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Abstract

We consider two issues in polynomial-time exact learning of concepts using
membership and equivalence queries: (1) errors in the answers to membership
queries and (2) learning finite variants of concepts drawn from a learnable class.

To study (1), we introduce a malicious membership query, in which errors
are permitted on a set of strings in the domain, such that the number of strings
plus the sum of their lengths is bounded by L. Equivalence queries are answered
correctly, and algorithms are allowed time polynomial in the usual parameters
and L. We present a new polynomial-time learning algorithm in this model for
monotone DNF formulas. x

To study (2), we consider classes of concepts that are polynomially closed
under finite exceptions and a natural operation to add exception tables to a
class of concepts. Applying this operation, we obtain the class of monotone
DNF formulas with finite exceptions. We give a new polynomial-time algo-
rithm to learn the class of monotone DNF formulas with finite exceptions using
equivalence and membership queries.

Relating (1) and (2), we give a general transformation showing that any
class of concepts that is polynomially closed under finite exceptions and is
learnable in polynomial time using membership and equivalence queries is also
polynomial-time learnable using malicious membership and equivalence queries.
Corollaries include the polynomial-time learnability of the following classes us-
ing malicious membership and equivalence queries: deterministic finite accep-
tors, boolean decision trees, and monotone DNF formulas with finite exceptions.
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1 Introduction

There is an impressive and growing number of polynomial-time algorithms, many of
them quite beautiful and ingenious, to learn various interesting classes of concepts
using equivalence and membership queries. To apply such algorithms in practice,
researchers will have to overcome a number of problems.

One significant issue is the problem of errors in answers to queries. Previous
learning algorithms in the equivalence and membership query model are guaranteed
to perform well assuming that queries are answered correctly, but there is often no
guarantee that the performance of the algorithm will “degrade gracefully” if that
assumption is not exactly satisfied.

A related issue is the assumption that the target concept is drawn from a particular
class of concepts, for example, monotone DNF formulas. Even if the target concept is
“nearly” a monotone DNF formula, there is typically no guarantee that the learning
algorithm will do anything reasonable.

We introduce models addressing these two issues, and demonstrate a useful rela-
tionship between them.

The notion of a finite variant of a concept, that is, a concept with a finite set
of exceptions, is a unifying theme in this work. Our model of errors in membership
queries can be viewed as combining an equivalence oracle for the target concept
and a membership oracle for a finite variant of the target concept. Qur model of a
concept that is “nearly” monotone DNF is one that is represented by a monotone
DNF concept with “few” exceptions. We can view the learning problem as one in
which the equivalence and membership oracles present the same finite variant of a
monotone DNF formula. In both cases, the goal is to identify exactly the concept
presented by the equivalence oracle.

1.1 Error Models

There is a considerable body of literature on errors in examples in the PAC model,
starting with the first error-tolerant algorithm in the PAC model, given by Valiant
[13]. In this case the goal is PAC-identification of the target concept, despite the
corruption of the examples by one or another kind of error, for example, random or
malicious misclassification errors, random or malicious attribute errors, or malicious




errors (in which both attributes and classification may be arbitrarily changed.)

There has been less work on errors in learning models in which membership queries
are available, and the issues are not as well understood. One relevant distinction is
whether the errors in answers to membership queries are persistent or not. They are
persistent if repeated queries to the same domain element always return the same
answer. In general, the case of persistent errors is more difficult, since non-persistent
errors can yield extra information, and can always be made persistent simply by
caching and using the first answer for each domain point queried.

Sakakibara defines one model of non-persistent errors, in which each answer to
a query may be wrong with some probability, and repeated queries constitute inde-
pendent events [12]. He gives a general technique of repeating each query sufficiently
often to establish the correct answer with high probability. This yields a uniform
transformation of existing query algorithms. This could be a reasonable model of a
situation in which the answers to queries were being transmitted through a medium
subject to random independent errors; then the technique of repeating the query is
eminently sensible.

A related model is considered by Dean et al. for the case of a robot learning a
finite-state map of its environment using faulty sensors and reliable effectors [7]. In
this model, observation errors are taken as independent as long as there is a nonempty
action sequence separating them. This means that there is no simple way to “repeat
the same query”, since a nonempty action sequence may take the robot to another
state, and no reset operation is available. A polynomial-time learning algorithm is
given for the situation in which the environment has a known distinguishing sequence.
It achieves exact identification with high probability.

To deal with the more difficult case of persistent errors in membership queries, the
idea of “repeating the query” is insufficient, and the success becomes dependent on
the error-correcting properties of groups of “related” queries. In an explicit and very
interesting application of the ideas of error-correcting algorithms, Ron and Rubin-
feld use the criterion of PAC-identification with respect to the uniform distribution,
and give a polynomial-time randomized algorithm using membership queries to learn
DFA’s with high rates of random persistent errors in the answers to the membership
queries [11].

Algorithms that use membership queries to estimate probabilities (in the spirit of
the statistical queries defined by Kearns [9]) are generally not too sensitive to small
rates of random persistent errors in the answers to queries. For example, Goldman,




Kearns and Schapire give polynomial-time algorithms for exactly learning read-once
majority formulas and read-once positive NAND formulas of depth O(log n) with high
probability using membership queries with high rates of persistent random noise or
modest rates of persistent malicious noise [8]. As another example, the algorithm of
Kushilevitz and Mansour that uses membership queries and exactly learns logarithmic
depth decision trees with high probability in polynomial time seems likely to be robust
under nontrivial rates of persistent random noise in the answers to queries [10].

However, other algorithms depend more strongly on the correctness of the answers
to individual queries; in these cases, the existence of an error-tolerant algorithm for
the problem is in question. This is particularly true of learning algorithms in the
equivalence and membership query model, where often the class of concepts being
learned is known not to be learnable in polynomial time using equivalence queries
only.

Our goal in this paper is to introduce a variant of the equivalence and membership
query model in which the effects of errors in the answers to membership queries can be
isolated for study. For this reason, we postulate a model in which equivalence queries
remain correct (so that exact identification is still possible, if only by enumeration of
hypotheses), and there may be errors in the answers to membership queries. Another
motivation for this separation is that we may imagine the membership queries to
be answered by a (less than omniscient) teacher, whereas the equivalence queries
correspond to comparisons of the hypothesis with real-world results.

The first such model was introduced by Angluin and Slonim: equivalence queries
are assumed to be answered correctly, while membership queries are either answered
correctly or with “I don’t know” and the answers are persistent. The “I don’t know”
answers are determined by independent coin flips the first time each query is made
[4]. They give a polynomial-time algorithm to learn monotone DNF formulas with
high probability in this setting. They also show that a variant of this algorithm can
deal with one-sided errors, assuming that no negative point is classified as positive.

