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Abstract

Toda [13] has shown that the polynomial hierarchy is contained in PFP.
It is natural to ask whether the polynomial hierarchy is in fact contained in
PP. Along these lines, it has been shown [2] that PNPlogl js contained in
PP. However, a lower bound of Minsky and Papert [8] implies that X% is
not contained in PP relative to an oracle [5]. Thus we ask how much of the
polynomial hierarchy is contained in PP.

We construct an oracle relative to which PNPI/(»)] is contained in PP if
and only if f(n) = O(logn), so the results of [2] are optimal in a relativized
world. In particular, relative to this oracle, A% is not contained in PP. Our
oracle is also the first relative to which PN! is properly contained of ng, or in
the terminology of Wagner’s refined polynomial hierarchy [15], 6% is properly
contained in AZ.

Our construction depends on a new lower bound for perceptrons, which
is interesting in its own right. We construct a predicate that is computable
by a small perceptron, but which requires exponentially large weights. This
lower bound depends in turn on a fundamental property of polynomials: if pis
bounded on the domain {1,...,m} then the coefficients of p must be small as
a function of m.

1. Introduction

Recently Toda [13] proved that the polynomial hierarchy is contained in PFP, and
Beigel, Hemachandra, and Wechsung [2] proved that PNPPegl is contained in PP.
Many people have asked whether those two results could be extended to show that
the polynomial hierarchy is contained in PP. As a corollary to Minsky and Papert’s [§]
“one-in-a-box” theorem, where they construct a depth-2 AC? predicate that is not
recognized by any perceptron with order less than %\/r_i, Bin has shown that there is
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an oracle A such that (£5)4 € PP#, Thus it is unlikely that current techniques will
be extended to show that PH C PP.

The result of [2] has been improved in [7] where it was shown that PC=Plg] C pPp
and in [4] where it was shown that PFPl¢] C PP. Toda’s result [12] has been improved
independently in [14] and [11] where it was shown that PH C BP - PP.

It is natural to ask whether (A%)# is contained in PP. We construct an oracle A
such that (A5)#*  PP4. In fact, we obtain PNP*I/()] ¢ PP4 ynless f(n) = O(logn),
showing that the result of [2] is tight in relativized worlds. :

The structure of the proof is as follows: We define a test language

ODD-MAX-ELEMENT = {0" : max (A N {0,1}") ends in a 1},

which belongs to PNP*, and we define a related language ODD-MAX-BIT, which is
the set of strings whose rightmost 1 is in an odd-numbered position.

We assume some familiarity with circuits. A weighted threshold-gate with weights
Wi, ..., W, outputs 1 on inputs z4,...,z, iff " wiz; > 0. All weights must be integers.
A perceptron is a circuit with a weighted threshold gate at the root and AND-gates
at the remaining level. The order of a perceptron is the maximum fanin of its AND-
gates. The weight of a perceptron is the maximum absolute value of the weights on
the inputs to its threshold gate. The size of a perceptron is the number of AND-gates
it contains. Perceptrons are an important computational model, which is used in
practice, and which has been studied in [8, 4, 1, 11, 3].

The correspondence between oracle Turing machines and circuits is as in [6].
We will just sketch the basic idea. @~ We construct an oracle A such that
ODD-MAX-ELEMENT# ¢ PP4 by an initial segment argument. In order to de-
feat a polynomial-time probabilistic oracle TM M we choose m such that AN {0,1}™
is as yet completely undefined. By convention we assume that a computation of M
includes the oracle answers. Fix an input 0™. Let n = 2™. We will construct a
. perceptron C of size 2P°¥1°8™  weight 1, and order polylogn that simulates M. Its
input consists of n = 2™ bits: the characteristic sequence of AN {0,1}™. For each of
the 2Pol¥log™ computations of M, we construct an AND-gate that verifies the oracle
answers in the computation; each such AND-gate has fanin m®() = polylogn. If a
computation accepts, then we give its AND-gate weight +1; if it rejects, then we give
its AND-gate weight —1. The perceptron C accepts the characteristic sequence of
AN{0,1}™ if and only if M accepts 0™ when using oracle A. We choose AN {0,1}™
so that C accepts or rejects incorrectly. The construction fails only if there is a family
of perceptrons having size 2P°Y1°¢" weight 1, and order polylog n which compute the
predicate ODD-MAX-BIT.

