
Yale University

Department of Computer Science

Analysis of Optimizations of Angluin’s L∗ Machine
Learning Algorithm

David Beam

YALEU/DCS/TR-1498
September 2014

Analysis of Optimizations of Angluin’s L∗

Machine Learning Algorithm

David Beam∗†

Abstract

This paper provides the results of a study conducted on various
versions and optimizations of Angluin’s L∗ learning algorithm. Tests
were done on randomly generated DFAs and prefix-closed DFAs using
both the original algorithm, and an optimized version under several
different conditions. Results were analyzed in terms of queries and
counter examples used, as well as overall run time. The optimized
algorithm consistently outperforms the original in terms of queries and
run time, and even outdoes an optimization made specifically for prefix-
closed machines presented in a previous study.

1 Introduction

Recently, effective modeling techniques have become essential to the field
of computer science as we attempt to use software to describe complex,
oftentimes evolving systems. Many such systems can be described using
deterministic finite automata (DFA), a type of state accepter that uniquely
accepts or rejects any finite string of a given alphabet. One method for
automated generation of DFAs, Angluin’s L∗ machine learning algorithm,
has been widely used since its introduction in 1987, in areas including com-
munication, big data, and the NASA Mars rover project [Cobleigh et al.,
2003]. Within the last decade, optimizations of L∗ have been developed
that dramatically increase efficiency in terms of run time and queries. This
study sought to analyze the effectiveness of Angluin’s original algorithm
(henceforth be referred to as L∗0) and one such optimization, presented by
Rivest and Schapire [1993] (referred to in this article as L∗1), in a number of

∗Stanford University, Stanford, CA 94305
†The author is grateful for the support and guidance provided by Professor Dana

Angluin throughout the project.

1

different test environments. This paper does not seek to offer an in depth
explanation of L∗0 as it has been done multiple times. For more information
on the original version refer to “Learning Regular Sets from Queries and
Counterexamples” [Angluin, 1987]. L∗1 forgoes the consistency check in L∗0,
instead optimizing each counter example and adding the optimized string to
the experiments section. The optimization step ensures the table is always
consistent, and, as shown later, drastically increases overall performance de-
spite using more counter examples. For a more in depth discussion of L∗1,
read the presentation in section 4.5 of “Inference of Finite Automata using
Homing Sequences” [Rivest and Schapire, 1993].

2 Preliminaries

L∗0 and L∗1 were compared in a number of different scenarios. While these
trials are discussed in depth in Section 3 some factors remained constant
throughout most trials. All machines were generated using Python’s pseudo-
random generator. First, a machine size between 4-100 non-minimized states
was randomly selected. Then each state-symbol pair was assigned to lead to
a state. Finally, states were randomly chosen to be accepting or rejecting.
This creation method did not guarantee all of the states in the originally
generated machines were reachable or unique. The states reported in the
results sections data tables refer to the minimized states in the final guessed
machine. While deterministic and random equivalence tests were used at
different times, it can be assumed the deterministic test was used unless it
is stated otherwise. The default search method for optimizing counter exam-
ples was binary, and in fact binary search was always used except in section
3.4. Machines with only one minimal state were excluded from the results,
since all such machines always took both algorithms 3 queries, 1 equivalence
test (0 counter examples), and a relatively small run time. All machines
were run with an alphabet size of 2. The total average presented at the bot-
tom of each table weights each range of states, not each machine, equally.
Run time was measured from immediately after the random machine was
generated until the time the guessed machine passed an equivalence check.
Time is always reported in seconds in this paper. Random counter examples
were generated by using Python’s pseudo-random generator to first pick a
string length between 1 and a given max length, then randomly pick 0’s and
1’s to make a string of the given length. In order to add some optimization
to this process, the max length of these counter examples was first limited to
ten symbols. If a counter example was not found after 500 strings, the max

2

length was increased to the theoretical maximum (two times the number of
states in the true machine plus one, note the number of non-minimal states
was used as the number of minimized states was not known at runtime). If
a counter example was still not found after another 500 strings, the machine
was assumed to be equivalent and the timer was stopped. The machine’s
equivalence was however verified deterministically before recording the trial
as data. With the exception of Figure 2, all graphs show third order poly-
nomial best fit lines generated by Microsoft Excel using all data pertinent
to the given figure (not just the averages shown in the tables).