In this paper we consider malicious, persistent errors in the answers to member-
ship queries. There is no element of randomness in the choice of which membership
queries are answered incorrectly — the only limitation is a parameter L, which is
an upper bound on the number plus the sum of lengths of elements of the domain
whose membership queries are answered incorrectly. We assume that the answers to
equivalence queries are correct, but choice of which (correct) counterexample to give
is under the control of the same adversary choosing which membership queries to
answer incorrectly. We require exact identification of the target concept, but permit




polynomial time dependence on the usual parameters and L.

2 Preliminaries

2.1 Concepts and Concept Classes

Our definitions for concepts and concept classes are a bit non-standard. We have
explicitly introduced the domains of concepts in order to try to unify the treatment of
fixed-length and variable-length domains. We take ¥ and I' to be two finite alphabets.
Examples are represented by finite strings over ¥ and concepts are represented by
finite strings over I'.

A concept consists of a pair (X, f), where X C ¥* and f maps X to {0,1}. X is
the domain of the concept. The positive ezamples of (X, f) are those w € X such that
f(w) = 1, and the negative ezamples of (X, f) are those w € X such that f(w) = 0.
Note that strings not in the domain of the concept are neither positive nor negative
examples of it.

A concept class is a triple (R, Dom, i), where R is a subset of I'*, Dom is a map
from R to subsets of ¥*, and for each r € R, u(r) is a function from Dom(r) to
{0,1}. R is the set of legal representations of concepts. For each r € R, the concept
represented by r is (Dom(r), u(r)).

A concept (X, f) is represented by a concept class (R, Dom, ) if and only if for
some r € R, (X, f) is the concept represented by r. The size of a concept (X, f)
represented by (R, Dom, u) is defined to be the length of the shortest string r € R
such that r represents (X, f). The size of (X, f) is denoted by |(X, f)|; note that it
depends on the concept class chosen.

The concept classes we consider in this paper are the boolean formulas and syntac-
tically restricted subclasses of them, boolean decision trees, and deterministic finite
acceptors (DFA’s). The representations are more or less standard, except each con-
cept representation specifies the relevant domain. For DFA’s, the domain of every
concept is the set X* itself. For boolean formulas and decision trees, we assume that
¥ = {0,1}, and each concept representation specifies a domain of the form {0,1}".




2.2 Exceptions

For each finite set S of strings from £*, we define its table-size, denoted ||S||, as the
sum of the lengths of the strings in S and the number of strings in S. Note that
[|S]| = 0 if and only if S = (. For a concept (X, f) and a finite set S C X, we define
the concept (X, f) with exceptions S, denoted zcpt((X, f), S), as the concept (X, f')
where f'(w) = f(w) for strings in X — S, and f'(w) = 1 — f(w) for strings in S.
(Thus f and f’ have the same domain, and are equal except on the set of strings S,
which is a subset of their common domain.) It is useful to note that S is partitioned
by (X, f) into a set of positive ezceptions Sy and a set of negative exceptions S_,

deﬁnedbyS+d=efS'—{w€XIf('w)=1} andS_défSﬂ{wele(w)zl}.

A concept class (R, Dom,y) is closed under finite exceptions provided that for
every concept (X, f) represented by (R, Dom,u) and every finite set S C X, the
concept zept((X, f),S) is also represented by (R, Dom,p). If, in addition, there is
a fixed polynomial of two arguments such that the concept zcpt((X, f),S) is of size
bounded by this polynomial in the size of (X, f) and ||S||, we say that (R, Dom, p)
is polynomially closed under finite ezceptions.

This definition differs from the similar one given in [5] because we do not require
that there exists a polynomial-time algorithm that given a concept and a list of
exceptions produces the new concept. However, for the classes that we consider there
are such algorithms.

We define a natural operation of adding finite exception tables to a class of con-
cepts to produce another class of concepts that “embeds” the first and is polynomially
closed under finite exceptions.

We assume ¥ C T" and |T'| > 2. We define a simple encoding e that takes a string r
from I'* and a finite set of strings S C ¥* and produces a string r' in I'™* from which r
and the elements of S can easily be recovered, and is such that |r'| = 2(1+|r|+||S]]).
The details of the encoding are as follows.

Assume that 0 and 1 are distinct symbols in I'. We define
es(biby ... b;) = bbbbybb, . . . bb;,

for b € {0,1} and by,b,,...,b; € T. Note that |es(w)| = 2(1 + |w]|) for every string
w € I'*. We then define the encoding of r and S as

r' = ¢(r,S) &f eo(r)e1(s1)eo(s2) - - - €xmodz(Sk),




where sy, 83,..., Sk are the strings in S.

Given a concept class (R, Dom, u), we define the class obtained from it by adding
exception tables as (R, Dom/, u'), where R’ is the set of all strings of the form e(r, S)
such that » € R and S is a finite subset of Dom(r), and for each r’ € R', the concept
represented by r’ = e(r, S) is the concept represented by r with exceptions S, that is,

(Domi(r'), ' (r')) = zept((Dom(r), u(r)), S).

For example, adding exception tables to the monotone DNF formulas produces a
concept class which we term monotone DNF formulas with finite ezceptions. More
detailed discussion of classes obtained by adding exception tables and of polynomial
_closure under finite exceptions can be found in Section 5.

2.3 Queries

In our setting, the goal of a learning algorithm is exact identification of a target
concept (Dom(r), u(r)) chosen from a known concept class (R, Dom, ). We assume
that the domain Dom(r) of the target concept is also known to the learning algorithm
(which for boolean formulas and decision trees means n, the number of attributes, is
known).

Information about the target concept is available to the algorithm as the answers
to two types of queries: equivalence queries and malicious membership queries.

In an equivalence query, the algorithm gives as input a concept ' € R with the
same domain as the target, and the answer depends on whether p(r) = u(r’). If so,
the answer is “yes”, and the learning algorithm has succeeded in its goal of exact
identification of the target concept. Otherwise, the answer is a counterexample, any
string w € Dom(r) on which the functions u(r) and u(r’) differ. We denote an
equivalence query on a hypothesis h by EQ(A).

A label for a counterexample v = EQ(r’) is h*(v) or, equivalently, (1—h(v)), where
h* is the target concept and h = p(r') is the concept that equivalence query was made
with. The counterexamples that have label 1 are called positive counterezamples and
the ones that have label 0 are called negative counterezamples.

In a malicious membership query, the learning algorithm gives as input a string
w € Dom(r), and the answer is either 1 or 0. If the answer is equal to the value of
p(r) on w, then the answer is correct, otherwise it is an error. We denote a malicious




membership query about a string z by MMQ(z).

Note that the learning algorithm has no a priori way to tell if an answer to a
malicious membership query is correct or an error. However, the answers are restricted
as follows.

