote references (C;,ai) and (C;—1,ail) to obtain the values of variable ai of processors C; and
Ci-1, i.e., A[i] and A[i-1], one on each communication port respectively. Next, all processors
Spqi compute the predicate and store the result in dip?.

For those processors Spq; whose dip? is true, evaluate the expression i.

Each processor R,, generates remote references (Spqi,dip?) for p < ¢ < p with merge operator
447, The length of the set { i | p < i <= q: A[i-1] > A[i] } is achieved by the merge
operation, which is a summation over the value dip?, now converted to an integer value?, of
processors Spq,. Let the result be stored in variable len of Ry,.

In each processor R,,, compute the predicate len <1 by first distributing the constant 1 to all
such processors, followed by a local computation that results in the boolean value aas?, thus
completing the phase of evaluating aas(p,q). Processors Sy, are de-allocated.

4. For those processors whose aas? is true, evaluate the expression q-p+1 and store it in variable len_as.

5. The host processor now does a communication to obtain remote arguments from the variable len_as
of those processors R,, whose aas? is true with merge operator max, and assigns this value to variable
L. All processors Ry, may be de-allocated at this point, and the program is completed.

This example illustrates perhaps the simplest form of calling a data-parallel module within a substitution
model when aas(p,q) is called in the definition of L.

Program LAAS is a straightforward problem specification that is easy to write and to understand, but it
is not an efficient program by the macro-parallel interpretation, because it needs a total of O(n3) processors
during its course of computation. However, the computation is fast; it needs only a constant number of
basic macro-parallel instructions. A much better solution to the problem follows from the observation that
an almost asending sequence can be constructed by two adjacent “locally-maximum” ascending sequences,
each of which is the sequence from one “dip” to the next. In the Crystal program below, a tuple K that
keeps the indices where the dips occur is defined. The length of an almost ascending sequence is then the
difference of the indices of two dips that are two positions apart, i.e. K[i]-K[i-2].

! Improved Solution of LAAS

L=

<< m <= 2 -> n,

else -> \ max {K[i] - K[i-2] | 1 < i < m} >

where m = ||KI|],

K=[i]|0<=i<=n:1i=00ri=nor A[i] < A[i-1]],

4As in APL, boolean value “true” is converted to integer value 1 and “false” to 0 when type conversion is needed. Similarly,
all non-zero integer values are converted to “true” and zero is converted to “false” when necessary.
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The parallel interpretation of the improved solution (input tuple A is not repeated here) is as follows:
1. The host processor allocates (n+ 1) processors R, according to the domain specification 0 <= i <= n,

2. Predicate i=0 or i=n or A[i-1] > A[i] is evaluated in all processors R;, and stored as a boolean
value dip?. All processors R;, except Ry and R,, must evaluate A[i-1] > A[i] because the two
preceding predicates are false. Its evaluation takes a communication and a computation step similar
to the ones described above in Item 3b.

3. Next, evaluate the expression i and store the result in dip_pos for those processors where dip? is true.

4. Now the tuple K is to be constructed by a parallel prefix operation, an allocation step, and a commu-
nication step:

(a) A parallel prefix operation \\+ ® is applied to the tuple of values dip? in processors R; for all
0 <t < n. Let the components of the resulting tuple of the parallel-prefix operation be stored
one by one, from left to right, in variable k_tndez of each R; for 0 <1 < n.

(b) The host allocates m processors Sj, where m is the value of k_indez of processor R, plus 1.

(c) Every R; with dip? true generates a remote reference (Sk_indes,dip-pos). Note that this remote
reference is of the “sender” form, where the value of dip_pos instead of the accessing function
dip_pos is sent. This value is now stored in the variable posttion of processor S;. This completes
the construction of tuple K, which is implemented by processors S;, 0 < 7 < m.

Note that an optimization of the the tuple construction would avoid the allocation of new proces-
sors S; but simply perform step 4c on processors R;, where each R; allocates one more variable
position. ’

. The host computes the predicate m=2. If it is true, the program terminates. Otherwise:
Processors Sy, for 1 < j < m, generate a remote reference (S,_2, position), and assign it to pre.

. Processors S;, for 1 < j < m, peform position minus pre, and assign it to len.

o =N o o

. The host generates remote references (S;,len) with merge operator max. The remote argument is
assigned to L which holds the result.

The improved version uses only a linear number of processors with respect to the length of the input
sequence in a constant number of steps, although the parallel prefix operation may be expensive on some
architectures.