3 Results

3.1 Results Overview

In order to compare L∗0 to L∗1, both algorithms were tested on the same
randomly generated DFAs containing up to 100 non-minimized states with
an alphabet size of 2. The main metrics used to evaluate the algorithms’
relative performance were the average number of queries per state (q/s) and
counter examples per state (c/s). These tests were also complemented by
a run time test, which, though subject to code inefficiencies and computer
performance, still proved a useful measure of effectiveness. Machines were
tested using deterministic equivalence tests, and a random counter example
brute force approach (where the randomly checked machines were verified
deterministically at the conclusion of each run). In general L∗1 used less
queries than L∗0 but more counter examples. This seemed to be a favorable
trade-off however, as L∗1 consistently out performed L∗0 in terms of run time,
especially on larger DFA’s.

3.2 L∗0 versus L∗1, with Deterministically Generated Counter
Examples

L∗1 frequently used more c/s than L∗0 but less q/s. In all cases, both c/s and
q/s were dependent on the number of states so averages were taken accord-
ingly. The results are shown both graphically in Figure 1 and numerically
in Figure 3.

The first graph in Figure 1 accurately depicts a trend of rapid growth
in q/s while the second seems to suggest that c/s also grow rapidly after a
brief period of decline. This second graph was the only case in this paper
where the trend line was misleading. Though the trend line was skewed by
large deviation and a relatively sparse sample of large machines, c/s actually

3

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100
states

q
u

er
ie

s
p

er
 s

ta
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

states

co
u

n
te

r
ex

am
p

le
s

p
er

 s
ta

te

Figure 1: Trend lines comparing L∗0 (black line) and L∗1 (gray line) q/s (left)
and c/s (right)

seemed to decline as the number of states grew. To better convey this trend
Figure 2 offers the full scatter plot data of c/s used by every machine in this
section, along with the trend lines from the second graph in Figure 1.

Overall on average L∗1 used 27.16% fewer q/s than L∗0, but 60.49% more
c/s. Both numbers are a direct result of the lack of consistency checking
in L∗1. Though L∗0 avoids some equivalence queries and subsequent counter
examples by checking for consistency and adding experiments, it also ends up
querying some unnecessary strings. L∗1 avoids checking these extra strings,
and the consistency check altogether, by optimizing each counter example
(finding the earliest point of divergence) and adding the optimized string
to the experiments instead. The latter strategy proves much more efficient
from a time standpoint, as evidenced in Figure 3.

On average L∗1 ran 4.76 times faster than L∗0. The difference in run
time is largely a result of two major differences between L∗0 and L∗1: counter

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

states

co
u

n
te

r
ex

am
p

le
s

p
er

 s
ta

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

states

co
u

n
te

r
ex

am
p

le
s

p
er

 s
ta

te

Figure 2: Full Scatter plot data of L∗0 c/s (left) and L∗1 c/s (right) with trend
lines from the second graph of Figure 1