1. They are persistent, that is, different queries with the same input string w receive
the same answer. Queries that are not persistent may reveal some information,
namely, if one query on a string w returns a different answer than another query
on the same string, the algorithm knows that one of them is wrong. Every
algorithm designed to work with persistent queries can be made to work with
non-persistent ones by caching the queries and always using the first answer for
subsequent queries.

2. In addition, we bound the “amount of lying” permitted in answers to malicious
membership queries. One natural quantity to bound would be the number of
different strings whose malicious membership queries can be answered incor-
rectly, and this works well in fixed-length domains. However, in variable-length
domains, we wish to account for the lengths of the strings lied about as well as
their number.

Therefore, in general the algorithm is given a bound L on the table-size, ||5]|, of
the set S of strings whose malicious membership queries are answered incorrectly
during a single run. In the case of a fixed-length domain, {0, 1}*, we may instead
give a bound £ on the number of different strings whose MMQ’s are answered
incorrectly. Note that L = ¢(n + 1) is a bound on the table-size in this case.

Note that when L = 0 or £ = 0 there can be no errors in the answers to
MMQ’s and we have the usual model of membership queries as a special case;
for emphasis we will sometimes refer to these as (vanilla) membership queries
in this paper. We denote a (vanilla) membership query about a string z by

MQ(z).

We assume that an on-line adversary controls the choice of counterexamples in
answers to equivalence queries and the choice of which elements of the domain will
be answered with errors in malicious membership queries.

An algorithm ezactly learns (R, Dom, 1) in polynomial time using equivalence and
malicious membership queries if and only if there exists a polynomial p(s,n, L) such
that for every r € R, every nonnegative integer L and every on-line adversary answer-
ing equivalence and malicious membership queries about r, at every point in the run




the algorithm’s running time is bounded above by p(s, n, L), where s is the size of the
target concept, n is the maximum length of any counterexample given so far, L is a
bound on the table-size of the strings for which MMQ’s are answered incorrectly, and
the algorithm eventually halts and outputs a concept r’ € R with the same domain
as r and such that u('r) = u(r).

The definition is extended in the usual ways to cover randomized learning algo-
rithms and their expected running times, and also extended equivalence queries, in
which the inputs to equivalence queries and the final result of the algorithm are al-
lowed to come from a concept class different from (usually larger than) the concept
class from which the target is drawn.

2.4 Monotone DNF Formulas |

We assume a set of propositional variables V and denote its elements by z;, 2, . .., z,,
where n is the cardinality of V. A monotone DNF formula over V is a DNF formula
over V where no literal is negated. The domain of such a formula is {0,1}". For
example, for n = 20,

T1T4 \% ToTl17T3 \% L9T5T12T3 \Y% Tg

is a monotone DNF formula (with domain {0,1}?°) and a possible target concept in
Section 3. Note that there is an efficient algorithm to minimize the number of terms
of a monotone DNF formula. We will assume that the target formula A* has been
minimized. For a minimized monotone DNF formula f, let m(f) denote the number
of terms in f. We will, however, just write m when the formula it refers to is clear
from the context. In the above example, m = 4.

We view the domain {0,1}" of monotone DNF formulas (with or without excep-
tions) as a lattice, with componentwise “or” and “and” as the lattice operations. The
top element is the vector of all 1’s, and the bottom element is the vector of all 0’s.
The elements are partially ordered by <, where v < w if and only if v[;] < w[z] for
all 1 < ¢ < n. Often we refer to the examples as points of a hypercube {0,1}".
For a point v, all points w such that w < v are called the descendants of v. Those
descendants that can be obtained by setting exactly one coordinate of v from a 1 to
a 0 are called the children of v. The ancestors and the parents are defined similarly.

For convenience, we use a representation of monotone DNF formulas in which each
term is represented by the minimum vector in the ordering < that satisfies the term.
Thus, vector 10011 (where n = 5) denotes the term z,z4zs. In this representation, if




h is a monotone DNF formula and v is a vector in the sample space, v satisfies h if
and only if for some term ¢ of A, t < v.

For any n-argument boolean function f, we call point = a local minimum point of
fif f(z) =1 but for every child y of z in the lattice, f(y) = 0. The local minimum
points of a minimized DNF formula represent its terms in our representation.

For two n-argument boolean functions f; and f; we define the set Err(fi, f2) to
be the set of points where they differ. Le., Err(fi, f2) = {z | fi(z) # f2(z)}. The

cardinality of Err(fi, f2) is called the distance between f; and f; and is denoted by
d(f 1 f 2)~

3 Learning Monotone DNF Formulas With Ma-
licious 'Membel_'ship Queries

In this section we present an algorithm that uses equivalence and malicious mem-
bership queries to learn monotone DNF formulas. The key idea is to depend on
equivalence queries as much as possible, since they are correct.

The algorithm keeps track of all the counterexamples and their labels received
through equivalence queries and consults them first, before asking a membership
query. The pairs of counterexamples and their labels are kept in a set named
CounterEzamples. Obviously, for a positive counterexample v, if z > v then it is
not worth making a membership query about z; it can only be a positive point. Sim-
ilarly, for a negative counterexample v, if ¢ < v then z has to be a negative point of
the target formula. For this reason we define a subroutine CHECKEDMQ and use it
instead of a membership query. The subroutine is given in Figure 1.

As in (2] and [4], our algorithm also uses a subroutine REDUCE in order to move
down in the lattice from a positive counterexample. All the membership queries are
done using the subroutine CHECKEDMQ), which possibly lets the algorithm avoid
some incorrect answers. The subroutine REDUCE is given in Figure 2.

The algorithm for exactly identifying monotone DNF formulas using equivalence
queries and malicious membership queries is given in Figure 3.

The algorithm is based on a few simple ideas. A positive counterexample is re-
duced to a point that is added as a term to the existing hypothesis h, which is a
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CHECKEDMQ(z)
{
If (3(v,1) € CounterEzamples s.t. > v)
Return 1
If (3(v,0) € CounterEzamples s.t. z < v)
Return 0
Return MMQ(z)

Figure 1: Subroutine CHECKEDMQ

REDUCE(v)
{
For (each child w of v)

If (CHECKEDMQ(w) == 1)
Return REDUCE(w)
Return v

Figure 2: Subroutine REDUCE

monotone DNF. That is, the new hypothesis will classify the latest counterexample
and possibly some other points as positive.

Negative counterexamples are used to detect inconsistencies between membership
and equivalence queries. They show that there have been errors in membership queries
that have caused wrong terms to be added to the hypothesis. The algorithm reacts by
removing all the terms that are inconsistent with the latest counterexample. These
are the terms that have the negative counterexample above them. A term can be
removed only when there is a negative counterexample above it.