5.2 Example: Bitonic Sort

The second example we choose is a sorting network made up of bitonic sorters. It illustrates how recursive
calls to macro-parallel modules are made by using the hyper-stack mechanism. The following is a version
of the bitonic sort algorithm (see for example, [15]), as shown in Figure 2, written in Crystal. The idea
behind the program is the following: suppose we know how to sort a bitonic sequence; then we can sort an
arbitrary sequence by building progressively larger bitonic sequences of length n from two sorted sequences
of length n/2. The program sorts the input sequence recursively, concatenating two sorted sequences (one
in increasing order and one in decreasing order) into one bitonic sequence at each step. The function b_sort
takes a bitonic sequence and produces a sorted sequence in increasing order if a reverse bit rev? is false,
and in decreasing order if the bit is true. Each data item in the bitonic sorting network is defined by a net,
called b_net, defined over the indices i for the elements of the input sequence, and d for the stages of the
network, with d=log(n) being the initial stage and d=0 being the final stage. Each stage of the net serves

8This will be a plus-scan in PARIS on the Connection Machine.
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Figure 2: A sorting network consisting of bitonic sorters.

the purpose of breaking up a bitonic sequence into two halves, each a bitonic sequence. In the non-reversal
mode, the first bitonic sequence consists of the lower half of the input sequence, and the second one consists
of the upper half®.

! Program Sort
! The input sequence must have a length which is a power of two.
sort(r, rev?) =
<< n<=1->r,
else -> | sort the concatenation of two sorted sequences
b_sort(sort(a, rev?) :: sort(b, not rev?), rev?) >>
where (
n = ||z,
a=r[0 <=3i<n/2], ! lower half of the input sequence
b=r[n/2<=1i<nl]), ! upper half of the input sequence

b_sort(r, rev?) =

[b_net(i, 0) | 0 <= i < n]
where (

B=0<=1i<n, 0<=4d <= log(n),

b_net(i, d) over B =

<< d = log(n) -> r[i], ! initial stage
else ->
<< xor(p?, rev?) -> larger(a, b), ! a pair-wise comparison
else -> smaller(a, b) >>

>>
where (
p? = i mod 2°(d+1) < 2°d,
a = b_net(i, d+1), ! i’th element from previous stage
b = b_net((i - 2°d) mod 2~(d+1), d+1)
! element to be compared with the i’th element
),
n = |I|rll]),

SWe can write a even shorter Crystal program by noticing that a b_net itself has a recursive structure, i.e, it consists of
a bitonic separator that separates a bitonic sequence into two bitonic sequences, each of which in turn can be sorted by a
“half-size” b_net.
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[smaller, larger](x, y) =
<«<x<y-=->[x, y],
else -> [y, x] >>,

The interpretation of Program Sort can be described in two parts: first, the interpretation of the system
of two equations that defines b_net and n within the scope of b_sort by the macro-parallel /substitution
model, and next, function b_sort and function sort by the substitution model.

The keyword over declares B as the domain of function bnet. An optimization on the allocation of
processors is performed: indices of the recursion equation that defines function b_net are examined to detect
any possible existence of a loop indez. Roughly speaking, we want to detect if there is any index turns out
to be a built-in counter for the iterative steps towards reaching the least fixed-point of the system. In this
case, index d of the b_net is a loop index because we can define a new index d; such that it relates to index
d by dy = log(n)—d. Now substitute d by d; throughout the equation, and the result is d; — 1 appearing on
the right-hand side while d; appears on the left-hand side. Thus d; actually counts up the inductive steps.
Thus d can be interpreted as a loop index for the macro-parallel program; moreover, the loop is bounded
and it begins at d=log(n) and terminates at d=0.

The macro-parallel instructions for the system bnet and n consists of a loop indexed by d where each
iteration consists of the following steps: '

1. Allocating processors. Indices other than the loop index are for processors. The caller of b_net
allocates n processors NV; according to the domain specification. The local variable bnet that corresponds
to the function b_net is allocated. We also assume that the argument r resides in some ensemble of
processors R;.

2. Communications and computations. The interesting part of interpreting a system of recursion equa-
tions lies in the part of recursive calls. Since b_net is called in definition a and b, this means that two
remote arguments are needed. A remote reference (N(.'—zd) mod 2¢+13 bnet) will be generated and

the value bnet of processor N( i=24) mod 2¢+1 will be retrieved. A remote reference (N;, bnet) is also
generated, but it is simply an access to processor N,’s own local variable bnet.

We will not describe step by step the instructions, since simple flow analysis would tell the order in
which various communication and computation steps should occur.

Fach system of recursion equations is encapsulated and abstracted as a function, in this case, function
b._sort. Now we turn to the discussion of how substitution of macro-parallel modules work.

Figure 3 illustrate the hierarchy of frames for function sort when it is applied to an input sequence r of
length 8. The recursion in function sort grows as a tree. A tree of processors are allocated in the downward
phase to keep track of the distributed procedure calling sequence. Physically, only as many processors as
leaf nodes are needed because each processor can use its own stack for storing the history of the calls and
be re-used at every level of the tree.