States L∗0 q/s L∗1 q/s L∗0 c/s L∗1 c/s L∗0 time L∗1 time Trials

2-10 8.57 6.08 0.44 0.48 0.04 0.02 75

11-21 15.28 10.49 0.32 0.50 0.27 0.09 97

21-30 19.73 13.64 0.27 0.44 0.85 0.24 133

31-40 22.44 16.28 0.24 0.39 1.59 0.50 107

41-50 23.51 17.35 0.20 0.33 2.69 0.72 124

51-60 24.01 18.84 0.18 0.29 3.99 1.09 104

61-70 26.09 20.46 0.16 0.27 5.61 1.48 97

71-80 30.05 23.10 0.16 0.27 10.43 2.43 73

81+ 42.86 28.59 0.16 0.31 27.72 4.59 23

Total 23.62 17.20 0.23 0.37 5.91 1.24 833

Figure 3: L∗0 vs L∗1, deterministically generated counter examples

5

States L∗0 q/s L∗1 q/s L∗0 c/s L∗1 c/s L∗0 time L∗1 time Trials

2-10 12.99 7.46 0.28 0.50 0.19 0.14 26

11-21 21.43 12.68 0.22 0.45 1.15 0.32 36

21-30 29.43 15.99 0.19 0.39 5.87 0.57 42

31-40 41.46 19.11 0.16 0.35 20.38 0.86 30

41-50 48.39 20.49 0.14 0.29 47.07 1.20 46

51-60 61.46 24.39 0.14 0.29 106.10 1.94 48

61-70 63.06 24.05 0.12 0.25 176.25 2.09 28

71-80 73.84 25.40 0.11 0.23 325.36 2.82 29

81+ 150.03 31.96 0.11 0.26 1,766.46 4.37 8

Total 55.79 20.17 0.16 0.33 272.09 1.59 293

Figure 4: L∗0 vs L∗1, randomly generated counter examples

examples vs queries, and optimizing counter examples versus checking for
consistency. While L∗1 uses more counter examples than L∗0 than it saves on
queries percentage wise, in terms of magnitude both algorithms use many
more queries than counter examples. So from a run time standpoint it is
better to use more counter examples if it saves on queries. Additionally,
checking for consistency is an extremely costly function, that involves loop-
ing through the observation table multiple times. However, optimizing a
counter example has a relatively low cost and the point of divergence can be
found in O(log n) run time using a binary search. These two factors account
for the significantly better run times using L∗1.

3.3 L∗0 versus L∗1 with Randomly Generated Counter Exam-
ples

The performance discrepancy between the two algorithms is even larger
when using randomly generated counter examples. As seen in Figure 4, L∗0
used 2.5 times more q/s than L∗1 in these trials. L∗0 also used more than
twice as many q/s as it did with deterministic counter examples (55.78 vs.
23.62). L∗1 meanwhile only saw a 17% increase in q/s (17.20 vs. 20.17). The
average run time for L∗0 on these machines was over two orders of magnitude
larger than that of L∗1 under the same conditions (272.09s vs 1.59s). Two
of the 81+ state machines took L∗0 over 100 minutes to run each, while
L∗1 finished them in 9 and 8 seconds respectively. The main reason why
random counter examples cause L∗0 to run so inefficiently is the consistency
check. As explained before, the consistency test has to loop through the

6

Counter Example Type Avg q/s Linear Avg q/s Binary Trials

Deterministic 16.57 16.54 461

Random 20.32 19.73 458

Figure 5: Queries used with binary and linear optimization searches

table multiple times checking each pair of rows for equivalence and resulting
in a run time of O(mn2), where m is the width of the observation table and
n is the length. An upper bound to the worst-case size of the observation
table for L∗0 was calculated by Angluin to be (l|

∑
| · |Q|2) [Ang87] where l

is the length of the longest counter example provided, |
∑
| is the alphabet

size (always 2 in these tests) and Q is the theoretical maximum number of
queries in a given machine. If the teacher always gives the shortest possible
counter example, as it does when using the deterministic equivalence test,
the maximum table size simplifies to (|

∑
| · |Q|3). This slight efficiency

is lost when using random counter examples. More significantly however,
the tendency of random counter examples to be longer than necessary means
the table size has a much larger chance of approaching this maximum bound
than when deterministic counter examples are used. The larger table size
leads to a more costly consistency test.

3.4 A Comparison Between Binary and Linear Search when
Optimizing Counter Examples in L∗1

As part of L∗1 the counter example optimizer searches through the provided
string for the point of divergence between the guessed machine and the true
one. The piece of the string up to and including this point is used as the
optimized counter example. In order to find divergence the optimizer must
query portions of the string, which counts against the overall membership
query total. This search process can be carried out using either binary or
linear search. While binary search would automatically seem advantageous,
there is a caveat. The linear search can instantly stop when it finds a
divergence point and know that it is the first one. The binary search must
also test the point before any different point it finds to ensure it is actually
returning a divergence point. These two methods were compared using
both a deterministic equivalence test and with randomly generated counter
examples. The results are shown in Figure 5. In the deterministic case,
the difference between queries was almost negligible. Oftentimes the two
methods used the exact same number of queries. The similarity can be
explained given the fact that all membership queries are cached, and can

7

be reused without counting against the overall total. So an extra query in
a given run of the optimizer will often have no effect overall. Despite the
small difference it is noteworthy that, in the deterministic trials, the binary
search never used more queries than the linear search, and used less queries
on roughly half of the trials, meaning it is slightly superior. Runtime was also
measured for all trials in this test, and no significant difference was observed.
Given that the optimizer is only one small piece of the overall L∗1 algorithm
the run time similarity was expected. As expected in this case both methods
always used the same number of counter examples. With the random counter
examples there was a more notable difference in terms of number of queries.
The binary search, used 3.38% fewer queries than its linear counterpart.
This number becomes significant when considering the queries used in the
optimization phase are only a fraction of the algorithm’s total number, which
is what gets compared in the end. In these tests however there were some
rare cases where the linear test used fewer queries. Regardless, binary search
was clearly the superior method.