4 Analysis of LEARNMONDNF

Theorem 1 LEARNMONDNTF learns the class of monotone DNF formulas in poly-
nomial time using equivalence and malicious membership queries.

11




LEARNMONDNFY()
{

CounterEzamples =
h = “the empty formula”

?Vhile ((v = EQ(h)) # “yes”)

Add (v,1 — h(v)) to CounterEzamples
If (h(v) == 0)
{

w = REDUCE(v)

Add term w to h

}

Else
For (each term ¢t of h)
If (t(v) == 1)
Delete term ¢ from h
}
Output A

Figure 3: The algorithm for learning monotone DNF formulas

We need a definition and a simple lemma before proving the theorem.

Let h* be a monotone boolean function on {0,1}", and let A’ be an arbitrary
boolean function on {0,1}". Let C be any subset of {0,1}". The monotone correction
of b with k* on C, denoted me(h', h*,C), is the boolean function k" defined for each
string z € {0,1}"™ as follows.

1 if there exists y € C such that y < z and h*(y) =1,
K'(z) ¥ {0 if there exists y € C such that z < y and h*(y) = 0,
k'(z) otherwise.

Note that since h* is monotone, the first two cases above cannot hold simulta-
neously. It is also clear that if the value of A”(z) is determined by one of the first
two cases, h”(z) = h*(z). We prove a simple monotonicity property of the monotone
correction operation.

12




Lemma 1 Suppose h* is a monotone boolean function and h' is an arbitrary boolean
function on {0,1}". Let Cy C C; be two subsets of {0,1}". Let hy = me(k', h*,Cy)
and hy = mc(h', h*,C3). Then the set of points on which hy and h* differ is contained
in the set of points on which hy and h* differ. That is, Err(hg, h*) C Err(hy, h*).

Proof: Let z be an arbitrary point on which ky(z) # h*(z). Then it must be
that hg(z) = h'(z) and there does not exist any point y € C; such that z < y and
h*(z) = 0 or y < z and h.(z) = 1. Since C, is contained in C,, there is no point
y € Cy such that < y and h*(z) = 0 or such that y < z and h,(z) = 1. Thus,
hi(z) = K'(z) and hy(z) # h*(x). Consequently, Err(hy, h*) C Err(hy, h*). [ |

Now we start the proof of Theorem 1.

Proof: Let A* denote the target concept, an arbitrary monotone DNF formula over
{0,1}" with m terms. Let £ be a bound on the number of strings whose MMQ’s
are answered incorrectly. Because equivalence queries are answered correctly, if the
algorithm ever halts, the hypothesis output is correct, so we may focus on proving a
polynomial bound on the running time.

Since LEARNMONDNTF is deterministic and the target concept A* is fixed, we
may assume that the adversary chooses in advance how to answer all the queries,

that is, chooses a sequence y1, ¥, . . . of counterexamples to equivalence queries and a
set S of strings on which to answer MMQ’s incorrectly. Note that |S| < 4.

In turn, these choices determine a particular computation of LEARNMONDNF
which we now focus on. It suffices to bound the length of this computation. In this
computation the answers to MMQ’s agree with the boolean function ko = zcpt(h*, S).
Also, if CHECKEDMQ is called at step t of this computation on the string z, the an-
swer agrees with the boolean function me(ho, h*, C), where C is set of counterexamples
received up to step t.

The set CounterEzamples only changes when a new counterexample is received.
Therefore, the successive distinct sets of counterexamples in this computation can be
denoted by Co,Cy,..., where Co = @ and C; = C;_; U {yi}, for 1 = 1,2,.... If we
also define

h,‘ = mC(ho, h*, C,)

fori=1,2,..., then CHECKEDMQ answers according to ko until the first counterex-
ample is received, then according to h; until the second counterexample is received,
and so on.

13




Clearly, since ho disagrees with h* on at most £ strings, d(ho,h*) < £. Since
the sets Cy, ... are monotomcally nondecreasing, Lemma 1 shows that Err(h;,h*) C

Err(hi1,h*) fori =1,2,.

We say that a counterexample y; corrects a positive error at point z, if h;_;(z) =1
but h;(z) = h*(z) = 0. We say that a counterexample y; corrects a negative error at
point z, if h;—1(z) = 0 but h;(z) = h*(z) = 1. Note that from the construction of
CHECKEDMAQ it follows that positive errors can be corrected only by negative coun-
terexamples and negative errors can be corrected only by positive counterexamples.
Let there be £, positive and ¢, negative errors corrected in the whole computation.

Of course, €, + £, < L.

Claim 1 If REDUCE is called after counterezample y; and before counterezample
Yit1, it returns a local minimum point of h;.

Proof: After y; is added to CounterEzamples, CHECKEDMQ answers according to
h;. The claim follows from the construction of REDUCE. |

Claim 2 Condition preserved: at the (i + 1)th equivalence query EQ(h), each term
of h is a positive point of h;.

Proof: We prove the claim by induction.

Basis: The first EQ is made on an empty formula. Thus, the claim is vacuously
true.

Induction step: Suppose the claim is true up to the ith EQ. Let A’ be the
hypothesis h at the :th EQ and A” be the hypothesis h at the (¢ + 1)th EQ.
There are two cases to consider.

Case 1: y; is a positive counterexample. Then h;(z) = 1 if and only if
hi-1(z) =1 or ¢ > y;. Let t be the term returned by REDUCE(y;). Then
h" = K" vt. Let t” be a term in h”. Then either t” is a term of A’ or
t" =t. If t” is a term of k' then h;_,(t") = 1 by the inductive assumption
and therefore h;(t") = 1. If t” =t then h;(t") = 1 since ¢t was returned by
REDUCE(y;) which used CHECKEDMQ), which answered according to h;.

14




Case 2: y; is a negative counterexample. Then h;(z) = 1 if and only if
hi-1(z) =1 and z £ y;. Let t” be a term in A", which consists of all those
terms t' of h' such that ¢ £ y;. Therefore, t” £ y; and by the inductive
assumption h;_;(t") = 1. It follows that h;(¢") = 1. u

Claim 3 Once a term z is deleted from hypothesis h, it can never reappear in it.

Proof: Since z was deleted, there must have been a negative counterexample y; such
that y; > z. But then (y;,0) belongs to Counter Ezamples and CHECKEDMQ(z)
can never return 1 again, which is necessary for z to be added to A. [ ]

We divide the run of the algorithm into non-overlapping stages. A new stage begins
either at the beginning of the run or with a new negative counterexample. Thus with
each new stage CounterEzamples contains one more negative counterexample and
some (possibly none) new positive counterexamples. The following claim establishes
that the distance d(k;, h*) decreases with every new stage.