It is easy to construct a family of perceptrons having size 2P°¥1°8™ and order
polylog n which compute the predicate ODD-MAX-BIT. However we show that any
such circuits require exponentially large weights. Thus the desired oracle must exist.
The techniques are novel, because all previous lower bounds for perceptron size hold
regardless of weights. (Although there are examples in [8, Sections 10.1-4] where
large weights are proved necessary, these either involve perceptrons whose size is
large anyway, or else very contrived computational models.)
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Our circuit lower bound depends on a technical result concerning polynomial
interpolation, which we prove in the appendix. Let p denote a real polynomial having
degree d. It is well known that if p takes the value 0 at d 4 1 distinct points then
all of its coeflicients must be 0. We prove an analogous result for polynomials that
are approximately 0 at many points: If p is bounded in absolute value by a small
constant at the points 1,...,m where m is quite large compared to d, then all of
the coefficients of p, except the constant term, are extremely small. Hence, we may
conclude that p(1) — p(0) is very small.}

2. Threshold Circuits

Let max (S) denote the lexically maximum string belonging to the finite set S.

Definition 1.
e ODD-MAX-ELEMENT# = {0" : max (4N {0,1}") ends in a 1}.

e ODD-MAX-BIT is the set of all strings over {0,1}* whose rightmost 1 is in an
odd-numbered position, i.e., the set of strings of the form z10* where the length
of z is even.

Let PNPAL/(")] denote the class of languages accepted by a deterministic
polynomial-time bounded oracle Turing machine that is allowed at most f (n) queries
to an NP4 oracle. The following proposition is standard.

Proposition 2.

o If, for every oracle A, ODD-MAX-ELEMENT# belongs to PP4, then n-bit
instances of ODD-MAX-BIT can be decided by perceptrons having size 2polylogn
weight 1, and order polylog n.

o If, for every oracle A, PNP*U(™) pelongs to PP4, then (2/(™ — 1)-bit instances

of ODD-MAX-BIT can be decided by perceptrons having size on°® , weight 1,
and order n®(),

We say that a perceptron is in clean form if it contains no negations and no
identical AND-gates. The following lemma is essentially due to Minsky and Papert [8].

Lemma 3. If f is computed by a perceptron with size s, weight w, and order d, then
[ is computed by a perceptron in clean form with size 2%s, weight sw, and order d.

1The conclusion that p(1) — p(0) is very small may also be obtained by careful analysis of the
proof of Lemma 2.2.2 in Mario Szegedy’s doctoral dissertation [10].




Proof:  For each AND-gate, replace each negated input ¥ by 1 — z, and replace
“and” by multiplication. Expand using the distributive laws of arithmetic. Each
term in the expansion is a conjunction of the inputs to C. The total number of
terms obtained by expanding all AND-gates in this way is at most 2%s. Each term
is contributed at most once per AND-gate, so when we collect terms, no weight is
greater than sw in absolute value. |

Lemma 4. If C is a perceptron in clean form having size s, weight w, and order d
which recognizes ODD-MAX-BIT N {0,1}" then

w > .]_'.2(11—1)/48:110.
- 8

Proof: Let z = z;,...,z, denote the input to C. We identify the vector z with
the set X = {i : z; = 1}. By assumption, C accepts z iff max (X) is odd. Let T
denote C’s threshold gate. Each input to T' depends on a set S C {1,...,n} such
that 0 < |S| < d. For each S let w(S) denote the weight given to the corresponding
input to T' (0 if there is no such input).

Let
(X)= 3> w(S)
SCX,)|S|<d
denote the total weight of X. Then C accepts z iff ¢(X) > 0. Hence ¢({1}) > 1. For
0<:<d,let
a($)= 2 w(S)
SCX,|S|=1

denote the weight of X due to subsets of size ;. Clearly

oX)= ) a(X).