3.5 L∗0 versus L∗1 on Prefix-closed Automata

Berg et al. [2005] note that L∗0 struggles with prefix-closed automata. A
prefix-closed machine is one such that every prefix of an accepted string is
accepted and every suffix of a rejected string is rejected. L∗0 and L∗1 were
both run on prefix-closed DFAs to see how much these machines affected
performance, especially on L∗1 which was not tested by Berg et al. The
machines were generated by first using Python’s pseudo-random generator
to make a non-minimized DFA, as above, then setting all but one of the
reachable states to accepting, then putting self loops on the rejecting state.
Berg et al. offer an optimization that uses 20% fewer membership queries
than L∗0. L∗1 however used an average of 36.21% fewer membership queries
(which translates to the 36.93% fewer q/s shown in Figure 7), in exchange
for 140.68% more counter examples. Meaning that in terms of queries, L∗1
was a better optimization than the prefix-closed specific one presented by
Berg et al. [2005] for the machines tested. L∗1 also ran 3.7 times faster than
L∗0 on these machines. Figure 6 shows how prefix-closed machines change the
growth curve, for both algorithms. The growth of the prefix-closed machine’s
q/s appears to be much more linear than that of standard automata.

8

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

states

q
u

er
ie

s
p

er
 s

ta
te

0

10

20

30

40

50

60

70

0 20 40 60 80 100

states

q
u

er
ie

s
p

er
 s

ta
te

Figure 6: Trend lines comparing standard (black line) and prefix-closed
(gray line) automata q/s using L∗0 (left) and L∗1 (right)

States L∗0 q/s L∗1 q/s L∗0 c/s L∗1 c/s L∗0 time L∗1 time Trials

2-10 8.39 5.86 0.31 0.47 0.03 0.02 50

11-21 23.44 13.92 0.33 0.68 0.47 0.18 65

21-30 33.81 20.38 0.29 0.68 1.86 0.59 62

31-40 44.77 25.82 0.27 0.63 5.20 1.29 55

41-50 53.24 32.67 0.25 0.63 10.24 2.70 64

51-60 63.89 38.94 0.22 0.63 25.73 6.12 57

61-70 67.36 43.66 0.21 0.59 53.20 13.81 65

71-80 77.81 49.81 0.21 0.60 54.92 13.93 52

81+ 74.40 50.93 0.18 0.55 45.53 14.43 6

Total 49.68 31.33 0.25 0.61 21.91 5.90 476

Figure 7: L∗0 versus L∗1 on Prefix-closed Automata

9

4 Conclusion

The data clearly shows the superiority of L∗1, which outperforms L∗0 in almost
every metric. It also shows the viability in terms of run time of L∗1 in
multiple scenarios. Even on prefix-closed machines, a supposed weakness
of the algorithm, L∗1 finished with an average run time of 14.4 seconds on
machines with 81 or more minimized states. While run times certainly may
grow for machines with larger alphabets, the overall results are encouraging,
especially in the light of the continuously growing range of applications for
the algorithm. New optimizations and ways of using L∗ continue to be
discovered. For example, Cobleigh et al. [2003] have used compositional
verification to eliminate large table sizes on big machines. The compositional
approach not only saved memory space, but also may have presented an
alternate solution to the run time issues shown when using L∗0 with random
counter examples (as the problems occurred with large observation tables).
Further work may seek to build on these results with larger alphabet sizes,
more non-minimized states, or different optimizations. This study also did
not examine memory usage of the tables which becomes an important factor
with larger machines.

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106.

Berg, T., Jonsson, B., Leucker, M., and Saksena, M. (2005). Insights to
Angluin’s learning. Electronic Notes in Theoretical Computer Science,
118(0):3–18. Proceedings of the International Workshop on Software Ver-
ification and Validation (SVV 2003) Software Verification and Validation
2003.

Cobleigh, J., Giannakopoulou, D., and Păsăreanu, C. (2003). Learning as-
sumptions for compositional verification. In Garavel, H. and Hatcliff, J.,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 2619 of Lecture Notes in Computer Science, pages 331–346.
Springer Berlin Heidelberg.

Rivest, R. and Schapire, R. (1993). Inference of finite automata using homing
sequences. Information and Computation, 103(2):299–347.

10