Claim 4 FEvery negative counterexample corrects at least one error. More formally,

if yi is a negative counterezample, then there exists z € {0,1}" such that hi_y(z) = 1
and hi(z) = h*(z) = 0.

Proof: Let y; be a negative counterexample returned by EQ(k). Hence A(y;) = 1,
and there is some term z < y; in h. By Claim 2, h;_;(z) = 1.

Since A*(y;) = 0 and y; > z it follows that h*(z) = 0. By the definition of A; it

follows that k;(z) = 0. n

From Claim 4 it follows that there are at most £, negative counterexamples. Hence
there are at most £, + 1 stages in the run of the algorithm.

We divide each stage of the algorithm into non-overlapping substages. A substage
begins either at the beginning of a stage or with a new positive counterexample that
corrects an error. Obviously there can be no more than £, positive counterexamples
that correct errors and hence no more than £, + £, + 1 substages in the whole run
of the algorithm. The distance d(h;, h*) decreases with every new substage. If, how-
ever, functions k; and h; belong to the same substage, they are equivalent and their
local minima are the same. This allows us to bound the total number of positive
counterexamples.
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Claim 5 Every new positive counterezample is reduced to a local minimum point of
ho, h1, ... that has not been found earlier.

Proof: Let v be a positive counterexample that REDUCE is started with. Let ¢ be
the point REDUCE(v) returns. Assume, by way of contradiction, that ¢ has already
been found before. From Claim 3 it follows that ¢ is a term in A. Since v > ¢, it
follows that h(v) = 1. This is a contradiction to the assumption that v is a positive
counterexample. |

We denote the set of local minimum points of a boolean function f by Lmp(f).
We bound the total number of different local minima of the functions Aqg, k1, . . ..

Lemma 2 Let f and f' be n-argument boolean functions such that Err(f, f') = {z}.
Then

(a) If f'(z) =1 then |Lmp(f") — Lmp(f)| < 1.
(b) If f'(z) = 0 then |Lmp(f") — Lmp(f)| < n.

Proof:

(a) The only point that can be a local minimum of f’ and is not a local minimum
of f, is z itself. The claim follows immediately.

(b) Any point which is a local minimum of f’ but not of f is a parent of z. Since
z has at most n parents, the claim follows. [ |

Corollary 1 Let f and f' be n-argument boolean functions such that Err(f, f') con-
tains d, positive points of f' and d, negative points of f'. Then

|me(f’) - me(f)l < nd, +d,.

Corollary 2 Let go,91,...,9- be the subsequence of ho, by, ..., such that each g; is
the first of all the h;’s in its substage. Let Err(h*,g;_1) — Err(h*,g;) contain £,;_,
positive and £y, ;_, negative points of h* for alli=1,2,...,r. Let Err(h*,g,) contain
£pr positive and £,, negative points of h*. Then the total number of different local
minima of functions go, g1, ..., 8r, h* is bounded above by m + n Y7o ln; + 0o bpi-
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Proof: Note that go,¢1,...,9- are the different functions in A, ky,..., and that
CHECKEDMQ first answers according to go, then according to ¢g; and so on. Obvi-
ously, Err(h*,g;) C Err(h*,¢i-1) and Err(gi-1,9;) = Err(h*,g;-1) — Err(h*,g;) for
all : = 1,2,...,r. Also note that for each : = 0,1,...,7 — 1, one of £,; and £,; is 0,
but £,, and ¢, , may both be positive. '

We want to find |Ui—y Lmp(g:) U Lmp(h*)|, knowing that |Lmp(h*)| = m. Since

U Emala)0 Lmp(k*) € Ll (Emplar) (40 U (Empla) ~ Lmplai ),
f;om Corollary 1 it follows that )

| Q)me(gi) U Lmp(k*)| < |Lmp(h*)| + (nbnr + £p,) + ;V:(nfn,i +4,,)
and the b—ound follows. ) -

Since each error can be corrected at most once, it follows that Yoicolni <4, and
i=o4pi < £,. Hence the total number of the local minima and the total number
of positive counterexamples that can be found in a computation is bounded by m +
nf, + £,. The number of negative counterexamples in a complete run is bounded
by the number of positive errors. The total number of counterexamples is therefore
bounded by m + £yn + £, + £, < m +£€(n+ 1) = O(m + £n).

We now count the number of membership queries in a complete run of the algo-
rithm. Each positive counterexample v may cause at most n(n + 1)/2 membership
queries, before REDUCE(v) returns. Therefore there can be at most O(mn? + ¢n®)
membership queries in a complete run of the algorithm.

It is also clear that the running time of the algorithm is polynomial in m, n and
£. This concludes the proof of Theorem 1. [ |

5 Finite Exceptions

The relevant definitions for this section were introduced in Section 2.2. Here we give
a few lemmas and examples.
Example 1 The class of regular languages represented by DFA’s is polynomially

closed under finite exceptions. In [5] there is given an algorithm that takes as input
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a DFA M and an exception set S and produces a new DFA for zcpt(M, S). Its size
is polynomial in the size of M and S.

Example 2 Another example of a class that is polynomially closed under finite
exceptions is the class of boolean decision trees. This result is taken from [5] but
since the construction is not given there, we sketch it here.

Lemma 3 The class of boolean decision trees is polynomially closed under finite ez-
ceptions.

Proof: Let T be a decision tree on n variables. Let S be the exception set for T'.
We construct the decision tree for zcpt(T,S) as follows. We treat each exception
point z € S individually. First we walk down from the root of the original tree T to
see where z fits in it. If it leads us to a leaf with depth n, i.e., if all variables are
tested on this path, we just reverse the value of the leaf, because this path is for z
only. However, if we find ourselves at a leaf with depth less than n, we have to add
new internal nodes to the tree. Denote the value of this leaf by b. We then continue
the path that led us to this leaf with a path in which all the remaining variables are
tested. We end the path by a leaf with value 1 — b. For each new internal node on
the path, we make the other child (the one not on the path) a leaf, and give it the
original value b. Thus, each counterexample adds at most n new internal nodes to the
tree. The size of the new tree, measured as the number of internal nodes, is bounded

by [T|+n x |S| = [T|+ [|S]]. -
Example 3 One more interesting example is the class of DNF formulas.
Lemma 4 The class of DNF formulas is polynomially closed under finite exceptions.

Proof: Let f be an m-term DNF formula over n variables and S be an exception
set for it. Let S be partitioned in the sets of positive and negative exceptions (S
and S_, respectively), as described in Section 2.2. We construct a DNF formula for
zept(f, S) from the formula (f A f-) V f4, where f_ is a DNF formula which is true
on all the points in its domain except the ones in S_, and f, is a DNF formula which
is true exactly on the points in S;. The domain for all these formulas is {0,1}".