0<i<d

Now suppose that we have found X such that ¢(X) = —W < 0 and max (X) = .
Let m = 24d"°, and let M = {i +1,i+3,...,i+2m —1}. Wewillfind Y C M
such that ¢(X UY) > 2W. Similarly if ¢(X) > 0, we will find Y C M such that
C(XUY) < —2¢(X). Westart with X = {1} and W > 1, and we iterate (n—1)/4841°
times to obtain a set X C {1,...,n} with ¢(X) > 2(r-1)/484" 55 ¢y > Lo(n-1)/48d%

It remains to show that the desired set Y always exists. We will consider only
the case ¢(X) < 0, because the other case is entirely similar. Fix X, 7, m, and M as
above. For each Y C M, we have ¢(XUY)>0. For each S C M let

= Y w(®)

XUR=XUS,|R|<d

denote the weight due to S. Let

) = o ¥5)
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denote the average weight due to a k-element subset of Y. Note for each j > k that
ug(M) is equal to aveycpjy|=; ur(Y). Now

(XuY) = Y u(8)
scy

= «X)+ T ¥S)

SCY,1<|S|<d

= N+ X > KS)

1<k<d SCY,|S|=k

Y
= c(X)+ > (lkl) ur(Y).
1<k<d
Therefore, for every Y C M we have
> (!Yl) ur(Y)=e(XUY)—c(X) > W. (1)
1<h<a \ F

If, for some Y C M we have
> (lYl)uk(Y) > 3w
1<hea \ K
then ¢(X UY) > 2W and we are done, so assume that for every Y C M we have
Y
> <| ') ur(Y) < 3W. (2)
1<h<a \ K
Recall that for j > k, ux(M) is equal to aveycaryj=; ur(Y). Therefore, by (1) and (2),
w< ¥ (])uk(M) < 3W.
1<h<a \F

Define a dth degree polynomial

Then we have W < p(z) < 3W for z = 1,2,...,m. We can also expand p(z) to
obtain constants ay,..., a4 such that

p(z)= ). azr.

1<k<d

By Lemma 11 we have

2\ * & g
< ot
“o= 2(k) 3W‘Jl(m+d/255+1)




3%

N—
x

< 12Wd

dg k
= 12Wd 24d1°) since m = 24d'°
1 k
< Wd{—1) .
< 12wd (53)
Therefore
1 1 12
= < -W— < W,
p(1) Kz,;d“"—z 1-1/24d =23

which contradicts p(1) > W. 1

Theorem 5. If f(n) # O(log n) then there exists an oracle A such that PNPAF(»)] 45
not contained in PP4,

Proof: Suppose that PNPU(W] C PPA. Then (2™ — 1)-bit instances of
ODD-MAX-BIT can be decided by perceptrons with size 2"0(”, weight 1, and or-
der n°(), Therefore they can be decided by perceptrons in clean form with size
s =on°® weight w = 2"°" | and order d = n®®), By Lemma 4, w > %2(2“")'1)/48410.
Therefore,

_1_2(2f(")—2)/48d1° — 2n°<1)

S 9
2(21(")—2)/48d1° — 32"0(1)
2(2f(")-2)/48d1° — 2n°(1)

(27 —2)/484"° = p°0)
21" _9 = pOMlyggo,
of(n) _o _— no(l),

of(n) _— nO(l)’

f(n) = O(logn).
: |

Corollary 6. There ezists an oracle A such that PNP” is not contained in PPA.

Corollary 7 (Obtained independently by Bin [5]). There ezists an oracle A
such that PH# is not contained in PP4.

Corollary 8. There exists an oracle A such that (65)* C (AD)A.
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Appendix: Polynomial Interpolation

We consider a polynomial p that is bounded on the domain {1,...,m} and we show
that the coefficients of p must be very small. This is what one would expect, but the
proofs are not trivial. Ted Rivlin [9] reports some improvements to our bounds.

Lemma 9. Let p(z) = Yocrca akt® be a dth degree polynomial, and let ¢ =
maXi<i<m |p(2)|, for some m >d+ 1. Then

Proof: = We proceed by choosing d + 1 equally spaced points between 1 and m
and passing a dth degree polynomial through those points. Since that polynomial is
unique, it must be equal to p. Then we estimate its coefficients.