In the upward phase, processors are actually allocated for the function sort, and the number of such
processors is proportional to the amount of data to be processed. The upward phase starts at the leaf nodes
of the tree built in the downward phase where each leaf node is responsible for a sort function that sorts a
single element. The total number of the leaf nodes is the length of the input sequence | Ix||. Since sort does
not call any other function defined by a system of recursion equations in the case of single element input,
only one processor is allocated for each leaf node. At this point, as many as | ||| hyperstack frames are
set in concrete in the sense that macro-parallel processors are allocated. After this step of the computation
is completed by processors for each pair of leaf nodes (there is a hidden communication for synchronization
here), the hyperstack frame is poped and control is given to the tree nodes at the next higher level. The
result of each processor is to be sent by a communication to the processors allocated for sort at the next
higher level. Since each function sort at this level calls b_sort, which in trun calls b_net, two processors are
allocated for each call to funtion sort. At this point, as many as | Iz | |/2 hyperstack frames each containing
2 processors are set in concrete. The process continues going up the hierarchy of frames as shown in the
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Figure 3: The hierarchy of stack frames at the end of the downward phase.

figure. Since processors can be re-used at every level of the hierarchy both for storing the input arguments
from its immediate lower level and for sorting at that level, only a total of n processors are needed.

The essential difference of the macro-parallel/substitution approach from the graph reduction approach
can be seen here: besides allocating a logical process (the tree node) for each function call as in the graph
reduction model, a group of processors are allocated for each tree node, and its size depends on the size of
the input argument to the call. Hence parallelism is used at a much greater scale in our approach.

6 Concluding Remarks

We have chosen a very high-level, mathematical-notation-like language for programming parallel machines,
not just because it is easy to use and to understand but because it contains more tnformation for paralleliza-
tion. A specification written in a conventional programming language may have lost certain information due
to the inherent extraneous dependencies in the data structures or language constructs, such as lists, stacks,
sequential loops, etc. We also believe that adopting existing programming language constructs and conven-
tional mathematical notations and enlivening them with a new parallel model has a distinct advantage over
creating new parallel language constructs: once the model is understood by a programmer, the programming
itself follows a familiar route.

One pronounced problem in programming general purpose multiprocessors which have fixed interconnec-
tions and sizes is that unless each program is written for a given problem of a fixed size range, a programmer
must take into account how a large problem with unknown size can be fitted onto a machine with a smaller
number of processors. In general, not only problem size causes the necessity of re-distributing work among
many processors; also, the machine characteristics and the course of computation could dominate how a task
should be assigned to processors. Programming at the microscopic level is not only error-prone and time-
consuming but subject to the necessity of customizing each problem for various input size ranges, input data
sets, or dynamic behavior of a computation, which often is not known until run time. Hence hand-written,
micro-parallel code for multiprocessors can get very bad performance without explicitly programming for
load balancing, and this increases the difficulty further. Our approach of macro-parallel programming not
only makes programming easier, but allows the control of the granularity of computation by playing with
the index set: for example, the original index set is partitioned into subsets so that a physical processor is
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assigned with a subset of logical processors, one for each index tuple. Moreover, this granularity control can
be done at run-time [23] when more information about the work load is available so that the aggregation of
index tuple into subsets reflects this knowledge.

Another related issue in parallel programming is that the design space for parallel programs has been
enlarged from the one-dimensional space of sequential programming into multi-dimensional space in which
processors can be arranged in a variety of different ways. The number of possible solutions to a given
problem can be different not only in the algorithmic sense: also, the same algorithm can have many different
realizations in multi-dimensional space and time, each with different control flow, data flow, granularity, and
space-time tradeoffs. These different space-time realizations can sometimes be determined systematically by
optimization procedures [18] and are often best selected on the basis of the target machine characteristics.
Hence a problem specification must be high-level enough so that there is room for such optimizations. The
combination of the macro-parallel and functional nature of Crystal helps programmers to cope with these
increased degrees of freedom for programming, simply by allowing higher-level specifications.

The potential of a functional language for parallelism becomes greater when higher-order functions are
used in combination with parallel programming methodologies that improves on, say, more straightforward
source programs. A program optimization rule is specified in Crystal as a high order function that takes
a source program as its argument. A programmer may apply an optimization rule according to some
programming methodology (e.g. that in [3]), or the optimization can be automated and be made transparent
to the programmer. In the Crystal programming system, program optimizations are performed as much as
possible at the source level where symbolic substitution of program definitions are made. This approach has
the advantage that users with more knowledge about the problem can always use that knowledge, still at
the source level, to obtain a better program.

The technology of language processing described above is currently under development. Our current goal
is that the system will be able to perform language processing for a variety of machines at a reasonable
cost, and that the target codes will have reasonably good performance. A higher goal than just making
programming parallel machines easier is to illustrate that very high-level programming languages can indeed
be made practical by parallel hardware.
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