Obtaining f, is easy — straightforward disjunction of all the terms in S,, where
we make terms from points by substituting the respective variable for a 1 value of
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a coordinate and its negation for a 0 value. Obtaining f_ is harder. First we make
a decision tree corresponding to f_. We put each point from S_ individually in the
tree as a 0-valued leaf at the end of a path of length n. All the remaining leaves
get value 1. Then for each leaf with value 1 we make a term that will go into f_
by following the path from this leaf to the root. Obviously f_ has at most n x |S_]|
terms. Thus, after “multiplying” the terms out, the formula (f A f_) V f4 will have
at most mn x |S_| +|S4| £ (mn + 1) x |S| terms. [ |

Example 4 By duality it follows that the class of CNF formulas is polynomially
closed under finite exceptions.

Note that stronger bounds on the size of the new formula can be obtained by
using the result in [14]. We, however, chose to present a simpler argument. Also note
that the size bound is insufficient for strong polynomial closure under exception lists

as defined in [5].

Example 5 As our final example we show that any class that is obtained by adding
exception tables to another class is polynomially closed under finite exceptions.

Lemma 5 Let (R, Dom, p) be any class of concepts. Then the concept class obtained
from it by adding exception tables is polynomially closed under finite exceptions.

Proof: Let (R, Dom’, ') be the class obtained from (R, Dom, u) by adding excep-
tion tables, as defined in Section 2.2. Let (X, f’) be any concept from (R', Dom’, i)
and let ' € R’ be a shortest representation of (X', f’). Then there exists a concept r €
R and a finite set S € Dom(r), such that ((Dom(r'), p'(r')) = zept((Dom(r), u(r)), S)
and |r'| = 2(1 + |r| + ||S]]). Let S C Dom/(r') = Dom(r) be any finite set. Let
concept h” be defined as A" & zept((Dom'(r'), w'(r")), S). It is easy to see that
R" = zcpt((Dom(r), u(r)), S A S') and thus h” is represented by some r” € R’ with

size 2(1 + [r| +[|S A S||) < 2(1 + [r[ + IS+ [15°]]) = Ir'] + 2118 u

Corollary 3 The class of monotone DNF formulas with finite exceptions is polyno-
mially closed under finite exceptions.
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6 Learning Monotone DNF Formulas With Fi-
nite Exceptions

In this section we present an algorithm that learns the class of monotone DNF for-
mulas with finite exceptions. The target concept is a boolean function on n variables
b zcpt(hys, S*), where h}, is some monotone DNF formula and S* is a set of

exceptions for it. The domain of the target concept is {0,1}".

We assume that we have an upper bound on the cardinality of S* and denote it
by I, i.e., |S*| <. If this bound is not known, we can start out by assuming it to be
any positive integer and doubling it whenever convergence is not achieved within the
proper time bound, which will be given later. We assume that h},; is minimized and
has m terms.

Like LEARNMONDNF our current algorithm also has a set CounterEzamples
that stores pairs of all counterexamples and their labels received through equivalence
queries. The purpose of it is slightly different: it lets the algorithm conclude that
some points cannot be classified by h}, alone, and, therefore, have to be included in
the exception set.

The algorithm tries to find a suitable monotone DNF formula, which, coupled
with a proper exception set, would give the target concept. The equivalence queries
are made on a pair (h, S) of a monotone DNF formula h and a set of exceptions S. It
focuses only on building k and makes S from whatever in the set CounterEzamples
is currently misclassified by h. It uses a simple subroutine GETEXCEPTIONS for
building S. The subroutine is given in Figure 4.

GETEXCEPTIONS()

{

S=0
For (each (z,b) € CounterExamples)

If (h(z) # b)
Add z to S

Return S

Figure 4: Subroutine GETEXCEPTIONS
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In order to classify the counterexamples received, the algorithm needs to evaluate
the current function xcpt(h S). This is done by another very simple subroutine
THEFUNCTION, given in Figure 5.

THEFUNCTION(z)
{
If (z € 5)
Return 1 — A(z)
Else
Return h(z)

Figure 5: Subroutine THEFUNCTION

As in [2], [4] and Section 3, our algorithm also uses a subroutine REDUCE to move
down in the lattice from a positive counterexample. Its goal is to reduce the positive
counterexample to some point which can be added as a term to the formula k. Then
the new hypothesis would classify the counterexample and possibly some other points
as positive. However, this may not always be possible. There can be overwhelming
evidence that the candidate point is just a positive exception and need not be added
to h. More precisely, if there are more than ! negative counterexamples above a term
of h, then they all have to be in the exception set, which is then too big. Therefore the
current subroutine REDUCE is somewhat more complex and checks whether a point
has enough evidence to be an undoubted exception point or not. The subroutine is
given in Figure 6.

REDUCE(v)

For (each child w of v)

If (MQ(w) ==1) && (|{y > w | (y,0) € CounterEzamples}| < 1))
Return REDUCE(w)

Return v

Figure 6: Subroutine REDUCE

The algorithm for learning monotone DNF formulas with at most ! exceptions
using equivalence queries and membership queries is given in Figure 7.
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LEARNMONDNFWITHFX()
{

S = CounterEzamples = J
h = “the empty formula”

?Vhile ((v = EQ((h, 5))) # “yes”)

Add (v,1 — THEFUNCTION(v)) to CounterEzamples
If (THEFUNCTION(v) == 1)
For (each term t of h)
If (|{w > t| (w,0) € CounterEzamples}| > 1)
Delete term ¢ from h
For (each (z,1) € CounterEzamples)
If (h(z) ==0) && (|{y > z | (y,0) € CounterEzamples}| < 1))

w = REDUCE(z)
Add term w to h

}

S = GETEXCEPTIONS()

}
Output (4, S)

}

Figure 7: The algorithm for learning monotone DNF formulas with finite exceptions

The algorithm is based on the following ideas. Each positive counterexample is
reduced if possible to a new term to be added to the formula, as was explained above.
In case this is not possible, the algorithm benefits anyway by storing it in the set
CounterEzamples.

Negative counterexamples imply that there are not as many positive points in the
target concept as we thought. Sometimes more exception points are necessary for
the hypothesis to be correct. Other times some terms have to be removed from the
formula. Deleting a term happens only when there is enough evidence that a term is
wrong, namely, more than [ negative counterexamples above it.
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7 Correctness and Complexity of the Algorithm

Theorem 2 LEARNMONDNFWITHFX learns the class of monotone DNF formu-
las with exceptions in polynomial time using equivalence and (vanilla) membership
queries.

Proof: We begin the analysis with this simple claim.
Claim 6 Once a term t is deleted from hypothesis h, it can never reappear in it.