Let u be the unique multiple of d + 1 in [m — d,m]. Let § = p/(d +1). For
1 <1< d+1let z; =i, and let ¢; = p(z;). By Lagrange’s interpolation formula,

P(w) = Z CiH

1<i<d+1  j#i Ti — T

= ¥ &lli%;

1<i<d+1 ,;eg

= 2 (-1)d+1—f(d+f—i)!(i—1)15dH("’"j5)

.’B-—.’tj

1<i<d+1 o
= 6_d - G — z — i6).
15%-4-1 (=1)d1=i(d + 1 —&)!(s — 1)! E( 79)
Therefore,
| d
jarl < e . ( ) s
lsgﬂ (¢ - )'(d"' 1 =)l \k k+1<.7<d+1

= 6

4\ i (d+ 1)
T 1)'(d+1—z)'(k)5 T

N T (Z) EZ:[ 3:
= (kcj-—:)! (Z) lsfgﬂ(“ 1)(5 ¢ 1)
i

_ bk (d+1 od
Tk \k+1

< c67k(4/k)k2dd




The bound obtained above is not good for small k, but it is very good for large k.
In fact ax is so small for large k, that most terms of p(z) can be practically ignored
when z is small. We exploit this fact to prove that all the coefficients are small.

Lemma 10. Let
p(z)= Y a*

0<k<d

be a dth degree polynomial, and let ¢ = maxi<icm |p()|, for some m > d + 1. Then

4¢d1o

< .
la] < m + dJ255 + 1

Proof:  The proof is by induction on d. When d = 1, p(z) is a line, whose slope is
obviously between —2c/m and 2¢/m, so :

2c

< 2¢/m < .
laa] < oIm S T 1

so the base case is established. Now assume that the result has been established for
all degrees less than d. We prove it for d.
Let k> [(d +1)/2] and let z < (m — d)/512. By the preceding lemma,

k
lax| < ¢ (:(%t—ld))) 4% < ¢(8/(m — d))*4¢

SO
lakz®| < c(8z/(m — d))¥a? < c(1/64)*4% < ¢(1/8)%4? = 2~ < ¢/d.

Therefore, for z < (m — d)/512,

z akxk

[(d+1)/2]1<k<d

<d(c/d) =c.

Let ¢(z) = Yockcasz axz*. Then, for 1 < i < |(m — d)/512], |q(5)| < p(i) + ¢ < 2c.
Now, the degree of ¢ is [(d+1)/2] —1 < d/2. In addition, the degree of q is at least
1 so we may apply the inductive hypothesis to bound a;:

4c(d/2)*° 4c(d/2)° - 4ced®®
ay _<_ < =
[(m — d)/512J +d/510 +1 — (m—-d- 511)/512 + d/510+1 m+ d/255 +1’

completing the induction. |



Lemma 11. Let

pz) = Y apz*

0<k<d

be a dth degree polynomial, and let ¢ = maxi<i<m |p(2)|, for some m > d + 1. Then,

fork >1, \
2\F i
'“"lsz(E) Cd((m+d/255+l)) '

Proof: = When k = 1, this follows from Lemma 10, so assume that & > 2. The
proof is by induction on d. For the base case, assume that ¥ < d < 2k — 1. By
Lemma 9,

lax| < (i@il—))k&’

- k(m —d)
< o 2k-1 < _
< ( Hm—d) 4 because d<2k-1
_ 1 ( 128 \*
- (m —d)
1 d
< = >
< 4 ( (m = d)) because d > 2
1 (d7(256d/255 + 2)
< - >
< 4 ((m+d/255+1) because m > d +1
_ 1 256d/255 +2 &P g
-1 (m +d/255 + 1)
1 256k/255 +2 & k
< - >
< 4 ( ) ((m+d/255+1)) because d > k
1 /2 & k
< -¢[Z >
= € (k) ((m n d/255 n 1)) because k 2 2
1 /2\* k
< = >
= 8 (k) ed ((m /255 + 1)) because d > 2

k

= ( )de( m+d/255+1))

establishing the base case. Now assume that the result has been established for all
degrees less than some d > 2k — 1.

Let j > [(d +1)/2] and let z < (m — d)/512. As in the proof of Lemma 10, we
have, for z < (m — d)/512,

<ec

>, a4

[(d+1)/21<i<d
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Let ¢(z) = Tocjcisz @;7°. Then, for 1 < i < |(m — d)/512], |¢(3)] < p(3) + ¢ < 2c.
Now, the degree of ¢ is [(d+1)/2] —1 < d/2. In addition, the degree of ¢ is at least k
so we may apply the inductive hypothesis to bound a, as in the proof of Lemma 10:

9 k
ar < 2 (%)k 2¢(d/2) ( [(m = d) /sffz/ J2)+ d/510 + 1)

k
2(%)k0d(m+d7:55+1) ’

completing the induction. |
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