Proof: A termt can be deleted only if there are more than ! negative counterexam-
ples above it. To reappear, ¢t must be returned by REDUCE. But every point returned
by REDUCE must have at most [ negative counterexamples above it at the time it is
returned, so REDUCE cannot return ¢ again. ]

The following lemma shows what points REDUCE can return.

Lemma 6 REDUCE always returns either a local minimum of h* or a parent of a
positive exception in S*.

Proof: First note that REDUCE can only be called on points z such that h*(z) =1
and can only return points w such that h*(w) = 1. Let w be a point returned by
REDUCE. Assume w is not a local minimum point of A*. Then for some child y of
w, h*(y) = 1 and the number of negative counterexamples above y is greater than [.
Hence, y cannot be above any term ¢ of hj},, since each term ¢ can have at most [
negative counterexamples above it. Therefore, y is a positive exception in S*. ]

Now we are ready to bound the number of different points that can be returned
by the subroutine REDUCE.

Claim 7 The number of different points that REDUCE can return is at most m +
(n+ 1)L
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Proof: Let set S* contain [, positive exceptions and /, negative exceptions, where
I, +1, < 1. k}s has m terms and thus m local minima. By Lemma 2, the number of
local minima of h* is at most m + I, + nl,. Each positive exception can have at most
n parents which allows us to bound the number of parents of positive exceptions by
nl,. Therefore, by Lemma 6, the number of different points that REDUCE can return
is at most m + (n + 1), + nl, <m+ (n + 1)L |

All equivalence queries are asked about the current function zcpt(h,S). Since S is
constructed right before a new equivalence query from counterexamples that are mis-
classified by h alone, the argument of an equivalence query is always consistent with
all the counterexamples seen to that point. Therefore the function zcpt(h, S) is dif-
ferent for each equivalence query. This allows us to bound the number of equivalence
queries.

Claim 8 The number of equivalence queries before success is bounded by O(m?*n?1%).

Proof: We examine how zcpt(h,S) changes. Either A itself changes, or A remains
the same and S changes, namely, it contains exactly one point more, the most recent
counterexample.

By Claim 6, each term of h can appear in it or disappear from it only once. Thus
each possible term can induce at most 2 changes in formula b — first by appearing
in it and then by disappearing. Thus, h can only change twice as many times as the
number of terms that REDUCE can return. Therefore, by Claim 7, there can be at
most 2(m + (n + 1)I) + 1 different functions & in a complete run of the algorithm.

We now count the number of times S can change while A remains the same. S
grows larger by one with each new counterexample. It contains some (possibly none)
points z such that h(z) = 1 and some (possibly none) points = such that h(z) = 0.
We bound the number of each of these separately.

Each point z € S such that A(z) = 1 is above some term of . No term can
have more than [ negative counterexamples above it. Therefore, the number of points
z € S such that A(z) = 1 can be bounded by ! times the bound m + (n + 1) on the
number of different terms of &, that is, by ml + (n + 1){2.

Each point z € S such that h(z) = 0 is a positive counterexample. It is not above
any term in h, which must be because z has more than ! negative counterexamples
above it. Otherwise the algorithm would have called REDUCE on z and added a new
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term ¢ < z to h. If £ has more than [/ negative counterexamples above it, then it
cannot be above a term in A}, and thus has to be a positive exception in S*. Hence
we have a bound of /, on the number of points z € S such that h(z) = 0.

Altogether, we can bound the cardinality of S by |S| < ml+ (n+ 1)?+ 1, <
(m + 1)l + (n + 1)I2. While h stays the same, the number of possible different sets S
is at most (m + 1)l + (n + 1)I2 + 1.

Hence, the total number of equivalence queries in a complete run of the algorithm
is bounded by (2(m + (n+ 1))+ 1) x (m+ 1)l + (n+ )2+ 1) = O(m?n?B). =

We now count the total number of membership queries. Each positive coun-
terexample v may cause at most n(n + 1)/2 membership queries, before REDUCE(v)
returns. Therefore there can be at most O(m?n*l®) membership queries in a complete
run of the algorithm.

It is not difficult to see that the total running time of the algorithm is polynomial
in n, m and [. This concludes the proof of Theorem 2. |

8 Exceptions and Lies

In this section we focus on a relation between learning concepts with exceptions and
learning with malicious membership queries. We give a generic algorithm transforma-
tion to learn in polynomial time using equivalence and malicious membership queries
any class of concepts that is polynomially closed under finite exceptions and learnable
in polynomial time with equivalence and membership queries.

Theorem 3 Let H be a class of concepts that is polynomially closed under finite
ezceptions and learnable in polynomial time with equivalence and (vanilla) member-
ship queries. Then H is learnable in polynomial time with equivalence and malicious
membership queries.

Proof: Let H = (R, Dom, u) be a target class of concepts that is polynomially closed
under finite exceptions. We assume that LEARN is an algorithm to learn H using
equivalence (EQ) and (vanilla) membership queries (MQ) in time pa(s,n), for some
polynomial ps. Without loss of generality, p4 is non-decreasing in both arguments.
We transform this algorithm into algorithm LEARNANYWAY which learns any concept
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h* € H using equivalence and malicious membership queries in time polynomial in
|h*|, n and the table-size L of the set of strings on which MMQ may lie.

As in Sections 3 and 6 the main idea is to keep track of all the counterexamples
seen and to use them to avoid unnecessary membership queries. For this purpose we
have the set CounterEzamples again. As before it stores pairs of counterexamples
and their labels. Now, before asking a membership query about string z, we scan
CounterEzamples to see whether it already contains z and a label for it. If z and the
label are found, the algorithm knows the answer and does not make the query. (For
some concept classes (e.g., monotone DNF formulas) it might be possible to infer the
classification of = according to the target concept h* even though z and its label are
not contained in CounterEzamples. However, this simple checking suffices for our
algorithm and, what is more important, works in the general case.)

Another idea is to keep track of the answers received from membership queries,
and to use them to conclude that MMQ has lied. For this purpose LEARNANYWAY
has a set MembershipAnswers. This set stores pairs (z,b) for which MMQ was called
on string = and returned answer b. After receiving a new counterexample from EQ), -
the algorithm stores it in CounterEzamples and checks whether this counterexample is
already contained in MembershipAnswers. If it is present in MembershipAnswers with
the wrong label, the algorithm discards everything except the set CounterEzamples
and starts from scratch. If this is not the case, the algorithm continues the simulation
of LEARN, which we now describe in detail.

The new algorithm simulates LEARN on the target concept by doing everything
as it does, except for the following:

e Each membership query of LEARN, MQ(z), is replaced by a subroutine call
NEWMQ(z). The subroutine is given in Figure 8.

¢ Each equivalence query of LEARN, ¢ = EQ(%), as well as the output statement,
Output b, is replaced by the block of code given in Figure 9.

Note that when the simulation is restarted, only the set CounterEzamples reflects
any work done so far. We now show that LEARNANYWAY is correct and runs in time
polynomial in |h*|, n and L. We partition the run of the algorithm into stages, where
a stage begins with a new simulation of LEARN. First we show that a stage cannot
last forever.

Claim 9 Every stage ends in time polynomial in |h*|, n and L.
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NEWMQ(z)
{
If ((z,b) € CounterEzamples)
Return b
b =MMQ(z)
Add (z,b) to MembershipAnswers
Return b

Figure 8: Subroutine NEWMQ

Proof: Note that H is polynomially closed under finite exceptions, which means
that there is a polynomial p(-,-) such that for every concept h € H and every finite
set S C Dom(h) there exists a concept b’ € H equal to zcpt(h, S) such that size |A’| <
p(|h],]]S]]). Without loss of generality we can assume that p is non-decreasing in both
arguments. We now prove that each stage ends in time bounded by pa(p(|~*|, L), n),
where we count only the time spent on LEARN operations, i.e., we do not count the
simulation and bookkeeping overhead.

We prove this by contradiction. Assume that stage i goes over the limit. Let
us look at the situation right after the number of simulated steps of LEARN exceeds
the above time bound. Let S; denote the set of strings the MMQ has lied about
during this stage, up to the time bound. Let n denote the length of the longest
counterexample received during this stage, up to the time bound.

None of the strings in S; can belong to CounterEzamples. Assume by way of
contradiction otherwise. Let z € S; be a string contained in CounterEzamples with
some label. S; contains exactly the strings that the MMQ lied on in this stage and time
bound, so there was a query MMQ(z). It must have happened before z was added
to CounterEzamples. But then at the moment it was added to CounterEzamples it
already belonged to MembershipAnswers and an inconsistency had to be found. The
stage had to end. '

Therefore, considering S; as an exception set, all the information received by
LEARN in this stage and within the given time bound is consistent with the con-
cept ' = zcpt(h*,S;) € H. LEARN either has to output k' in time bounded by
pr(p(1h*],11S:1),n) < pr(p(|k*|, L),n), or it has to receive a counterexample z € S;.
In the former case, LEARNANYWAY makes an equivalence query EQ(A’) and receives
a counterexample ¢ € S;, since only counterexamples from S; are possible at that
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z = EQ(h)

If (z = “yes”)
Output A
Return

}
Add (z,1 — h(z)) to CounterEzamples

If ((z, h(z)) € MembershipAnswers)

MembershipAnswers =
Restart Simulation, retaining CounterEzamples

}
Figure 9: The block of code replacing “z = EQ(h)” or “Output A”

point. In either case, an element of S; is added to CounterFEzamples by the above
time bound, which we showed above was impossible. This is a contradiction to the
assumption that stage ¢ goes over this bound. ]

What remains is to show that there can be only a small number of stages. That
is, we do not restart the simulation too many times.

Claim 10 There are at most L+1 stages in the run of the algorithm LEARN ANYWAY.

Proof: At the beginning of each stage (except the first one) the algorithm discovers
a new string where the MMQ lies and from then on MMQ can never lie on this string
again, because it is added to CounterEzamples. To be more precise, MMQ does not
get a chance to lie on this string because it is never asked about it again. Let S be
the set of the strings that MMQ lies on. Since |S| < ||S]| £ L, in stage L + 1 the
MMQ can lie on no strings (i.e., it is not asked queries about any of the strings where
it may lie). Therefore LEARN has to converge to the target concept h*. [ |

The time spent on simulation and bookkeeping is clearly polynomial in |h*|, n and
L. Thus, LEARNANYWAY is a polynomial-time algorithm that uses equivalence and
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malicious membership queries to learn the class of concepts H = (R, Dom, ). This
concludes the proof of Theorem 3. ’ |

As corollaries of Theorem 3 we have the following.

Corollary 4 The class of regular languages, represented by DFA’s, is learnable in
polynomial time with equivalence and malicious membership queries.

Proof: In [5] it was shown that this class of concepts is polynomially closed under
finite exceptions. In [1] it was shown that it is learnable in polynomial time using
membership and equivalence queries. n

Corollary 5 The class of boolean decision trees is learnable in polynomial time with
extended equivalence and malicious membership queries.

Proof: Lemma 3 shows that the class of boolean decision trees is polynomially
closed under finite exceptions. In [6] it was shown that it is learnable in polynomial
time using membership and extended equivalence queries. |

Corollary 6 The class of monotone DNF formulas with finite exceptions is learnable
in polynomial time with equivalence and malicious membership queries.

Proof: Corollary 3 shows that the class of monotone DNF formulas with exceptions
is polynomially closed under finite exceptions. In Section 6 we gave an algorithm that
learns this class in polynomial time with membership and equivalence queries. |

Note that we can also learn the class of monotone DNF formulas without any
exceptions with this generic algorithm, using extended equivalence and malicious
membership queries, since it is just a subclass of the class that allows exceptions.
However, the algorithm is much less efficient than the one described in Section 3.
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9 Discussion and Open Problems

In Section 3 we show how to learn monotone DNF formulas in polynomial time with
equivalence and malicious membership queries. Many open problems remain. One
obvious question is: what can we say about lower bounds for identifying monotone
DNF with equivalence and malicious membership queries? Can we prove something
more than the trivial bound that there must be more membership queries than lies?
Can we say something about lower bounds for other classes of concepts? Another
open problem is finding polynomial-time algorithms with equivalence and malicious
membership queries for other interesting concept classes.

In Section 6 we give a polynomial-time algorithm using equivalence and (vanilla)
membership queries to learn the class of monotone DNF formulas with exceptions.
Among the open problems regarding learning with exceptions are finding polynomial-
time algorithms for other classes of concepts and proving lower bounds for any of the
classes. Also, it is probably possible to improve the running time of the algorithm
given in Section 6.

In Section 8 we show that there is a polynomial-time algorithm using equivalence
and malicious membership queries for learning any concept class that is polynomially
closed under finite exceptions and can be learned in polynomial time using equivalence
and (vanilla) membership queries. Thus, learning with exceptions is not easier than
learning with lies (modulo a polynomial-time reduction). An immediate question is
whether it really is harder than learning with lies or they both are equally hard.

The generic method of Section 8 allows us to learn new classes with equivalence
and malicious membership queries. These include DFA’s and boolean decision trees.
However, this result leaves the question open for other classes, polynomial-time learn-
able with equivalence and (vanilla) membership queries, such as read once formulas,
that are not polynomially closed under finite exceptions. A start in this direction
is made in [3], which gives a randomized polynomial-time algorithm to learn y-DNF
formulas with equivalence and malicious membership queries.
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